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a b s t r a c t

In a consensus network subject to non-zero mean noise, the system state may be driven away even
when the disagreement exhibits a bounded response. This is unfavourable in applications since the
nodes may not work properly and even be faulty outside their operating region. In this paper, we
propose a new control algorithm to mitigate this issue by assigning each node a favourite interval that
characterizes the nodes desired convergence region. The algorithm is implemented in a self-triggered
fashion. If the nodes do not share a global clock, the network operates in a fully asynchronous mode.
By this algorithm, we show that the state evolution is confined around the favourite interval and the
node disagreement is bounded by a simple linear function of the noise magnitude, without requiring
any priori information on the noise. We also show that if the nodes share some global information,
then the algorithm can be adjusted to make the nodes evolve into the favourite interval, improve on
the disagreement bound and achieve asymptotic consensus in the noiseless case.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the last two decades there has been a strong drive to-
wards a systematic understanding of how complex large-scale
systems evolve and can be efficiently monitored and controlled.
Sensors and actuators are deployed over the system and exchange
measurements and control signals with computing units over
a communication medium, which introduces constraints on the
scheduling and the duration of the transmission.

This scenario has prompted a large research activity in three
directions. The first one has systematically investigated so-called
event-based control methods, in which measurements are sam-
pled and control inputs are scheduled according to a state-
dependent law [1–3]. The second direction has methodically
exploited the graph structure underlying large-scale systems to
design distributed control laws that uses information available
only locally, while achieving a global coordination task, such as
consensus or synchronization [4–6]. The third research direction
has investigated the combined problem, in which each local
controller collects information from its neighbours and schedules
new control values in an event-based fashion [7–9].

✩ The work of Mingming Shi was supported by the Chinese Scholarship
Council (CSC) (Grant No. 201506120032).
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In this paper we contribute to this last line of research, ac-
cording precedence to the consensus task which, in spite of its
simplicity, many problems in dynamical control networks can be
reduced to. In particular we focus on the robustness of consensus
to noise that is bounded but otherwise unknown, which, in contrast
to the case of consensus under noise with specific statistical
properties, is a much less understood problem.

Related literature. The investigation of noisy consensus net-
works has been performed in the case of noise that is white [10,
11], zero-mean independent and identically distributed [12],
Brownian-like [13] or martingale [14,15]. Without a statistical
description of the noise, several authors have given bounds on
the consensus error [16], the difference between the maximum
and the minimum state over time [17], the difference [18], or the
asymptotic difference [19], between the states of the agents, as a
function of a suitable measure of the noise magnitude. However,
these bounds come with no guarantee on the boundedness of the
state, which is hard to obtain due to the presence of the zero
eigenvalue in the Laplacian matrix and of noise with non-zero
average. The authors in [20] developed a method that achieves
approximate consensus and makes the system trajectory bounded
but it requires the knowledge of the noise magnitude. State
boundedness and exact consensus are achieved in [21], but the
result requires the restrictive assumption on the integral of the
noise absolute value to be finite. Our previous work [22] has
proposed an adaptive consensus algorithm to achieve practical
consensus, a linear dependence of the disagreement on the noise
magnitude and boundedness of the state, without assuming any

https://doi.org/10.1016/j.sysconle.2020.104623
0167-6911/© 2020 Elsevier B.V. All rights reserved.
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a priori information on the noise, except its boundedness. In the
noiseless case, the node disagreement normalized by the norm
of the initial state can be arbitrarily reduced. See [23] for another
recent paper on the topics.

Our contribution. In this paper we propose a new method
which, while still retaining the same properties of the algo-
rithm in [22], also ensures a value of the disagreement that is
independent of the norm of the initial conditions, thus guaran-
teeing a convergence result that is uniform over the system initial
conditions.

The new algorithm assigns the nodes a ‘‘favourite" interval
where the state aims at evolving and lets the nodes saturate
the received information when it lies outside the interval. The
favourite interval embodies the idea of a preferred operating
range where the nodes are supposed to take values on. For in-
stance, in distributed estimation, sensors are deployed to sample
a physical state, like temperature or humidity, which normally
varies within certain intervals. In a surveillance network, a group
of agents may need to create a formation and stay within a
target region, which can be characterized as an interval. More
application examples include computational load sharing [24]
and distributed system throttlers [25]. The favourite interval leads
to a saturated control, which as shown in [26,27] is effective in
contrasting perturbations from outliers and uncooperative agents.
We can show that the system achieves consensus with a tolerance
that can be made arbitrarily small and has a linear dependence
on the noise magnitude in the noisy case. Moreover the state
is confined around the given operating region for all time. The
idea of using saturated version of the state to limit the system
excursion is inspired by the so-called interval consensus of [24].
In this paper, we demonstrate that saturation is also useful in
countering the spreading of noise over the network.

The proposed method adopts a self-triggered control scheme,
which was first proposed in [28]. At each update time, each
node collects the state information from the neighbours, compute
its next update instant and determines the control value over
the next sampling interval, resulting in a dynamical network
with truly asynchronous information transmission and no global
clock. Motivated by wireless communication, event/self triggered
methods have been prevailing in the network control systems
literature recently, since they enjoy the advantage of packet-
based data exchange among the agents [29–36]. Compared with
the event-triggered method, the self-triggered one does not re-
quire the agent to continuously monitor its state or listen to the
communication channel, hence it can reduce the energy cost of
sensing [37]. Moreover, it has been shown to be robust to various
kind of malfunctions in the network, such as data loss [38] and
misbehaving nodes [27].

