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ARTICLE INFO ABSTRACT

Testicular cancer (TC) is the most common solid tumor among men aged between 15 and 40 years. TCs are
highly aneuploid and the 12p isochromosome is the most frequent chromosomal abnormality. The mutation rate
is of TC is low, with recurrent mutations in KIT and KRAS observed only at low frequency in seminomas. Overall
cure rates are high, even in a metastatic setting, resulting from excellent cisplatin sensitivity of TCs. Factors
contributing to the observed cisplatin sensitivity include defective DNA damage repair and a hypersensitive
apoptotic response to DNA damage. Nonetheless, around 10-20% of TC patients with metastatic disease cannot
be cured by cisplatin-based chemotherapy. Resistance mechanisms include downregulation of OCT4 and failure
to induce PUMA and NOXA, elevated levels of MDM2, and hyperactivity of the PI3K/AKT/mTOR pathway.
Several pre-clinical approaches have proven successful in overcoming cisplatin resistance, including specific
targeting of PARP, MDM2 or AKT/mTOR combined with cisplatin. Finally, patient-derived xenograft models
hold potential for mechanistic studies and pre-clinical validation of novel therapeutic strategies in TC. While
clinical trials investigating targeted drugs have been disappointing, pre-clinical successes with chemotherapy
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and targeted drug combinations fuel the need for further investigation in clinical setting.

Clinical and pathological characteristics of TC

Testicular cancer (TC) accounts for approximately 1% of all cancers
in men worldwide, while it is the most common solid tumor among
young men (15-40 years) [1]. Incidence of TC varies widely across
different regions, with highest incidence in Northern Europe and very
low incidence in Central Africa [1]. Incidence rates of TC have in-
creased since the 1960s in Northern European countries, affecting age
groups older than 15 years with no proven causative mechanisms
identified so far [2].

Germ cell tumor (GCT) is the predominant histology of TC patients
(95%), divided into seminomas and non-seminomas, of which semi-
nomas are slightly more common than non-seminomas [3]. GCTs arise
from gonocytes that fail to differentiate into spermatogonias, and the
pluripotency of these cells allows them to develop into highly diverse
histological tumors. Seminomas are blocked in the earliest differentia-
tion state whereas non-seminomas consist of diverse histological sub-
types with a varying degree of differentiation: embryonal carcinoma
(EC) (undifferentiated), choriocarcinoma (CC), yolk sac carcinoma

(YSC) or teratoma (mature and immature) [4]. Mixed GCTs are
common and may appear in any form.

Diagnosis of TC is performed by clinical evaluation, ultrasound
examination of the testes, orchiectomy of the involved testicle and
determination of serum tumor markers. These tumor biomarkers in-
clude LDH (lactate dehydrogenase), AFP (alpha-fetoprotein) and 8-HCG
(B-human chorionic gonadotropin), and assist in the diagnosis [semi-
noma vs non-seminomal, staging, risk stratification and follow-up after
treatment of TC patients [5]. The international clinical staging system
recommended for TC is the Tumor, Node, Metastasis (TNM) classifica-
tion of the International Union Against Cancer (UICC) [6]. Current risk
stratification was established in 1997 by the International Germ Cell
Consensus Classification (IGCCC) and constitutes a prognostic staging
system for patients with disseminated disease [7].

Overall cure rate of TC is very good, also in a metastatic setting,
which is mostly resulting from the high sensitivity of TCs to the che-
motherapeutic drug cisplatin. The 5-year relative survival rates for
seminoma and non-seminoma patients are above 90% [2]. For patients
with stage I disease the survival rate is even somewhat higher exceeding
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Table 1
Risk stratification for metastatic patients [7].
Non-seminoma Seminoma
Risk group Spread and tumor markers Survival Spread and tumor markers Survival
Good prognosis ® Testis or retroperitoneal primary 56% of ® Any primary site 90% of patients
® No metastasis to organs other than the lungs and/or lymph patients ® No metastasis to organs other than the  5-year PFS: 82%
nodes 5-year PFS: lungs and/or lymph nodes 5-year OS: 86%

©® Tumor markers level normal or at least 1 tumor marker
above normal:
® IDH < 1.5x ULN
® beta-hCG < 5000 mlU/mL
® AFP < 1000 ng/mL

Intermediate prognosis ® Testis or retroperitoneal primary

nodes
® At least 1 tumor marker substantially above normal:
® ILDH 1.5 — 10x ULN
® beta-hCG = 5000 < 50000 mlU/mL
® AFP = 1000 < 10000 ng/mL

Poor prognosis Mediastinal primary with or without metastases
Metastasis to organs other than the lungs and/or lymph
nodes
® At least 1 or more tumor maker levels highly elevated:
® LDH > 10x ULN
® beta-hCG > 50000 mlU/mL

® AFP > 10000 ng/mL

No metastasis to organs other than the lungs and/or lymph

89% ©® Normal AFP

5-year OS: ® Any beta-hCG and LDH

92%

28% of ® Any primary site 10% of patients
patients ® Metastasis to organs other than the 5-year PFS: 67%
5-year PFS: lungs and/or lymph nodes S5-year OS: 72%

75% ® Normal AFP
5-year OS: ® Any beta-hCG and LDH
80%

16% of
patients
5-year PFS:
41%
5-year OS:
48%

No poor prognosis patients No poor prognosis

patients

LDH: lactate dehydrogenase, hCG: human chorionic gonadotropin, AFP: alpha-fetoprotein, ULN: upper limit of normal, PFS: progression free survival, OS: overall

survival.

95% regardless of tumor type. However, patients with metastatic dis-
ease have poorer survival outcomes depending on the tumor type and
extent of disease and prognosis group. Seminoma and non-seminoma
tumors have different treatment sensitivity and invasive capabilities. At
moment of diagnosis 25% of seminoma patients have metastatic dis-
ease, while 60% of non-seminoma patients have metastatic lesions [8].
The IGCCC classification stratifies patients into good, intermediate and
poor prognosis groups which are determined based on clinical features,
including the location of the metastases and the levels of different
tumor biomarkers [7]. According to the IGCCC there are no advanced
seminoma patients within the poor prognosis group, related to their
better overall response to chemotherapy. Staging, risk stratification and
5-year survival rates for both seminoma and non-seminoma patients are
summarized in Table 1.

