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Abstract—Cyber-Physical Systems are becoming more au-
tonomous, interconnected, complex and adaptive, and are ex-
pected to operate in highly dynamic environments. This is
especially challenging for energy ecosystems that are increasingly
difficult to control and maintain as the number of participating
manufacturers and users grows. Digital Twins help analyze and
predict these systems in the form of digital reflections that operate
in parallel with the physical system. In this paper, we use Machine
Learning to improve the predictive power of Digital Twins for
Cyber-Physical Energy Systems. Specifically, we use a Temporal
Convolutional Neural Network model to learn the temporal
patterns in the system and predict its responsiveness to specific
power setpoint instructions. Real-life data from ten batteries were
used to predict the behavior over time. Compared to the baseline
model that uses the prior probability of response and the average
response rate within the configured time window, the model
predicts the batteries’ responsiveness more accurately. The more
temporal information is used as input for prediction, the better
the model performs in both precision and recall. The results
show that this compensates for the lack of information when
fewer metrics are used. The use of Machine Learning for Digital
Twins can help maintain a heterogeneous energy ecosystem, while
minimizing the need to acquire or disclose detailed information.

Index Terms—Machine Learning, Digital Twin, Cyber-Physical
Energy System, Temporal Convolution Neural Network

I. INTRODUCTION

Digitalization and its pervasiveness have brought new op-

portunities to monitor and control complex physical systems

effectively. Industrial IoT, Industry4.0, Cloud Native, Cloud

Computing, and Big Data paradigms are among the key drivers

of the effective Digital Twin for industrial Cyber-Physical

Systems of Systems (CPSoS).

In the energy domain, sensor and context data from a Cyber-

Physical Energy System (CPES) can be used to synchronize

fit-for-purpose models with reasoning logic during the opera-

tional phase of the system, i.e., Digital Twins coordinated to

support specific system goals. Previously, Pileggi et al. used

an actual flexible energy system deployment to demonstrate

the applicability of the Digital Twin [1].

The energy system pilot [2] was deployed in Heerhugo-

waard, a municipality in the Netherlands. Ninety households

participated over a period of two years. Household controllers

and a central controller managed energy production and con-

sumption using PowerMatcher [3], [4], which balances smart

devices in a virtual market in an auctioneering process.

Sensor data were collected from various energy system

assets, like solar panels and heat pumps. In their investigation,

Pileggi et al. mainly focus on the battery type of assets,

as shown in Fig. 1. These batteries provide flexibility to

compensate for the energy imbalance in the ecosystem. They

demonstrated an application of Digital Twin simulation to

explore system battery behavior using an expert model [1]. The

battery receives instructions from the controller and provides

the controller with its flexibility information. Data about

the battery is provided to the Digital Twin, which provides

anomaly insights about the unknown battery behavior. In this

process, Pileggi et al. observed that expert knowledge and

insight can be incomplete, inconsistent and incorrect.

In this paper, we extend their research by investigating

the use of Machine Learning for Digital Twins to predict a

battery’s responsiveness. We set out to predict whether the

battery will respond to a desired negative power setpoint,

i.e., whether it will produce energy as requested by the

setpoint instruction received. This is essential to balance the

power usage within a CPES. There are several reasons why

a battery does not respond to a desired negative setpoint. For

example, the state-of-charge may be too low, or the battery

may be operating in an emergency state to avoid damage. The

exact underlying root causes are often poorly understood or

obfuscated by battery firmware.

State-of-the-art Machine Learning methods, like Deep

Learning [5], are able to efficiently approximate a large state

space in an implicit abstract way. They outperform expert

models in that they do not have to evaluate all possible states,

resulting in higher performance [6]. Specifically, our method

applies a Temporal Convolutional Neural Networks (TCN) [7],
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Fig. 1. Digital Twin using an expert model to investigate battery behavior as
used in [1] extended with the Machine Learning model. Ideally, the battery
provides current flexibility information, e.g., the amount of power it may
consume or produce, which is used by the central energy controller to balance
the energy ecosystem. Using Machine Learning, the responsiveness of the
CPES becomes more predictive and allows the modification of the flexibility
information provided to the energy control algorithm.

a form of deep learning, to learn temporal patterns in the

system. These patterns are used to predict whether a battery

will produce energy when it receives a negative power setpoint

instruction.

In the sequel, we discuss state-of-the-art Machine Learning

methods. In Sect. III, we describe the Digital Twin in the

context of CPSoS and outline related work. Our method

is presented in Sect. IV and, in Sect. V, we present our

experiments and results. We conclude with future work in

Sect. VI.