The rest of the paper is organized as follows. In Section 2, we
introduce the new self-triggered algorithm. Section 3 provides
the main results showing the state convergence set and the node
disagreement bound. In Section 4, we comment on the proposed
algorithm and show that, by using some global information, the
algorithm can be modified to achieve asymptotic consensus in
the noiseless case while preserving the state boundedness in
the noisy case. We then verify the main results by numerical
simulations in Section 5. Section 6 provides concluding remarks.
The proof of asymptotic consensus is provided in the Appendices.

2. Preliminaries

2.1. Notation

For a network with n nodes, let its topology be represented
by an undirected and connected graph G = {I, E}, with I =

{1, 2, . . . , n} being the set of nodes and E ⊆ I × I being the set

of edges, where {i, j} ∈ E, or equivalently, node i is a neighbour
of node j, means that node i can receive information from node j
and vice versa. We denote the set of neighbours of node i by Ni,
and let di = |Ni|, dm = mini∈I di and dM = maxi∈I di. A path from
node i to j is a sequence of nodes in I and edges in E which starts
at i and ends at j.

2.2. Self-triggered interval consensus

We consider an undirected connected network with n nodes
and its corresponding graph G = {I, E}. For each node i, we
assume its dynamics is described by

ẋi = ui (1)

where xi ∈ R is the state and ui ∈ R is the control input. The
nodes aim at evolving towards a common value, which is not
agreed upon a priori. To fulfil this task, each node needs to obtain
the state information from other nodes using communication or
measurements. The information transmission may be affected by
noise, so we assume that node i ∈ Nj receives the following noisy
state of node j

xw
ij (t) = xj(t) + wij(t) (2)

where wij(t) ∈ R represents the communication noise when
node j transmits information to node i at time t . Throughout the
paper, the noise is assumed to be bounded in magnitude, namely
|wij(t)| ≤ w for all {i, j} ∈ E and all t ∈ R≥0. Even though w may
be estimated by empirical tests in some cases, this may not be
always convenient, and we assume its value is not known.

We assume that all the nodes have a so-called favourite interval
[p, q] ⊂ R where the node would like its state to evolve and p ≤

q. Based on this favourite interval, for each neighbour j ∈ Ni, node
i takes the saturated version of the received state of j, namely

yij(t) = sat(xw
ij (t)) (3)

where

sat(z) =

{ p, if z < p
z, if p ≤ z ≤ q
q, if z > q

(4)

Node i then computes the saturated noisy average

zw
i (t) =

∑
j∈Ni

(yij(t) − xi(t)) (5)

We also denote the actual average of each node i ∈ I by

avei(t) =

∑
j∈Ni

(xj(t) − xi(t)) (6)

For each node i ∈ I , let {t ik}k∈Z≥0 , with t i0 = 0, be the sequence
of triggering times at which node i accesses the communication
network. At these times, the node collects the state information
from it neighbours, updates its control action and determines the
next triggering time.

The control signals take values in the set U := {−1, 0, +1},
and the specific quantizer of choice is signα : R → U , α > 0,
which is given by

signα(z) :=

{
sign(z), if |z| ≥ α

0, otherwise (7)

The control action is given by

ui(t) = signε

(
zw
i (t ik)

)
(8)

for t that belongs to the left-closed and right-open time interval
[t ik, t

i
k+1[, where ε > 0 is a design threshold determining the

consensus accuracy.
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The triggering times are given by t ik+1 = t ik + ∆i
k, where

∆i
k := max

{
|zw

i (t ik)|
4di

,
ε

4di

}
(9)

Notice that the algorithm is Zeno free since the inter-sampling
times are always positive by construction.

Remark 1 (On the Favourite Interval). The state favourite interval
should be chosen according to the physical constraints and task
requirements. In the distributed estimation problem, all the sen-
sors may seek to agree on the value of some physical variable. In
this case, the interval [p, q] can be pre-set according to the oper-
ating range of the sensors. If the task is cooperative surveillance
of a specific region, the multi-agent system may need to create a
formation and stay within the target region. In this scenario, the
interval can be set as the boundary of the region.

Remark 2 (Heterogeneous Thresholds and Favourite Intervals). The
algorithm above can be modified to assign each node a threshold
εi. In this situation, similar results for the state convergence
interval and node disagreement can be attained. We do not study
the algorithm with different thresholds εi because it would clutter
the notation even more, without adding much from a conceptual
viewpoint.

For some applications it is reasonable to expect that the agents
adopt different favourite intervals [pi, qi]. For this situation, pro-
vided that the intersection of all the intervals is nonempty, we can
show that the state will be bounded around the intersection of
all the intervals and the node disagreement will still be bounded
by a value depending on the noise magnitude. However, the
theoretical bounds we obtain are much conservative compared
with the simulation results and improving these conservative
theoretical bounds is nontrivial. Hence we decided not to present
them in this paper.

3. Main result

We present the main result of the proposed self-triggered
consensus method in this section. The main result as well as the
preparatory statements throughout the paper hold for undirected
and connected graphs G.

3.1. State convergence interval

Let x(t) = maxi xi(t) and x(t) = mini xi(t). We start by showing
that the system state is always bounded during the evolution and
converges to an interval which depends on the end values of the
favourite interval, the threshold ε and the noise magnitude.

Theorem 1. Consider a network of n dynamical systems as in (1),
which are interconnected over the graph G. Let each local control
input be generated in accordance with (3)–(9). Then for all t ∈ R≥0

x(t) ≤ max{x(0), q + ε/dm}, x(t) ≥ min{x(0), p − ε/dm}

Moreover, there exists a finite time T such that xi(t) ∈ [p−ε/dm, q+

ε/dm] for all t ≥ T and all i ∈ I .