Late relapses (LR) occur in 1% to 6% of TC patients and are con-
sidered to be more difficult to treat than early relapses [9]. A pooled
analysis of several studies has shown that late relapses occur more often
in non-seminomas (3.2%) than in seminomas (1.4%), with teratoma as
the most frequent histological component (60%), followed by YSC
(47%) [9,10]. Because of the high rate of teratoma and teratoma with
malignant transformation to non-germ cell malignancies (20%), LR are
less likely to respond to chemotherapy [9]. Additionally, YSC has been
associated with poor prognosis, this could partly explain the worse
clinical outcome associated with late relapse of this histological subtype
[11].

Standard treatment of TC

Treatment of TC depends on stage and tumor type, i.e. seminoma or
non-seminoma. Stage I or localized disease, either seminoma or non-
seminoma, is treated with orchiectomy followed by active surveillance
or with adjuvant treatment based on risk factors and patient preference.
Patients with stage IIA/B seminoma are treated with orchiectomy fol-
lowed by either radiotherapy or chemotherapy, and bulky stage IIC and
III seminoma patients receive chemotherapy after orchiectomy. Patients
with disseminated non-seminoma (intermediate or poor risk IGCCC) are
treated with four courses of the BEP (bleomycin, etoposide and

cisplatin) or VIP (etoposide, ifosfamide and cisplatin) regimen, after
surgical removal of the affected testicle. In case of residual disease after
completion of chemotherapy patients undergo a surgical removal of
affected lymph nodes and/or metastases that had not completely dis-
appeared after chemotherapy. Approximately 10-15% of patients with
disseminated disease will need second-line treatment as a consequence
of relapse or refractory disease [12]. Various effective salvage strategies
are currently available, including standard-dose and high-dose che-
motherapy regimens. The choice of standard-dose salvage treatment
depends on which drugs were initially used in combination with cis-
platin. Some common and effective standard-dose salvage treatments
have been reported with long-term remissions ranging from 23 to 54%
using VIP (cisplatin, ifosfamide and etoposide) [13,14], 63% using TIP
(paclitaxel, ifosfamide and cisplatin) [15], 24% using VelP (vinblastine,
ifosfamide and cisplatin) [16] and 51% using GIP (gemcitabine, ifos-
famide and cisplatin) [17]. High-dose chemotherapy with carboplatin
and etoposide with autologous bone marrow transplantation was in-
itially studied in patients with a predicted poor outcome to standard-
dose salvage treatment or patients who had already failed a prior
standard-dose salvage treatment. Initial results were exceptional with a
complete response rate of 26% [18]. More recently, high-dose che-
motherapy with autologous peripheral stem cell transplantation has
shown long-term remissions in 63% of patients, including patients who
received this as third-line treatment [19]. As demonstrated by the data
presented above, standard-dose and high-dose salvage chemotherapy
are both able to overcome cisplatin resistance. A large retrospective
study suggested that high-dose chemotherapy is superior to standard-
dose chemotherapy as first salvage treatment [20]. To date, it remains
unclear whether standard-dose or high-dose salvage chemotherapy
provides better outcomes when used as initial salvage treatment. To
address this question, a prospective global trial (the TIGER trial) is
currently performed in TC patients with relapsed or refractory disease.
In this trial, patients are being randomized between 4 courses of TIP vs.
TI-CE [with 3 courses of high dose carboplatin-etoposide with an au-
tologous peripheral stem-cell transplantation] (NCT02375204).
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Genetic alterations in TC patients

TCs are highly aneuploid and frequently show large scale copy
number gains and losses [21-23]. The most common anomaly is the
presence of a 12p isochromosome (i(12p)) affecting more than 80% of
TCs [24]. This region of the small arm of chromosome 12 contains the
KRAS proto-oncogene, as well as some stem cell-related genes including
NANOG and STELLAR. Of note, pre-malignant lesions do not contain i
(12p) [25], suggesting that this genetic event is not an early event in the
development of TC. KIT gene amplifications at 4q12 were identified in
21% of seminomas and 9% of non-seminomas [26]. Copy number gains
of the KIT gene were associated with an increased expression of the KIT
protein, although other mechanisms besides copy number gain can also
result in increased KIT expression [26].

Despite the high levels of aneuploidy of TCs, the somatic mutation
rate is low. Whole exome sequencing revealed that, on average, TC
tumors have a mutation rate of 0.51 somatic mutations per Mb, while
lung cancers carry 8.0 mutations/Mb, and melanomas display 11.0
mutations/Mb [27]. The most frequently mutated gene in TC is KIT,
and has been observed predominantly in seminomas [27,28]. The
proportion of KIT hotspot mutations in seminomas ranged from 18% to
31% [27,29]. Besides KIT, mutations in KRAS and NRAS have been
reported, albeit with a lower frequency [27,30]. Other mutations that
were recently described include: CDC27, a potential tumor suppressor
gene [27,31]; RPL5, a ribosomal protein [30]; and RACI, a member of
the Rho family of GTPases [32].

Studies looking specifically at mutations in cisplatin-resistant pa-
tients have also been performed. Results showed a higher incidence of
activating mutations in RAS, PIK3CA and AKT]1 in chemoresistant TCs
[33]. Mutations in XRCC2 have been reported in 5 cases of refractory
TCs [27,34]. XRCC2 belongs to the RAD51 protein family and partici-
pates in DNA repair through homologous recombination. XRCC2 in-
teracts with other RAD51 protein family members and facilitates the
assembly of RAD51 onto DNA double-stranded breaks. Interestingly,
XRCC2 variants were shown to confer resistance to cisplatin-induced
DNA damage and have been associated with breast cancer risk and
survival [35,36].

One of the characteristics of TC is the presence of wild type (WT)
TP53 in the majority of patients, although mutations in TP53 have been
observed in a few cases [37]. Activity of p53 is regulated by the E3
ubiquitin ligase MDM2, which prevents transcription of target genes by
p53 through direct binding to the transactivation domain of p53 and
through targeting p53 for proteasomal degradation by ubiquitination
[38]. MDM2 itself is a transcriptional target of p53, which provides an
autoregulatory negative feedback to maintain p53 levels low under
physiological conditions. Bagrodia et al. showed that the incidence of
p53 pathway mutations was higher in chemoresistant TC compared to
chemosensitive TC, with TP53 mutations mainly occurring in non-
seminoma [32]. MDM2 and MYCN amplifications, both affecting p53
signaling, have also been described in chemoresistant and refractory
patients [32,34]. As TP53 mutations are rare, MDM2 amplification is
likely a selection mechanism to prevent cell cycle arrest and DNA repair
during the progression of disease.