II. STATE OF THE ART

The method we use to predict whether a battery in a CPES

will respond to a negative power setpoint has similarities with

condition and system health monitoring. Condition monitoring

observes a system for certain conditions for early fault detec-

tion in order to avoid catastrophic failures. Hameed et al. [8]

consider condition monitoring of wind turbines, they present

a review of available techniques for condition monitoring and

fault detection.

Similarly, system health monitoring assesses whether a

system is capable of performing its intended task. Borth and

Barbini [9] present a method based on Bayesian networks to

assess whether a ship is ready for its mission. They try to

determine whether a system needs maintenance. Also, Valant

et al. [10] use 1D CNN autoencoders (a form of deep learning)

trained on synthetic data to assess the condition of batteries.

Despite the similarities, there are also differences. In our

research we use real-life data and our method does not focus

on system maintenance, but on system operation: it predicts

the readiness of a system for a single action instead of a

long mission. Because of the shorter scope, the context of our

methods is more dynamic and transient than that of system

health monitoring. In other words and more specifically, a

currently unresponsive battery may become responsive later.

Fig. 2. Digital Twin in the physical system with the MAPE-K model.

The combination of expert and black-box models, where

they complement or update each other, with the aim to

improve explainability and to predict performance, is a sought-

after solution. Existing research already offers some solutions.

For example, Disentangled Variational Autoencoders, another

form of Deep Learning, have the ability to encode abstract

representations into discrete symbols (latent variables) in the

bottleneck [11]. These symbols could, for example, represent

color and size, in case of object recognition, but also an

abstract combination of global states in case of running

processes, i.e., a charging battery, operating in an emergency

state, etc.

Process Mining techniques seem an appropriate passive

learning technique [12], [13], but do not easily address the

state-space problem that many algorithms face in the way deep

learning implicitly does. Instead, process discovery from logs

and conformance checks need specialized algorithms.

III. DIGITAL TWIN IN THE CPSOS CONTEXT

The Digital Twin, despite there being no clear consensus on

a definition in industry or academia [14], is a fit-for-purpose

model with reasoning logic synchronized with the operating

physical system to help the system be effective. In our example

case, the designated system is a CPES.

CPSoSs are complex and there is a never-ending drive

towards automating adaptivity of control processes, given the

dynamic nature of the operating environment. Dynamicity

is characterized by both frequency and degree to which the

system environment changes. Our vision of the Digital Twin

in this context aligns with the MAPE-K reference model for

autonomous systems [15], as shown in Fig. 2.

The interactions shown in the figure represent an operating

monitoring and control cycle consisting of the following

actions:

Monitor: The twin continuously observes the system, obtain-

ing sensor and context data by what is called the Digital

Thread. The Digital Thread represents the sensor data

and context information, as well as the control and flow

information communicated between the physical system

and its twin.

Analyze and Plan: Reasoning about how the system should

be configured or which action(s) it should take to reach

the specific goal.
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Execute: Change the system by interacting with the controller

of the system, which has a co-ordination mechanism to

consider trade-offs between the objectives of different

optimization processes in the system, that, in turn, passes

control to some actuation mechanism.

The use and availability of shared Knowledge is supported

by the Digital Thread. The Twin may receive context infor-

mation about the system and its environment, and it is not

excluded from generating insights about the system that can

be shared with the environment as well. This makes it possible

to foster a co-operative collaborative ecosystem.

IV. RESPONSE PREDICTION METHODS

The aim is to identify what can be learned and predicted

solely based on the data collected from the CPES. Hence,

we do not model the CPES in precise detail. During the

development of our method, we were deliberately uninformed

about the inner workings of the battery.

A. Data Input and Pre-processing

We collected the following metric data from the battery and

used them as input for the model:

Power setpoint: Amount of power requested by the energy

control algorithm from the battery indicated in the in-

struction of the controller. A positive setpoint indicates

that the battery should consume energy, i.e., charge,

while a negative setpoint indicates that the battery should

produce energy, i.e., discharge.

Power: Actual amount of power produced or consumed by

the battery. A positive or negative difference between the

power setpoint and power indicates that the battery does

not respond to the power setpoint request.

Current: Actual current of the battery.

Voltage: Actual voltage of the battery.

State-of-charge: Reported state-of-charge as calculated by

the internal firmware of the battery.

The power setpoint, power, and state-of-charge are regarded

as the most important metrics, since the current and voltage

metrics directly correlate with the power and state-of-charge.