Proof. We only prove the upper bounds, since the conclusion for
the lower bound can be derived in a similar way. Let γ = q+ε/dm.
We first show two facts that will be used later.

Fact 1. For any node i ∈ I and any t ′ ≥ 0, if xi(t ′) ≤ γ , then it will
never exceed γ for all time t ≥ t ′.

This fact can be verified as follows. Let t im = max{t ik ∈

R≥0, t ik ≤ t ′}. If ui(t ′) ≤ 0, then ui(t) ≤ 0 for all t ∈ [t im, t im+1[,
hence xi(t) ≤ xi(t ′) ≤ γ for all t ∈ [t ′, t im+1[. While if ui(t ′) = 1,
according to (8), the noisy saturated average at t im should satisfy

zw
i (t im) =

∑
j∈Ni

(yij(t im) − xi(t im)) ≥ ε (10)

which implies

xi(t im) ≤
1
di
(
∑
j∈Ni

yij(t im) − ε) ≤ q − ε/di (11)

where the last inequality comes from the definition of the satura-
tion function (4). Consider the evolution of xi(t) for t ∈ [t im, t im+1[,
we have

xi(t) = xi(t im) + ui(t im)(t − t im) ≤ xi(t im) + ∆i
m

= xi(t im) + |zw
i (t im)|/(4di)

= xi(t im) +

∑
j∈Ni

(yij(t im) − xi(t im))/(4di)

≤ xi(t im) + (q − xi(t im))/4
= 3xi(t im)/4 + q/4 ≤ q − 3ε/(4di) < γ

where we used (10) in the third equality, (11) in the third
inequality.

By the induction argument, we have xi(t) ≤ γ for all t ≥ t ′.

Fact 2. For any node i ∈ I and any t ′ ≥ 0, if xi(t ′) > γ , it decreases
at time t ′, namely ui(t ′) < 0.

This fact can be checked as follows. From Fact 1, we have
xi(t im) should be larger than γ , otherwise xi(t ′) ≤ γ . Consider the
saturated average

zw
i (t im) =

∑
j∈Ni

(yij(t im) − xi(t im)) < di(q − γ ) = −diε/dm ≤ −ε

which implies that ui(t ′) = ui(t im) = −1.
We now finalize the proof. If x(0) ≤ γ , by Fact 1, we have that

xi(t) ≤ γ for all t ≥ 0. If x(0) > γ , for the nodes with xi(0) ≤ γ ,
xi(t) ≤ γ ≤ x(0) holds for all t ≥ 0 by Fact 1. While for the nodes
whose initial condition is greater than γ , according to Fact 2, their
states decrease with the same constant rate until the state is no
greater than γ . This implies that x(t) ≤ x(0) for all t > 0, which
ends the proof of the first claim. The second claim follows again
from the previous analysis. ■

Remark 3 (State Convergence Interval). There is a discrepancy
between the actual state convergence interval and [p, q]. The
actual interval to which the state converges enlarges the interval
[p, q] on both directions by ε/dm. However, if the initial state
is already within [p, q]n, one can show that the state will never
evolve outside [p, q]n. To make the state converge within the
favourite interval [p, q]n for any initial state x(0), the agent can
use q − ε and p + ε as the upper and lower switching points of
the saturation function, respectively. This yields

sat(z) =

{ p + ε, if z < p + ε

z, if p + ε ≤ z ≤ q − ε

q − ε, if z > q − ε
(12)

Note that (12) requires the condition q − p > 2ε. Based on
Theorem 1, by this strategy, the state converges in finite time to
the interval [p + ε − ε/dm, q − ε + ε/dm] ⊂ [p, q].
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3.2. Practical consensus

We then consider the consensus property of the proposed
method. As shown in the following result, the node disagreement
will be bounded by a term which scales linearly with the noise
magnitude. With no noise, the node disagreement is bounded by
a quantity which can be made arbitrarily small by scaling the
design threshold ε. In view of this feature, we refer to the result
below as practical consensus.

Theorem 2. Consider the same assumptions and condition as in
Theorem 1, then there exists a finite time T ′ such that for all i ∈ I
and all t ≥ T ′,

|avei(t)| ≤ 5ε/4 + max {dMε/dm, dMw} . (13)

Remark 4 (Pointwise Convergence). Theorem 2 shows a conver-
gence result for general unknown but bounded noise. If
[x(0), x(0)] ⊆ [p, q] and the noise is sufficiently small such that
w ≤

ε
2dM

, then by a similar proof as the one of [22, Theorem 3],
we can show that xi(t) for all i ∈ I and all t ≥ 0 will remain
in [x(0), x(0)] and converge in a finite time to a point at which
|avei| ≤ ε + dMw for all i ∈ I . Thus, in a special yet interesting
case, the state converges to a point in [x(0), x(0)].

To prove this theorem, we need some intermediate results. We
first introduce two sets for each node i as follows

Si1 :=
{
t ik : |avei(t ik)| ≥ Li

}
, Si2 :=

{
t ik : |avei(t ik)| < Li

}
(14)

where Li := 5ε/4 + diw′, with w′
= max{ε/dm, w}. Clearly,

t ik ∈ Si1 ∪ Si2 for every k ∈ Z≥0.
The following result shows that if at certain time node i enters

Si2, it will remain in this set.

Lemma 1 (Invariant Set). Consider the same assumptions and con-
ditions as in Theorem 1. Consider the system evolution for t ≥ T
with T as in Theorem 1. If t ik ∈ Si2, then t iM /∈ Si1 for all integers
M ≥ k + 1. Moreover, |avei(t)| < Li for all t ≥ t ik.