Cisplatin sensitivity

With the introduction of cisplatin-based chemotherapy in the 1970s,
cure rates of metastatic TC have improved drastically [39]. Even though
cisplatin has been used in the clinic for a long time, the mechanisms
behind the excellent sensitivity of these tumor types remain elusive.
Two features of TC tumors that have been related to cisplatin sensitivity
of TC are: insufficient DNA repair of cisplatin-induced DNA damage,
and a hypersensitive apoptotic response, both discussed below and
summarized in Figs. 1 and 2.

Cisplatin interacts with DNA bases generating different forms of
DNA adducts that are predominantly intrastrand cross-links (> 90%)
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Fig. 1. Overview of cisplatin induced DNA damage and repair. Cisplatin
treatment mainly induces intra- and interstrand DNA cross-links. These lesions
are repaired by NER. Low expression of NER related proteins (e.g. ERCC1, XPF
and XPA) are a rate limiting factor for cisplatin-DNA cross-link repair. High
expression of HMGB1/4 can inhibit NER. Due to less functional NER, un-
repaired lesions may further develop into DSB which require HR for repair.
ATM is recruited to sites of DSBs and leads to a DNA damage induced signaling
cascade that activates a p53-dependent transcriptional program leading to cell-
cycle arrest or apoptosis. HR requires DNA-end resection that produces tracts of
single-stranded DNA (ssDNA). ATR is recruited to tracts of ssDNA, where it
phosphorylates and activates CHK1 leading to activation of Weel and protea-
somal degradation of CDC25, thereby regulating cell cycle arrest.

but also interstrand cross-links, protein-DNA cross-links and DNA
mono-adducts [40,41]. Cisplatin-induced DNA cross-links disrupt the
structure of the DNA which can be recognized by DNA repair proteins.
Cisplatin-induced intrastrand crosslinks are mostly repaired by the
nucleotide excision repair (NER) pathway [42]. However, it has been
shown that various high mobility group (HMG) proteins bind to DNA
adducts inhibiting NER [43,44]. In addition, some essential proteins
involved in NER including ERCC1, XPF and XPA were shown to have
low expression levels in TC [45,46]. Low levels of ERCC1 and XPF,
while still sufficient to perform NER, are rate-limiting for the repair of
cisplatin-DNA cross-links in TC cells, contributing to the excellent
sensitivity to cisplatin treatment [47]. Furthermore, cytotoxicity of
cisplatin can be partially explained by defective double strand break
(DSB) repair by homologous recombination. If DNA crosslinks are not
repaired they can lead to collapsed replication forks, which results in
the formation of DSBs. Interestingly, in a panel of TC cell lines, all
models were highly sensitive to the combination of cisplatin with PARP
inhibitors, providing a potential therapeutic approach for resistant TC
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FAS ligand

[:]

Cisplatin _— Hypoxm

tumors [48]. The DNA damage response (DDR) machinery is activated
in response to DSBs and involves recruitment of ATM to DSBs and ac-
tivation of ATM signaling. ATM activation leads to phosphorylation of
~700 substrates, including MDM2 and p53 [49]. As a consequence, p53
is no longer ubiquitinated by MDM2, leading to its stabilization and full
activation [50] (Fig. 1). Transactivation of the p53 target gene
CDKN1A, encoding the CDK inhibitor p21, is crucial for the induction of
cell cycle arrest in G1 phase. Apoptosis on the other hand, can be
triggered by the p53-mediated transcription of pro-apoptotic BCL-2
family members including BBC3 (PUMA) and PMAIPI (NOXA) [51].

Activation of the DDR by cisplatin leads to a rapid induction of
apoptosis with a major role for WT p53 in TC. Mutations in TP53 are
rarely observed in TC. Nevertheless, TP53 alterations have been de-
tected in a small subset (~15%) of cisplatin-resistant or relapsed TC
patients [32,37]. Of note, no correlation has been found between p53
protein expression levels and chemosensitivity [52]. In fact, chemore-
sistant tumors exhibited a trend towards higher positivity for both p53
and MDM2 compared to cisplatin-sensitive tumors, suggesting in-
creased importance of MDM2-mediated inhibition of p53 activity. This
hypothesis is supported by functional studies using cisplatin-sensitive
and -resistant TC cell lines indicating that the interaction between p53
and MDM2 required higher doses of cisplatin to be disrupted in re-
sistant cell lines [53].

Cisplatin treatment results in enhanced expression of the FAS death
receptor, a transcriptional target of p53, and subsequent activation of
the extrinsic apoptosis pathway via the interaction between FAS and
FAS ligand [53,54]. Other studies showed activation of the intrinsic
apoptosis pathway, where cisplatin led to increased expression of pro-
apoptotic proteins PUMA and NOXA which are involved in the reg-
ulation of the intrinsic apoptosis pathway [55-57]. In addition, high
protein levels of the pluripotency factor OCT4, typical for the EC sub-
type, strongly correlated with a high expression of NOXA, while OCT4
knockdown resulted in a strong reduction of NOXA [57]. Interestingly,

Diablo \/

—_—

4
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Fig. 2. Apoptotic signaling in cisplatin
sensitive TC. Apoptosis is regulated at
several levels with a key role for p53.
Cisplatin treatment activates the DDR
leading to p53 activation. P53 tran-
scriptionally regulates proteins
volved in both the extrinsic and in-
trinsic apoptosis pathway, including
FAS death receptor, BAX, PUMA and
NOXA. Activated p53 enhances ex-
pression of the FAS death receptor.
Binding of FAS ligand to FAS death
receptor leads to formation of the
death-inducing  signaling  complex
(DISC) including FADD and procas-
pase-8, cleavage of procaspase-8 and
subsequently activation of a caspase
cascade leading to apoptosis. The in-
trinsic apoptosis pathway is regulated
by pro- and anti-apoptotic proteins.
Pro-apoptotic proteins either directly
facilitate BAX and BAK oligomerization
in the mitochondrial outer membrane,
or indirectly by inhibiting anti-apop-
totic proteins. Mitochondrial outer
membrane permeabilization leads to
release of SMAC/Diablo and activation
of a caspase cascade. SMAC/Diablo re-
presses the caspase inhibitor XIAP.
Crosstalk between the extrinsic and
intrinsic apoptosis pathways exists in
form of caspase-8 mediated cleavage of
BID. High levels of OCT are correlated
with high NOXA protein expression.

in-

XIAP

LSO
=

high NOXA expression has been correlated with good prognosis in TC
tumors with EC histology [58]. Crosstalk between the extrinsic and
intrinsic apoptosis pathways, where FAS receptor activation results in
caspase-8-mediated cleavage of BID, may further strengthen the apop-
totic response (Fig. 2). A recent study proposed that TC tumors with WT
TP53 have an intrinsically heightened apoptotic potential caused by
their increased mitochondrial priming [30].

The difference in cisplatin-sensitivity between seminoma and non-
seminoma tumors could be explained by a lower level of DNA methy-
lation in seminomas [29,59,60]. An interesting hypothesis postulated in
the study by Shen et al., is that activating KIT mutations, predominantly
observed in seminomas, induce a primordial quiescent state in semi-
noma cells that suppresses the expression of genes involved in methy-
lation, including UHRF1 and DNMT1 [29]. Consistently, methylation
levels have been linked to the differentiation status of germ cell tumors
as well as to cisplatin-sensitivity in vitro [61].

Cisplatin resistance in TC and novel pre-clinical targets

While TC is a highly curable disease, partly caused by mechanisms
outlined above, approximately 10-15% of patients develop a tumor
relapse after initial treatment or have refractory disease [12]. Several
mechanisms underlying cisplatin resistance have been identified, sug-
gesting no uniform cause of resistance. Some of the most prominent
resistance mechanisms that potentially have therapeutic value, will be
discussed here (Fig. 3).

As described above, the excellent sensitivity of TC tumors to cis-
platin treatment can be attributed to diminished capacity to repair
cisplatin-induced DNA cross-links. Consequently, cisplatin resistance
may arise from an enhanced ability to resolve DNA damage, or by in-
creased coping mechanisms towards unrepaired DNA lesions. Increased
expression of ERCC1 in ovarian cancer cell lines has been associated
with cisplatin resistance [62]. However, there are currently no data that
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Fig. 3. Activation of cell survival signaling and lower apoptosis induction factors of cisplatin resistance in TC. Growth factor binding to different receptor tyrosine
kinases (RTK) leads to activation of the MAPK and PI3K/AKT/mTOR signaling pathways that promote cell survival. PI3K downstream signaling involves conversion
of PIP2 to PIP3, which recruits AKT and PDK1 to the plasma membrane. PDK1 and mTORC2 phosphorylate AKT, resulting in full activation of AKT. PTEN negatively
regulates AKT through dephosphorylation of PIP3. AKT activity also results in anti-apoptotic signaling by phosphorylating pro-apoptotic protein BAD. Cisplatin-
induced apoptosis is diminished by MDM2 binding to p53, which promotes p53 ubiquitination and degradation, resulting in lower p53 mediated transcriptional

regulation of pro-apoptotic proteins.

provide evidence for altered levels of ERCC1 or other NER-related
proteins to be involved in cisplatin resistance of TC. As a reduced ability
to perform HR has been shown to determine cisplatin sensitivity in
many cancers, changes in HR efficacy could determine cisplatin re-
sistance in TC as well. In a study where cisplatin sensitive and resistant
TC cell lines were compared, it was shown that cisplatin sensitivity
correlates with the ability of cells to repair interstrand cross-links [48].
Despite differences in HR proficiency between cisplatin sensitive and
resistant cells, all TC cell lines were shown to be more defective in HR
when compared to a non-TC cisplatin resistant cell line [48]. Further-
more, an investigation into the presence of activated ATM has de-
monstrated that TC tumors show more activated ATM, as judged by
serine 1981 phosphorylation, compared to normal tissue. However, the
extend of ATM activation was less prominent compared to other tumor
types [63]. These data further support the idea that TC tumors are
characterized by a lower proficiency to activate the DDR machinery,
but that there is no support of its involvement in cisplatin resistance.
Embryonal carcinoma cell lines and tumors, like embryonic stem
cells, are characterized by high expression of the pluripotency markers
OCT4 and NANOG [64,65]. Several studies have demonstrated a link
between loss of OCT4 expression and lower NOXA levels, which cor-
related with chemoresistance in vitro and in vivo [57,66-68]. More
recently, a study showed chemotherapy induced depletion of OCT4 in a
mouse model of TC including teratoma and EC components [69]. Si-
milarly, loss of pluripotency markers OCT4 and NANOG was observed
in a clinical cohort of TC with emerging chemotherapy resistance [30].
In addition, cisplatin treatment itself induced chemoresistance, as de-
monstrated in a study by Abada & Howell, where they showed that
cisplatin treatment induced differentiation of EC cells in vitro, asso-
ciated with a loss of pluripotency markers OCT4 and NANOG [70]. In

5

vitro differentiation of EC cells by retinoic acid also led to repression of
OCT4, downregulation of PUMA and NOXA, and concomitantly a de-
creased sensitivity to cisplatin [56,71,72]. Combined, these data sug-
gest that cisplatin-treated EC tumors which downregulate OCT4 ex-
pression become chemoresistant, either via subsequent lower NOXA
levels or via differentiation of TC cells. Important to mention is that
other TC subtypes, like YSC and CC, do not express OCT4, while these
TC subtypes are very sensitive to cisplatin as well. Also clinically, no
correlation has been demonstrated between OCT4 expression and cis-
platin sensitivity [73].

As mentioned above, genomic alterations affecting the MDM2/p53
axis have been described in resistant TC. A large study examined 180
TC tumors using whole exome sequencing and described that most
MDM2/TP53 alterations were found in cisplatin resistant tumors [32].
The majority of MDM2 amplifications were observed in post-treatment
specimens suggesting that tumor cells are highly selected during
treatment, a finding that is further supported by a recent study showing
amplification of 12q15 containing MDM2 in a refractory TC patient
[32,34]. In TC cells it was shown that p53 function is hampered by the
interaction with MDM2, especially in cisplatin-resistant cells, where a
higher cisplatin concentration was needed to interfere with the MDM2/
p53 interaction [53]. Therefore, MDM2 appears an interesting ther-
apeutic target to activate WT p53. Indeed, small molecule inhibitors of
MDM2 (e.g. nutlin-3a) targeting the MDM2-p53 interaction were shown
to sensitize TC cells to cisplatin treatment [53,74]. Even though most
TC tumors retain WT TP53, posttranscriptional modifications are able
to repress the pro-apoptotic activity of p53. For example, lysine me-
thylation at the carboxyl terminus of p53 repressed its transcriptional
activity, as demonstrated by reduced expression of PUMA and p21 in
TC cells [75]. Furthermore, the expression of miR-372 and miR-373 was
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reported to repress p53 signaling, and elevated expression levels of
these miRs have been found in cisplatin-resistant TC cell lines [76-78].
Deacetylation of p53 by SIRT1 might be another posttranslational
modification potentially repressing p53 activity in TC. SIRT1 is highly
expressed by cells in the seminiferous ducts of the testis and plays an
important role in spermatogenesis and germ cell function. Reduced
counts of spermatozoa and spermatogenic stem cells were observed in
SIRT1~/~ mice, as well as increased numbers of abnormal sperma-
tozoa, spermatozoa with elevated levels of DNA damage, and small and
abnormal seminiferous tubules [79]. Besides its role in germ cell
biology, the ability of SIRT1 to deacetylate p53 suggests that SIRT1
functions as an oncogene. Upregulation of SIRT1 has been demon-
strated in various cancer types [80]. Other studies, however, have
suggested that SIRT1 acts as a tumor suppressor [80]. Thus, the exact
role of SIRT1 repressing p53 activity in the context of TC has yet to be
determined.