Proof. We first show that the following inequality

|yij(t) − xi(t)| ≤ w′ (15)

holds for all t ≥ T and all i ∈ I .
By Theorem 1, for all t ≥ T , each node i’s state satisfies

p − ε/dm ≤ xi(t) ≤ q + ε/dm. We consider the following three
cases for t ≥ T .

Case 1, p ≤ xw
ij (t) ≤ q. By (3), yij(t) = xw

i (t). Hence,

|yij(t) − xi(t)| = |xw
ij (t) − xi(t)| ≤ w ≤ w′

where the second inequality comes from (2).
Case 2, xw

ij (t) ≥ q. Then by (3), yij(t) = q. Since xi(t) = xw
i (t) −

wij(t), q − w ≤ xi(t) ≤ q + ε/dm, which implies that

|yij(t) − xi(t)| ≤ max{ε/dm, w} = w′

Case 3, xw
ij (t) ≤ p. Then by (3) and (2), we have yij(t) = p and

p − ε/dm ≤ xi(t) ≤ p + w, which implies

|yij(t) − xi(t)| ≤ max{ε/dm, w} = w′

For each node i, we then let

φi(t) =

∑
j∈Ni

(yij(t) − xj(t)) (16)

By (6) and (15), we have that for all t ≥ T ,

zw
i (t) = avei(t) + φi(t), |φi(t)| ≤ diw′ (17)

Now consider the following two sub-cases,

Sub-case a. |zw
i (t ik)| ≥ ε. Without loss of generality, we assume

zw
i (t ik) ≥ ε. Then ui(t) = 1 for all t ∈ [t ik, t

i
k+1[ and

ε − φi(t ik) ≤ avei(t ik) ≤ Li (18)

For t ∈ [t ik, t
i
k+1[, the average is given by

avei(t) = avei(t ik) +

∫ t

t ik

∑
j∈Ni

(uj(τ ) − 1)dτ

since |uj(t)| ≤ 1, we have avei(t) ≤ avei(t ik) ≤ Li and

avei(t) ≥ avei(t ik) − 2di(t − t ik) ≥ avei(t ik) − 2di∆k

= avei(t ik) −
1
2
|zw

i (t ik)| = avei(t ik) −
1
2
(avei(t ik) + φi(t ik))

=
1
2
(avei(t ik) − φi(t ik)) ≥

1
2
(ε − 2φi(t ik))

≥ ε/2 − diw′ > −Li (19)

where the third inequality comes from (18), the fourth from (17)
and the last from the definition of Li.

Sub-case b. |zw
i (t ik)| < ε. Then ∆i

k = ε/(4di), ui(t) = 0 for all
t ∈ [t ik, t

i
k+1[ and

|avei(t ik)| = |zw
i (t ik) − φi(t ik)| ≤ |zw

i (t ik)| + |φi(t ik)|
< ε + diw′

= Li − ε/4

Hence for t ∈ [t ik, t
i
k+1[, the average satisfies

|avei(t)| = |avei(t ik) +

∫ t

t ik

∑
j∈Ni

uj(τ )dτ |

≤ |avei(t ik)| + |

∫ t

t ik

∑
j∈Ni

uj(τ )dτ |

≤ |avei(t ik)| + |di∆i
k|

< Li − ε/4 + ε/4 = Li

By induction as above for all the integers M ≥ k + 1 and all
the time intervals [t iM−1, t

i
M [, we prove the result. ■

The next result shows that the average preserves the sign as
long as its absolute value remains large enough.

Lemma 2. Consider the same assumptions and conditions as in
Theorem 1, Consider the system evolution for t ≥ T , with T as in
Theorem 1. For any i ∈ I and any positive integer M, if |avei(t ik+m)| ≥

Li for m = 0, 1, . . . ,M, then sign(avei(t ik+m)) = sign(avei(t ik)), for
m = 1, 2, . . . ,M + 1

Proof. Notice that, since t > T , the inequality (17) always holds
in the following analysis. Suppose w.l.o.g that avei(t ik) ≥ Li > 0,
we know

zw
i (t ik) = avei(t ik) + φi(t ik) ≥ Li − diw′

= ε + ε/4 > ε

This implies that ui(t) = 1 for all t ∈ [t ik, t
i
k+1[. Hence same as

(19), we have

avei(t ik+1) ≥
1
2
(avei(t ik) − φi(t ik)) ≥

1
2
(Li − diw′) ≥

5
8
ε

which has the same sign as avei(t ik). ■

Proof of Theorem 2. Notice that

Li = 5ε/4 + diw′
= 5ε/4 + di max {ε/dm, w}

≤ 5ε/4 + max {dMε/dm, dMw}

Accordingly, it is sufficient to show that there exists a time t ′ ≥ T
with T given as in Theorem 1, such that |avei(t)| < Li for all t ≥ t ′.
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We claim that there exist a finite sampling time t is ≥ T such that
|avei(t is)| < Li. Suppose this is not true, assume that |avei(t ik)| ≥ Li
holds for every t ik ≥ T . By Lemma 2, the average preserves its
sign. Assume without loss of generality that avei(t ik) ≥ Li for all
t ik ≥ T . Let t ir = min{t ik : t ik ≥ T }, then by Lemma 2, ui(t) = 1 for
all t ≥ t ir and sign(avei(t ik)) = sign(avei(t ir )) > 0 for all t ik ≥ t ir .
However, this implies that xi(t) will increase to infinity, which
contradicts Theorem 1 and proves the existence of finite t is.