Recently, the PI3K/AKT/mTOR pathway has gained more attention
in relation to cisplatin resistance of TC. Besides mutational deregula-
tion, hyperactivation of the PI3K/AKT/mTOR pathway has been de-
scribed. A central player in the PI3K/AKT/mTOR pathway is AKT,
which functions as a pro-survival factor by promoting cell survival and
inhibiting apoptosis (Fig. 4). Phosphorylated AKT has several ways to
negatively regulate apoptosis. Firstly, AKT phosphorylates and thereby
inhibits the pro-apoptotic protein BAD [81]. In addition, through direct
inhibition of FOX03a, which is responsible for the transcription of
several pro-apoptotic proteins including PUMA and FAS ligand, AKT
indirectly negatively influences apoptosis [82]. Secondly, AKT activates
the transcription factor NF-xB, which promotes the transcription of
several anti-apoptotic genes including BCL-2 and BCL-XL [83,84].
Thirdly, AKT phosphorylates and activates mTORC1 which is a key
regulator of protein translation, cell proliferation and autophagy [85].
Finally, it has been described that AKT-mediated phosphorylation of
MDM2 promotes its nuclear localization, where it interacts with p53
and thereby targets p53 for degradation [86]. Altogether, these studies
emphasize the involvement of AKT in diverse tumorigenic activities,
summarized in Fig. 4. The first proof of PI3K/AKT/mTOR pathway
hyperactivity in TC was provided by Di Vizio et al. who discovered that
the majority of TC tumors are characterized by loss of PTEN, a tumor
suppressor that negatively regulates PI3K signaling [87]. Other reports
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Autophagy

Apoptosis
Cell cycle arrest p27
DNA repair

Cell cycle arrest
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have followed since, all showing that TC models have a highly active
PI3K/AKT/mTOR pathway [88-92]. These data indicate that targeting
the PI3K/AKT/mTOR pathway may have potential as a therapeutic
approach. In TC cells, activation of the receptor tyrosine kinases
PDGFRp and IGF1R have been shown to signal through PI3K/AKT.
Addition of the multi-kinase inhibitor pazopanib (targeting PDGFR,
VEGFR and c-KIT) or the IGF1R/INSR inhibitor NVP-AEW541 resulted
in a reduction of AKT phosphorylation levels. Downregulation of
PDGFRf or IGF1R sensitized TC cell lines to cisplatin treatment, and
pazopanib treatment reduced tumor growth in cisplatin-sensitive and
-resistant TC patient-derived xenograft (PDX) models of the YSC and CC
subtype [89-91]. Likewise, several PI3K, AKT and mTOR inhibitors
have been tested in combination with cisplatin in cisplatin-resistant TC
cell lines and mouse models, showing increased apoptosis and tumor
growth inhibition compared to cisplatin treatment alone [68,92]. In-
terestingly, the PDGFRJ ligand PDGF-B was produced and secreted by
TC cell lines suggesting autocrine signaling [89]. Surprisingly, no dif-
ferences in PDGFR[} tumor expression was observed in a heterogeneous
group of cisplatin-treated and -untreated patients or between cisplatin-
sensitive and -resistant patients. However, when tumors were divided
based on TC subtype, choriocarcinomas from cisplatin-resistant patients
had higher PDGFRf} tumor expression than choriocarcinomas from
cisplatin-sensitive patients [89].

Several important pro-apoptotic members and their role in apop-
tosis signaling have been discussed above, including the FAS death
receptor and PUMA. Less known in the context of TC are the X-linked
inhibitor of apoptosis (XIAP) and the IAP antagonistic protein SMAC/
Diablo. XIAP is an important determinant of the apoptotic process and
functions by inhibiting the initiator caspase-9 and effector caspases-3
and -7 [93]. SMAC/Diablo is released from the mitochondria during the
apoptotic process, and promotes caspase activation by binding to and
inhibiting XIAP [94,95]. Clearly, a shift in balance between XIAP and
SMAC/Diablo may mediate apoptotic resistance, either by over-
expression of XIAP, or by downregulation of SMAC/Diablo. One study
examining the mRNA expression of XIAP and SMAC/Diablo in normal
testis tissue and TC showed that XIAP levels were similar between
normal and TC tissue, while the levels of SMAC/Diablo were decreased
in TC compared to normal tissue [96]. These data further stress that the
balance between pro- and anti-apoptotic proteins in TC is key in

Fig. 4. AKT mediated signaling pro-
motes cell survival. Activation of AKT
leads to: (i) Phosphorylation and acti-
vation of mTORC1, which in response
activates S6K, 4E-BP1 and ATG1
thereby regulating protein translation,
cell proliferation and autophagy. (ii)
Phosphorylation and thereby inhibi-
tion of pro-apoptotic protein BAD. (iii)
Phosphorylation/ activation of tran-
scription factor NF-kB, leading to the
upregulation of anti-apoptotic proteins
BCL-2 and BCL-xL and phosphoryla-
tion/inhibition of transcription factor
FOXO, which upregulates the expres-
sion of pro-apoptotic proteins BIM and
NOXA. (iv) Prevention of cell cycle
arrest by phosphorylating and in-
hibiting cyclin dependent kinase in-

BAD Apoptosis

NF-kB

FOXO

hibitors p21 and p27. w)
Phosphorylation of MDM2, resulting

Apoptosis X .
in p53 degradation.