Now consider the system evolution for the time t ≥ t is. Since
|avei(t is)| < Li, by the invariant property shown in Lemma 1, we
have |avei(t)| < Li for all t ≥ t is. This ends the proof. ■

4. Asymptotic consensus

In the noiseless case, the algorithm in Section 2 only achieves
practical consensus. In this section, we show that the algorithm
can be modified to achieve asymptotic consensus, i.e., the node
disagreements converge to zero asymptotically, with positive
lower bounded inter-sampling times by requiring some global
information. As shown later, with this modification, all nodes
employ a common time-varying threshold ε(t) and control mag-
nitude α(t). Compared with the algorithm in Section 2, this in fact
implies that the nodes have access to a common clock. Nonethe-
less, we emphasize that the nodes still need not to synchronously
communicate states.

In detail, the system dynamics (1) becomes

ẋi(t) = α(t)ui(t) (20)

where the control input between two successive sampling times
t ik and t ik+1 is given by

ui(t) = signε(t ik)
(zw

i (t ik)) (21)

and the inter-sampling time satisfies

∆i
k := max

{
|zw

i (t ik)|
4α(t ik)di

,
ε(t)

4α(t ik)di

}
(22)

The signals ε(t) : R≥0 → R≥0 and α(t) : R≥0 → R≥0 are positive
monotone decreasing functions and satisfy the conditions

lim
t→∞

ε(t) = lim
t→∞

α(t) = 0, (23)∫
∞

t
α(τ )dτ = +∞,

ε(t)
α(t)

≥ c (24)

for all t ≥ 0, with c being a positive value. The first two equalities
guarantee that the system will achieve consensus and the last
inequality is used to rule out the Zeno behaviour.

We can show the following result on the state boundedness.

Theorem 3. Consider a network of n dynamical systems as in (20),
which are interconnected over the graph G. Let each local control
input be generated in accordance with (21) and (22). If ε(t) and
α(t) satisfy (23), then for all t ∈ R≥0,

x(t) ≤ max{x(0), q + ε(0)/dm},

x(t) ≥ min{x(0), p − ε(0)/dm}

Moreover, lim supt→+∞ x(t) = q and lim inft→+∞ x(t) = p.

The consensus property can be described as follows.

Theorem 4. Consider the same assumptions and conditions as
in Theorem 3. If ε(t) and α(t) satisfy (23), then for all i ∈ I ,
lim supt→∞ |avei(t)| ≤ dMw.

The proofs of Theorems 3 and 4 are provided in Appendices A
and B. Here we stress that by the time-varying threshold and
control magnitude in (23), when w ≡ 0, the algorithm achieves

Fig. 1. Graph of the consensus network considered in Section 5.

exact consensus while making the state converge to the desired
favourite interval. Moreover, in the noisy case, the system state is
still confined within the desired favourite interval. Finally, if the
noise converges to zero, one can verify that the consensus error
will approach zero.

Remark 5 (Benefit of the Proposed Method). To the best of our
knowledge, most of the works addressing the case of noise as-
sume prior knowledge of the noise magnitude, see, e.g., [20]. The
case of noise with unknown magnitude is considered in [22]. It
employs an adaptive threshold which scales dynamically with the
state absolute value. By this adaptive threshold, we show that the
state bound depends on a term proportional to w and inversely
proportional to the parameter ε. Furthermore, the bound on the
local disagreement |avei(t)| is a linear function of w plus a bilinear
function of the parameter ε and maxi∈I |xi(0)|. Thus the node
disagreement may be large when the norm of the initial state
is large. Moreover, as ε → 0, the bounds on the state diverges.
Hence we cannot simultaneously achieve asymptotic consensus
in the noiseless case and make the system state bounded in
the presence of noise. In this paper, we avoid these drawbacks
by keeping the threshold unchanged and using the notion of
favourite interval. By Theorems 1 and 2, the state evolution is
bounded even for ε → 0 and the node disagreements converge in
finite time to a set whose size is independent of the magnitude
of the initial states. Hence, with the new method, we can force
the node disagreements to converge to a smaller set by choosing
smaller ε. Moreover, by Theorems 3 and 4, the algorithm can
be adjusted to steer avei(t) asymptotically to zero when w = 0
without compromising the state boundedness in the noisy case.

5. Numerical examples

In this section, we perform simulations to verify the results.
We consider a 10-node network with the communication graph
illustrated in Fig. 1. From the figure, we know that dm = 2 and
dM = 6. For all the simulations we assume [p, q] = [−1, 1].

5.1. Constant threshold

In this subsection we assume the consensus threshold ε =

0.05. We first consider the noiseless situation and let the initial
state of each node be generated as a random value within the
interval [−2, 4]. The simulation result is given in Fig. 2. Fig. 2(a)
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Fig. 2. Network behaviour for constant threshold and w = 0.

Fig. 3. Network behaviour for constant threshold and positive random noise with w = 0.1.

shows the state trajectory, where the green dashed lines repre-
sent the boundary of [p, q] and the red dashed lines represent the
real state bounds (γ = 1.025 and γ = −1.025) from Theorem 3.
Fig. 2(b) shows the absolute values of the averages, where the red
dashed line represents the bound on the average from Theorem 2
(0.2125). Fig. 2(c) shows the control inputs for the nodes with odd
indices. From the figure, we can find that the nodes which are
outside [γ , γ ] move toward it with constant velocity until they
converge inside the interval. All the nodes enter the set [γ , γ ]

within 3 s. There are some nodes whose states are larger than
q, in conformity with Theorem 1. From Fig. 2(b), all the absolute
averages are less than the bound given in Theorem 2 within 3
s and the absolute averages are much less than the theoretical
bound. Moreover, from these simulations it appears that all the
control inputs eventually become zero even though we do not
provide yet a proof of this.