Cell cycle arrest
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controlling the apoptotic response. Interfering in this balance by
blocking anti-apoptotic proteins might be a way to shift the balance in
favor of apoptosis. For instance, BH3 mimetics block multiple or spe-
cific anti-apoptotic BCL-2 family members thereby inhibiting the ac-
tivity of these pro-survival proteins and favoring apoptosis. Similarly, it
would be interesting to test SMAC mimetics in TC models.

Novel preclinical models in TC

Despite the fact that TC is a complex and heterogeneous disease, TC
models, including cell lines and xenografts, are scarce. Only ~20
human and mouse cell lines and less than 10 xenograft models have
been reported [97-106]. Available cell lines and xenografts almost
exclusively cover the EC subtype, highlighting the obvious need for
more models representing other histological TC subtypes.

Patient-derived xenograft models are increasingly used in current
cancer research due to several advantages over cell line-based xeno-
grafts, including maintenance of tumor heterogeneity, high similarity to
human tumors [107,108] and increased predictive power of drug re-
sponse [109,110]. So far, only 14 orthotopically established TC PDX
models and 14 subcutaneous TC PDX models have been reported
[92,111,112], with limited data available of their establishment [113].
One study described the establishment of 14 non-seminoma PDX
models, specifically from the CC, EC and YSC subtypes, as well as mixed
tumors with YSC, teratoma and EC components [113]. In this study,
orthotopic implantation of the tumor pieces was more successful than
subcutaneous implantation. These PDX models were used to study cis-
platin resistance and to test novel combinatorial strategies using a
glucosylceramide synthase (GCS) inhibitor, DL-threo-PDMP, and a
multi-targeted receptor tyrosine kinase inhibitor, sunitinib, in combi-
nation with cisplatin [113,114]. Recently, we established and char-
acterized three subcutaneous TC PDX models. Two models were ob-
tained from a cisplatin-sensitive patient, and one model was obtained
from a cisplatin-resistant patient. These PDX tumors and matched pa-
tient tumors showed retention of histological subtypes, were molecu-
larly stable over several passages, and their chemosensitivity corre-
sponded with patients’ response to chemotherapy (de Vries et al, in
preparation). A broad panel of TC PDX models representing all histo-
logical subtypes, including tumors with a mixed histology, would be
valuable to gain more understanding of the differential molecular
make-up of histological subtypes. Differential expression of certain drug
targets between histological subtypes, as demonstrated for CD30 and
PDGFRp [89,115], might drive the development of treatments tailored
to specific TC subtypes.

Novel targeted therapies in TC patients

First line cisplatin-based chemotherapy will fail in 10-15% of pa-
tients with metastatic disease, including refractory and relapsed pa-
tients [12]. These patients will receive salvage treatment, as described
above, with varying success rates around 50% [5]. No alternative
treatment options are available for TC patients not being cured by
salvage regimens, highlighting the need for clinical trials investigating
novel therapies. However, initiation and design of large clinical trials
are difficult due to the low incidence and high cure rates of TC.
Nonetheless, some clinical trials investigating targeted therapies have
been performed and will be discussed below, as well as ongoing (pre-)
clinical developments (Table 2).

One pre-clinical target that has shown promising results in several
TC cell lines, is MDM2. Blocking the interaction between MDM2 and
p53 by nutlin-3, a small molecule inhibitor of MDM2, induced apoptosis
[53,74]. In addition, synergistic effects on cell survival were observed
in TC cell lines after combined nutlin-3 and cisplatin treatment [53].
Several MDM2 inhibitors, including RG7388, AMG-232 and ALRN-
6924, are currently under investigation in phase I-I/II trials. No clinical
studies specifically investigating the potential of MDM2 inhibitors in
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refractory or relapsed TC patients have been initiated to date.

Another pathway that is currently being investigated as a clinical
target for treatment of TC is the DDR pathway. As TC tumors are
characterized by defective repair of DSBs, targeting DDR components
provides a therapeutic opportunity. This option has gained more at-
tention, since HR-deficient tumors were shown to be highly sensitive to
PARP1 inhibitors [116-118]. In vitro data has shown that treatment of
TC cells with the PARP inhibitor olaparib sensitized these cells to cis-
platin treatment, in particular cisplatin-resistant cells [48]. Expression
of PARP1 has also been investigated in TC tumors, showing high ex-
pression in tumor tissue but not in normal testis tissue [119]. Currently,
two phase II trials are evaluating the potential of PARP inhibitors in
relapsed or refractory TC, either as single agent (NCT02533765, cur-
rently active) or combined with gemcitabine and carboplatin
(NCT02860819, currently recruiting).

Another clinical target that has previously been investigated is
CD30, a member of the TNF receptor family, which is expressed by the
EC subtype of TC [115]. Interestingly, TC patients with CD30-expres-
sing tumors had worse progression free survival and overall survival
compared to patients with CD30-negative tumors [120]. Brentuximab-
vedotin is an anti-CD30 antibody linked to the antimitotic agent
monomethyl auristatin E. This drug is FDA-approved for treatment of
Hodgkin lymphoma, anaplastic large cell lymphoma and cutaneous T-
cell lymphoma. A phase II clinical trial has investigated the therapeutic
potential of brentuximab-vedotin in TC. This study included five pa-
tients with non-seminoma TC tumors of which one patient achieved a
complete response and one patient a partial response [121]. However,
another phase II trial in 18 relapsed and refractory non-seminoma TC
patients, investigating the activity of brentuximab-vedotin, was re-
cently terminated due to lack of efficacy (NCT02689219). This study
had two arms, patients with CD30 negative/unknown tumors and pa-
tients with CD30 positive tumors. None of the patients achieved a
partial or complete response, and the majority of patients showed dis-
ease progression. The lack of efficacy might be caused by acquired or
intrinsic resistance to brentuximab-vedotin, such as loss of CD30 ex-
pression as described previously [121].

Recently it was shown that cisplatin resistant TC cell lines express
higher mRNA and protein levels of the aldehyde dehydrogenase
(ALDH) isoform ALDH1A3 compared to their cisplatin sensitive par-
ental cells. Treatment with the ALDH inhibitor disulfiram sensitized TC
cells to cisplatin treatment in vitro and in vivo. In addition, a sig-
nificantly higher expression of the ALDH isoform ALDH1A3 was de-
tected in TC tumors compared to healthy testicular tissue [122]. Based
on these data, a phase II clinical trial will commence and evaluate the
potential of disulfiram in combination with cisplatin in relapsed or
refractory TC patients (NCT03950830, currently recruiting).

Claudin 6 (CLDNS®) is a tight junction membrane protein, which was
found to be aberrantly expressed in TC tissue while little expression was
observed in normal tissue [123]. The tumor specific expression makes
CLDN6 an attractive drug target. For that purpose the anti-CLDN6
monoclonal antibody ASP1650, also known as IMAB027, was devel-
oped. Pre-clinical data in TC cell lines showed that ASP1650 induced
cell death as a single agent, and that pretreatment with chemother-
apeutic agents upregulated CLDN6 expression in heterogeneously ex-
pressing cell lines [123]. A first-in-human trial was performed in ad-
vanced ovarian cancer patients, demonstrating that ASP1650 was safe
and well tolerated [124]. A phase II clinical trial will now investigate
the safety and efficacy of ASP1650 in refractory TC patients
(NCT03760081, currently recruiting).

Research into the epigenetics of TC has suggested that increased
DNA methylation is associated with cisplatin resistance. Cisplatin-sen-
sitive seminomas were shown to be hypomethylated, while EC tumors
that have higher incidence of cisplatin resistance showed intermediate
DNA methylation. Treatment-resistant tumors including YSC, CC and
teratomas showed higher levels of DNA methylation when compared to
other solid tumors [125]. In line with this notion, TC cell lines were
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Table 2
Finished and ongoing clinical trials in TC patients.
Target Drug Trial phase NCT identifier Status
PARP Olaparib Phase II NCT02533765 Active
PARP + DNMT Veliparib + Gemcitabine + Carboplatin Phase II NCT02860819 Active and recruiting
CD30 Brentuximab-vedotin Phase II Completed [121]
CD30 Brentuximab-vedotin Phase 11 NCT02689219 Terminated, lack of efficacy
ALDH Disulfiram + cisplatin Phase II NCT03950830 Recruiting
CLDN6 ASP1650 Phase 1I NCT03760081 Recruiting
DNMT Guadecitabine (SGI-110) + cisplatin Phase I NCT02429466 Active
PDGFR + VEGFR + KIT Sunitinib Phase II Completed [127]
Phase II Completed [128]
PDGFR + VEGFR + KIT Pazopanib Phase II Completed [129]
KIT + PDGFR + BCR-ABL Imatinib Phase 11 Terminated, lack of efficacy [130]
Phase II Terminated, lack of efficacy [131]
mTORC1 Everolimus Phase II Completed [132]
Phase 11 Completed [133]
mTORC1 + EGFR Sirolimus + Erlotinib Phase II NCT01962896 Terminated, low accrual
CDK4/6 Palbociclib Phase II Completed [134]
CDK4/6 Ribociclib Phase II Completed [136]
PD-1 Pembrolizumab Phase II Terminated, lack of efficacy [142]
PD-1 + CTLA-4 Nivolumab + Ipilimumab Phase 11 NCT03333616 Recruiting
PD-L1 Avelumab Phase II Completed [143]
PD-L1 + CTLA-4 Durvalumab + Tremelimumab Phase II NCT03158064 Recruiting
PD-L1 + CTLA-4 Durvalumab + /- Tremelimumab Phase II NCT03081923 Recruiting

PARP: poly(ADP) ribose polymerase; DNMT: DNA methyl transferase; ALDH: aldehyde dehydrogenase; CLDN6: claudin 6; PDGFR: platelet-derived growth factor
receptor; VEGFR: vascular endothelial growth factor receptor; KIT: stem cell growth factor receptor; mTORC1; mammalian target of rapamycin complex 1; EGFR:
epidermal growth factor receptor; CDK4/6: cyclin-dependent kinase 4/6; PD-1: programmed death receptor 1; PD-L1: programmed death ligand 1; CTLA-4: Cytotoxic

T-Lymphocyte Associated Protein 4.

proven to be hypersensitive to the second generation DNA methylation
inhibitor guadecitabine (SGI-110), both in vitro and in vivo. In addi-
tion, pretreatment of cisplatin resistant TC cells with this inhibitor re-
sensitized cells to cisplatin [98]. A phase I clinical trial will evaluate the
safety and efficacy of guadecitabine in combination with cisplatin in
refractory TC patients (NCT02429466, currently active).

Several receptor tyrosine kinases (RTK) including KIT, ERBB2,
PDGFR and VEGFR are involved in activation of the MAPK and PI3K/
AKT/mTOR pathway in TC [126]. Sunitinib, pazopanib and imatinib
are multi-targeted inhibitors of RTKs including VEGFR, PDGFR and KIT
that showed promising activity in vitro and in vivo using orthotopic
PDX models of the YSC and CC histological subtypes [90,114,127].
Results of clinical trials, however, have been disappointing, with suni-
tinib only showing modest activity in one study, which was not con-
firmed in a second trial [127,128]. The trial investigating pazopanib
showed no objective responses but achieved progression free survival of
at least 3 months in 13% of patients [129]. Two other small phase II
clinical trials tested the efficacy of imatinib in heavily treated TC pa-
tients. Six patients with mutated KIT were treated with imatinib
showing poor results with 5 out of 6 patients developed progressive
disease [130]. In the other clinical trial, none of the patients with KIT
overexpression responded [131].

In vitro and in vivo efficacy of downstream targeting of the PI3K/
AKT/mTOR pathway has been demonstrated in TC models, showing
increased apoptosis and tumor growth inhibition [68,92]. Two phase II
clinical trials have tested the mTORC1 inhibitor everolimus in re-
fractory or relapsed TC patients. Efficacy of everolimus was limited in
both trials reporting no objective responses, but one study reported 12-
week progression free survival in 40% of patients [132,133]. One other
small phase II clinical trial tested the mTORC1 inhibitor sirolimus in
combination with EGFR inhibitor erlotinib but closed prematurely due
to lack of efficacy (NCT01962896). Summarizing, major clinical out-
comes in response to sunitinib, pazopanib, imatinib and everolimus
were limited to case reports and small phase II studies and can therefore
not be recommended as single agent treatment [127-133]. These
clinical studies used single drug treatment to test efficacy. However,
several pre-clinical studies have shown that combining targeted agents
with cisplatin enhances therapeutic efficacy in TC models. For example,

8

in a recent study we showed that mTORC1/2 inhibitors sensitized TC
cell lines to cisplatin treatment more strongly than everolimus, an
mTORC1 inhibitor. Everolimus treatment prompted an upregulation of
AKT phosphorylation levels, resulting from a positive feedback loop
between mTORC2 and AKT. This feedback loop might explain the re-
duced efficacy of everolimus in clinical setting. Importantly, synergistic
effects were observed between mTORC1/2 inhibitor AZD8055 and
cisplatin in TC cell lines. Furthermore, AZD8055 potentiated the effi-
cacy of cisplatin in two TC PDX models, one pure YSC and one mixed
tumor consisting of YSC and immature teratoma components [92].
Concluding, combined targeted treatment with cisplatin hold potential
for future clinical development in TC patients.