In the second example, we consider the noisy case where
wij(t), {i, j} ∈ E is a positive random noise with w = 0.1. The
initial state of each node is generated randomly within [−1, 1].
The results are presented in Fig. 3. From these figures, we can
see that the states are driven by the noise to increase, however,
they never exceed the upper bound of the favourite interval.
The absolute values of all the averages become smaller than the
theoretical bound (0.6625) within 2 s. The bound on the absolute
averages value is 0.035, much less than the theoretical bound.
The control inputs become zero after 2 s. This is reasonable since
when all the states are within [q − ε/dM , q], with positive noise,
all yij(t) are also within [q − ε/dM , q] and the control inputs for
all nodes will be zero by (8).

In the third example, we consider the noisy case where
wij(t), {i, j} ∈ E is a random noise with w = 0.1, with initial state
of each node generated randomly within [−1, 1]. The results are

presented in Fig. 4. From these figures, we can see that the bound
on the absolute averages value is 0.17, less than the theoretical
bound (0.6625). Moreover, the control inputs are non-zeros for
most of the time.

5.2. Time-varying threshold

In this subsection, we consider the threshold and control mag-
nitude function from [28], given in the following form

α(t) = 1/(1 + t), ε(t) = cα(t)

where c = 0.05 is the constant mentioned in Section 4.
We only present the simulation for the noiseless case since the

numerical result for the noisy case in this subsection is similar to
that in the last subsection. In the simulation, the initial state is
the same as that of the first example in the constant threshold
case. The simulation results are given in Fig. 5. In Fig. 5(b), the
red dashed line represents the bound calculated in (13) with ε =

0.05. From these figures, we can see that the absolute value of
the average decreases asymptotically and all the states approach
[p, q].

6. Conclusion

In this paper, we presented a self-triggered coordination
method in the presence of communication noise. The nodes
adopt a common favourite interval of evolution and saturate the
received states from the neighbours. For constant thresholds,
the method can achieve approximate consensus and make the
system state converge within a set around the favourite interval
in finite time. Compared with our previous result [22], the node
disagreement in this paper is independent of the initial condition
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Fig. 4. Network behaviour for constant threshold and random noise with w = 0.1.

Fig. 5. Network behaviour with time-varying threshold ε(t) =
1

20(t+1) and w = 0.

of the system. Moreover, with time-varying threshold and control
magnitude, the algorithm can achieve asymptotic consensus in
the noiseless case, while preserving state boundedness in the
noisy case.

A challenging direction is to extend the result in this paper
to the situation that each node adopts a private favourite interval
which may be different from those of the others. Other important
topics are the study of the convergence rate and the extension to
systems with more complex dynamics. However, the presence of
measurement noise makes the investigation challenging and at
the moment we only have partial answers to these envisioned
extensions. Nevertheless, we think that the results in this paper
are a valuable starting point for further exploration.
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Appendix A. Proof of Theorem 3

Notice that under the algorithm (20)–(22), the two facts in
Theorem 1 also hold for γ defined with ε = ε(0), hence the first
claim can be derived by the same analysis in Theorem 1.

For the second claim, we need some intermediate supporting
results. For any η ∈ (0, ε(0)], let γ (η) = q + η/dm and γ (η) =

p−η/dm. We then prove the following two lemmas for the upper
bound. Similar results can be established for the lower bound, we
omit the proofs due to space limitations.

Lemma 3. For any node i ∈ I and any t ′ ≥ 0, if the state
xi(t ′) ≤ γ (η), then it will never exceed γ (η) for all time t ≥ t ′.

Proof. Let t im = max{t ik ∈ R≥0, t ik ≤ t ′}. If ui(t ′) ≤ 0, then ui(t) ≤ 0
for all t ∈ [t im, t im+1[, hence xi(t) ≤ xi(t ′) ≤ γ for all t ∈ [t ′, t im+1[.
If instead, ui(t ′) = 1, zw

i (t im) ≥ ε(t im) according to (21), which
implies

xi(t im) ≤
1
di

∑
j∈Ni

(sat(xw
ij (t

i
m)) − ε(t im)) ≤ q − ε(t im)/di (A.1)

where the last inequality comes from the definition of the satura-
tion function (4). Consider the evolution of xi(t) for t ∈ [t im, t im+1[,
we have

xi(t) = xi(t im) +

∫ t

t im

α(τ )ui(τ )dτ ≤ xi(t im) + α(t im)(t
i
m+1 − t im)

= xi(t im) +
1
4di

|zw
i (t im)| = xi(t im) +

1
4di

∑
j∈Ni

(yij(t im) − xi(t im))

≤ xi(t im) + (q − xi(t im))/4 = 3xi(t im)/4 + q/4
≤ q − 3ε(t im)/(4di) < γ (η)
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where the first inequality follows from that α(t) is a time de-
creasing function, the second equality from (22) and the third
inequality from (A.1).

Considering both cases, we obtain that xi(t) ≤ γ (η) for all
t ≥ t ′ by induction. ■

Lemma 4. For any η ∈ (0, ε(0)], let t ′(η) be a time satisfying
ε(t ′(η)) ≤ η. If xi(t ′(η)) > γ (η), then there exists a time t ′′ > t ′(η)
such that xi(t ′′) ≤ γ (η).