Patients with teratoma usually undergo surgery to remove residual
metastatic lesions. However, there are no alternative treatments for
patients with teratomas that are unresectable or progressive. Teratomas
express high levels of the tumor suppressor retinoblastoma protein
(Rb), unlike less differentiated TC tumors i.e. seminomas and EC [134].
Rb protein is an important regulator of the G1-S checkpoint, blocking
entry into S-phase and promoting cell differentiation [135]. Cyclin-
dependent kinases 4 and 6 (CDK4/6) in association with cyclin D
phosphorylates Rb, leading to cell cycle progression. The inhibition of
CDK4/6 is therefore an attractive therapeutic target in tumors expres-
sing high levels of Rb. Palbociclib is a CDK4/6 inhibitor that has been
evaluated in a phase II study in refractory TC patients with Rb-ex-
pressing tumors. Of the 29 patients included, eight achieved progres-
sion free survival of 24 weeks. In addition, patients with teratoma or
teratoma with malignant transformation had significantly better pro-
gression free survival compared to patients with other histological TC
tumor types [134]. Recently, a randomized placebo controlled phase II
trial investigating the CDK4/6 inhibitor ribociclib was reported in
which TC patients with unresectable and progressive teratoma without
malignant transformation were included. Due to slow accrual this trials
was prematurely closed. Eight patients were included in the ribociclib
group which showed a progression free survival rate of 71% at
24 months, indicating some anti-tumor activity of this compound for
this indication [136].

While immunotherapy has proven beneficial in many tumor types
[137], limited research has been performed in TC which might be due
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to the fact that testes are regarded as immune privileged. Two studies
have looked into the expression of PD-L1 in TC tissue, and both re-
ported a higher expression of PD-L1 in tumor compared to normal testis
tissue [138,139]. Percentages of tumors positive for PD-L1 ranged be-
tween 73-76% for seminomas and 64-89% for non-seminomas. PD-L1
expression on tumor cells can serve as a predictive marker for response
to anti-PD-1 or anti-PD-L1 immunotherapy in several tumor types
[137,140,141]. Indeed, low PD-L1 expression in TC tumors was asso-
ciated with a significantly better progression-free survival [139]. Two
small phase II studies have evaluated immune checkpoint inhibition in
refractory and relapsed TC patients. No objective responses were ob-
served with single agent pembrolizumab or avelumab indicating lack of
efficacy in unselected patient groups [142,143]. A noteworthy ob-
servation from the pembrolizumab study was the fact that only two of
the 12 patients had PD-L1 positive tumors. Another possible explana-
tion for the lack of clinical efficacy is the low mutational burden in TC
tumors [27] and possibly low number of neoantigens. In addition,
whereas extensive immune infiltration has been shown for seminomas,
this was considerably lower for non-seminomas [29]. Regardless, sev-
eral clinical studies will commence and investigate the efficacy of im-
munotherapy in TC. Two phase II trials will investigate the combination
of anti-PD-L1 inhibitor durvalumab with anti-CTLA-4 inhibitor treme-
limumab in refractory TC patients (NCT03081923, NCT03158064, both
currently recruiting). The safety and efficacy of another im-
munotherapy combination, anti-PD-1 inhibitor nivolumab combined
with anti-CTLA-4 inhibitor ipilimumab, will be investigated in a phase
II trial in refractory TC patients (NCT03333616, currently recruiting).
Overall, results of clinical trials in TC patients investigating targeted
drugs have been disappointing. Some limitations in these studies that
might have influenced the clinical outcomes are: (1) patients were
heavily pretreated, which has to do with the fact that there are several
salvage treatment options available with excellent outcomes, (2) in-
clusion of small patient numbers and (3) the large heterogeneity of TC
subtypes included. Unfortunately, these limitations are not easily
solved for future clinical trials in TC patients. Nevertheless, clinical
trials investigating novel targeted agents for TC are underway, in-
cluding trials investigating a targeted agent combined with che-
motherapy (NCT02860819, NCT03950830, NCT02429466).

Concluding remarks

Excellent sensitivity of TC tumors to cisplatin treatment has made
TC a highly curable disease. Two features of TC tumors contribute to
cisplatin sensitivity, and are described here: insufficient DNA repair in
response to cisplatin-induced DNA damage, and a hypersensitive
apoptotic response. However, even though TC is a highly curable dis-
ease there are some therapeutic challenges left.

One important issue affecting survival of TC patients is cisplatin
resistance. Unfortunately, there are no alternative treatment options for
patients who relapse and do not sufficiently respond to salvage treat-
ment or those that are refractory. Some mechanisms contributing to
cisplatin resistance have been identified including hyperactivity of the
PI3K/AKT/mTOR pathway and elevated levels of MDM2. Following,
several strategies to overcome cisplatin resistance have shown efficacy
in vitro and in vivo. These strategies include combinations of cisplatin
with DNA methylation inhibitors, PARP inhibitors, MDM2 inhibitors,
and PI3K/AKT/mTOR inhibitors. However, despite the current knowl-
edge on the molecular mechanisms underlying TC biology and the
identification of successful pre-clinical targeted approaches, no targeted
drugs have hitherto shown robust clinical benefit. Following pre-clin-
ical results, it seems logical that future clinical trials should focus on
combining targeted drugs with cisplatin in an effort to overcome cis-
platin resistance. In addition, histological subtypes should be taken into
account, as demonstrated for the CDK4/6 inhibitor trials in teratoma.
Excitingly, three clinical trials are currently recruiting or active that
will investigate the combination of chemotherapy with a targeted drug,
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i.e. veliparib, guadecitabine and disulfiram. Furthermore, given the
hypersensitive apoptotic response of TC cells associated with high mi-
tochondrial priming, one could speculate that the break on apoptosis
present in cisplatin-resistant cells can be removed by the addition of
BH3 mimetics or SMAC mimetics. Several BH3 mimetics and SMAC
mimetics are in clinical development and warrant further investigation
using in vivo TC models.
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