Proof. First, since ε(t) is a positive time decreasing function with
limit value being zero, t ′(η) always exists. Let t im = max{t ik ∈

R≥0, t ik ≤ t ′(η)}. From Lemma 3, we have xi(t im) must be larger
than γ (η), otherwise xi(t ′(η)) ≤ γ (η). We consider the saturated
average at t im,

zw
i (t im) =

∑
j∈Ni

(sat(xw
ij (t

i
m))− xi(t im)) < di(q− γ (η)) = −diη/dm ≤ 0

This implies that ui(t) ∈ {0, −1} for all t ∈ [t im, t im+1[.
Assume ui(t) = −1 for all t ∈ [t im, t im+1[. Suppose there exists

no t ′′ > t ′(η) such that xi(t ′′) ≤ γ (η), then for all t ik ≥ t im+1,
xi(t ik) > γ (η) and the saturated average should satisfy

zw
i (t ik) < di(q − γ (η)) = −

diη
dm

≤ −η ≤ −ε(t ′(η)) < −ε(t ik) (A.2)

where the second inequality comes from dm ≤ di for all i ∈ I , the
third from the assumption that ε(t ′(η)) ≤ η and the last from the
property that ε(t) is time-decreasing and t ik ≥ t im+1 > t ′(η). This,
along with the property that ui(t) = −1 for t ∈ [t im, t im+1[, shows
that ui(t) = −1 for all t ≥ t im. However, by

∫
+∞

t α(s)ds = +∞,
this would imply that x(t) = xi(t im) +

∫ t
t im

α(s)u(s)ds = xi(t im) −∫ t
t im

α(s)ds diverges to −∞ as t → +∞. This contradicts the
assumption that there is no t ′′ > t ′(η) such that xi(t ′′) ≤ γ (η).
Hence there must exist a finite time t ′′ > t ′(η) such that xi(t ′′) ≤

γ (η).
Next assume ui(t) = 0 for all t ∈ [t im, t im+1[. We have

xi(t im+1) = xi(t im) > γ (η). Again suppose the instant t ′′ > t ′(η)
such that xi(t ′′) ≤ γ (η) does not exist, then for all the sampling
time t ik ≥ tm+1, zw

i (t ik) should also satisfy (A.2). This implies that
ui(t) = −1 for all t ≥ t im+1. By the same argument as in the case
ui(t) = −1 for t ∈ [t im, t im+1[, we have limt→+∞ x(t) = −∞. This
leads to a contradiction and proves the existence of t ′′. ■

As a final step for the proof of Theorem 3, we show that
lim supt→+∞ xi(t) = q and lim inft→+∞ xi(t) = p for all i ∈ I .
For each η ∈ (0, ε(0)], let t ′(η) = min{t ≥ 0, ε(t) ≤ η}. For
each node i ∈ I , if xi(t ′(η)) ≤ γ (η), then xi(t) ≤ γ (η) for all
t ≥ t ′(η) by Lemma 3. If instead xi(t ′(η)) > γ (η), by Lemma 4,
there should exist a finite time t ′′ > t ′(η) such that xi(t ′′) ≤ γ (η).
By Lemma 3, we further have xi(t) ≤ γ (η) for all t ≥ t ′′. This
shows that for any η ∈ (0, ε(0)], there exists a time T1(η) ≥ t ′(η)
such that xi(t) ≤ γ (η) for all i ∈ I and all t ≥ T1(η). For the
lower bound, by the same analysis, we have that there exists a
finite time T2(η) ≥ t ′(η) such that xi(t) ≥ γ (η) for all i ∈ I and all
t ≥ T2(η). Let T (η) = max{T1(η), T2(η)}, then xi(t) ∈ [γ (η), γ (η)]
for all i ∈ I and all t ≥ T (η). As t → +∞, γ (η) → γ (0) and
γ (η) → γ (0), all the states will be within [p, q].

Appendix B. Proof of Theorem 4

To prove this theorem, we need some intermediate results. For
each η ∈ (0, ε(0)], we introduce two sets for node i as

Si1(η) :=
{
t ik : |avei(t ik)| ≥ Li(η)

}
(B.1)

Si2(η) :=
{
t ik : |avei(t ik)| < Li(η)

}
(B.2)

where Li(η) := 5η/4 + diw′(η), with w′(η) = max{η/dm, w}.
Clearly, t ik ∈ Si1(η) ∪ Si2(η) for every k ∈ Z≥0.

The following result shows that if at certain time node i enters
Si2(η), it will indefinitely remain in this set.

Lemma 5 (Invariant Set). For the network of n dynamical systems
as in (20), which are interconnected over the graph G, let each local
control input be generated in accordance with (21) and (22) with
ε(t) and α(t) satisfying (23). For each η ∈ (0, ε(0)], define T (η) as
in the proof of Theorem 3. If t ik ≥ T (η) and belongs to Si2(η), then
t iM /∈ Si1(η) for all integers M ≥ k + 1. Moreover, |avei(t)| < Li(η)
for all t ≥ t ik.

Proof. By the proof of Theorem 3, for each η ∈ (0, ε(0)], T (η)
exists and satisfies ε(T (η)) ≤ η. Moreover, for all i ∈ I and all
t ≥ T (η), p − η/dm = γ (η) ≤ xi(t) ≤ γ (η) = q + η/dm.
Then by the same proof as for inequality (15), for all t ≥ T (η),
we have |yij(t) − xi(t)| ≤ w′(η). Hence for all t ≥ T (η), it holds
|φi(t)| ≤ diw′(η), with φi(t) given in (16).

We consider the following two cases,
Case 1. |zw

i (t ik)| ≥ ε(t ik). Without loss of generality, we assume
zw
i (t ik) ≥ ε(t ik), then ui(t) = 1 for all t ∈ [t ik, t

i
k+1[ and

ε(t ik) − φi(t ik) ≤ avei(t ik) < Li(η) (B.3)

For t ∈ [t ik, t
i
k+1[, the average satisfies

avei(t) = avei(t ik) +

∫ t

t ik

α(τ )
∑
j∈Ni

(uj(τ ) − 1)dτ (B.4)

Since |uj(t)| ≤ 1, we have avei(t) ≤ avei(t ik) < Li(η) by (B.3) and

avei(t) ≥ avei(t ik) − 2di

∫ t

t ik

α(τ )dτ

> avei(t ik) − 2diα(t ik)(t
i
k+1 − t ik)

= avei(t ik) −
1
2
|zw

i (t ik)| = avei(t ik) −
1
2
(avei(t ik) + φi(t ik))

=
1
2
(avei(t ik) − φi(t ik)) ≥

1
2
(ε(t ik) − 2φi(t ik))

≥ ε(t ik)/2 − diw′(η) > −Li(η) (B.5)

where the second inequality comes from the assumption that α(t)
is a time decreasing function, the first equality from (22), the third
inequality from (B.3), the fourth inequality from the bound on
|φi(t)| and the last from the definition of Li(η).

Case 2. |zw
i (t ik)| < ε(t ik). We have ∆i

k = ε(t ik)/(4di) and ui(t) = 0
for all t ∈ [t ik, t

i
k+1[. Since ε(t) is time decreasing and t ik ≥ T (η)

with ε(T (η)) ≤ η, we have ε(t ik) ≤ η and

|avei(t ik)| = |zw
i (t ik) − φi(t ik)| ≤ |zw

i (t ik)| + |φi(t ik)| < ε(t ik) + diw′(η)

= 5ε(t ik)/4 + diw′(η) − ε(t ik)/4 ≤ Li(η) − ε(t ik)/4 (B.6)

where the first equality follows from (17). Hence for t ∈ [t ik, t
i
k+1[,

the average satisfies

|avei(t)| ≤ |avei(t ik)| + |

∫ t

t ik

α(τ )
∑
j∈Ni

uj(τ )dτ |

< |avei(t ik)| + diα(t ik)∆
i
k

< Li(η) − ε(t ik)/4 + ε(t ik)/4 = Li(η),

where the last inequality comes from (B.6). As before, by induc-
tion for all the integers M ≥ k+1 and all the corresponding time
intervals [t iM−1, t

i
M [, we prove the result. ■

The next result shows that the average preserves the sign as
long as its absolute value remains large enough compared with
Li(η).
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Lemma 6. For the network of n dynamical systems as in (20),
which are interconnected over the graph G, let each local control
input be generated in accordance with (21) and (22) with ε(t) and
α(t) satisfying (23). For each η ∈ (0, ε(0)], define T (η) as in the
proof of Theorem 3. For any i ∈ I and any positive integer M, if
t ik ≥ T (η) and |avei(t ik+m)| ≥ Li(η) for m = 0, 1, . . . ,M, then
sign(avei(t ik+m)) = sign(avei(t ik)) for m = 1, 2, . . . ,M + 1.

Proof. Since t ik > T (η), |φi(t)| ≤ diw′(η) always holds for t ≥ t ik.
Suppose w.l.o.g that avei(t ik) ≥ Li(η) > 0, we know

zw
i (t ik) = avei(t ik) + φi(t ik) ≥ Li(η) − diw′(η) = 5η/4 > ε(t ik)

where the last inequality descends from ε(t) being a time de-
creasing signal and t ik ≥ T (η), with ε(T (η)) ≤ η. This implies that
ui(t) = 1 for all t ∈ [t ik, t

i
k+1[. Hence

avei(t ik+1) > avei(t ik) − 2diα(t ik)∆
i
k =

1
2
(avei(t ik) − φi(t ik))

≥
1
2
(Li(η) − diw′(η)) ≥

5
8
η

where the first equality comes from (B.5). This shows that
avei(t ik+1) has the same sign as avei(t ik). ■

We then finalize the proof of Theorem 4. First notice that

Li(η) = 5η/4 + diw′(η) ≤ 5η/4 + max {dMη/dm, dMw}

and, Li(η) approaches dMw as η approaches zero. Then we show
that for any η ∈ (0, ε(0)], there exists a finite time t ′i (η) ≥ T (η)
with T (η) given in the Proof of Theorem 3, such that |avei(t)| <

Li(η) for all t ≥ t ′i (η). To see this, we first claim that there exists
a finite sampling time t is(η) ≥ T (η), such that |avei(t is(η))| < Li(η).
Suppose this is not true W.l.o.g. we assume avei(t ik) ≥ Li(η) for
all t ik ≥ T (η). Let t ir = min{t ik : t ik ≥ T (η)}, then by Lemma 6
and the definition of Li(η), sign(avei(t ik)) = sign(avei(t ir )) > 0 for
all t ik ≥ T (η) and ui(t) = 1 for all t ≥ t ir . However, this implies
that xi(t) = xi(t ir ) +

∫
∞

t ir
α(τ )dτ will increase to infinity, which

contradicts Theorem 3 and proves the existence of a finite t is(η) ≥

T (η) with the property |avei(t is(η))| < Li(η). Since |avei(t is(η))| <

Li(η), t is(η) ∈ Li2(η). This along with t is(η) ≥ T (η) shows that
|avei(t)| < Li(η) for all t ≥ t is(η) ≥ T (η) by Lemma 5. The
existence of t ′i (η) follows by letting t ′i (η) = t is(η).
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