Additional information, such as the internal reported state,

mode and control information of the battery, were deliberately

ignored for the sake of generality of the method.

The original metric data are resampled from an individual

measurement every 16 seconds to an aggregated mean of one

measurement every hour. This reduces noise and the total size

of the data, allowing for faster learning by the model. Refer

to Sect. V-C for more detail. All negative metric values are

normalized to the range [−1, 0], and all positive metric values

are normalized to the range [0, 1].

B. Temporal Convolutional Network

The method used in this paper is based on the TCN [7].

It is a Deep Artificial Neural Network, also known as Deep

Learning [5], with causal dilated convolutions [16]. The output

of time t is convolved, and only depends on the information

from t and earlier in the previous layers. The TCN uses

Fig. 3. Example structure of a TCN shown for a single input metric (similar
as shown in [18]). Only 4 dilation layers are shown here (with dilation 1, 2,
4 and 8), the actual TCN model used in our research uses up to 7 dilation
layers (with dilation 1, 2, 4, 8, 16, 32 and 64). An extra dense layer of 20
neurons is added to the end of the TCN which is connected to the final output
neuron to provide the classification result. The size of the input layer depends
on the window size (16 in the figure above) and the number of metrics being
used (1 in the figure above).

residual connections [17] to ease training for deep neural

networks with many layers. A detailed example of the network

is shown in Fig. 3. In our version the network is extended with

an extra fully connected layer of 20 neurons which feeds the

final results to the output neuron.

Each input neuron represents the hourly mean of a sin-

gle metric, e.g., power and state-of-charge, in the interval

[(t− w), t], where w is the configurable window size in hours.

The Rectified Linear Unit, known for its fast learning in

networks with many layers [19], is used as the activation

function in each neuron except for the output neuron which

has a sigmoid activation function. Binary cross-entropy is

used as the loss function. To train the network, the Adam

algorithm [20] is used, which is an extension to stochastic

gradient descent. We used the Python Deep Learning library

Keras [21] and an existing TCN implementation1 as the basis

of our implementation.

We have considered using Recurrent Neural Networks

(RNN) such as those based on Long Short-Term Memory

(LSTM) [22] for our application. However, TCNs have shown

to outperform RNNs in many tasks [7] while its design

allows better parallelism. Although we do admit that a proper

validation on the same dataset is required to justify this claim.

C. Response Prediction Model

A single power request event used for the response predic-

tion model is defined as the moment the power setpoint goes

from 0 to a negative value (see Fig. 4). The aim of the model

is to predict the expected behavior given historical data with

window size w in hours.

The model is a binary classifier and predicts whether the

battery is likely (1) or unlikely (0) to respond to the negative

power setpoint. For this purpose, an extra dense layer of 20

neurons is added to the output of the TCN in addition to a

final layer of one neuron to form the final classification output,

which is then rounded to a fixed classification of either 0 or

1. Fig. 3 shows an example of the structure of the network.

Only historical metric data with window size w are given to

the model. A single model is trained using data from multiple

1https://github.com/philipperemy/keras-tcn
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Fig. 4. Example of different negative power setpoint requests in which the
battery should respond by producing power. Sometimes the battery responds
and sometimes it does not despite having sufficient state-of-charge. Other
metrics are omitted for sake of clarity. The key challenge of the learned
model is to predict whether or not the battery will respond at time t given
the input in the window t− w.

Fig. 5. A Snapshot of raw data used in our experiments for a single battery
period resampled to hourly data. The data is imperfect due to missing data
points and continuously changing usage patterns of the battery.

batteries collected over a period of several months. However,

no battery-specific information is provided, making the model

suitable for similar but unseen batteries.

V. EXPERIMENTS

We consider a period of about 8 months where data were

collected for 10 different batteries. From each battery, its

power level, current, voltage, state-of-charge, mode, state and

power setpoint were collected. However, in many cases, data

were missing for long periods at a time, resulting in incomplete

data over time. Fig. 5 shows one month of raw data collected

from a single battery. Noisy data and small interruptions were

compensated by resampling the data to hourly intervals. Refer

to Sect. V-C for an in depth discussion about resampling

effects. Incomplete periods due to interruptions larger than

one hour were ignored.

A total of 972 power request events were collected to train,

evaluate and test the Response Prediction Model. A single

power request event was defined at the moment the power

setpoint went from 0 to a negative value. The duration and

amplitude of the negative power setpoint were not considered.

The first 85% events from each battery were used for train-

ing and evaluation during model development. The reported

performance in this article is tested on the remaining 15% of

all events, constituting the holdout set. The model was not

optimized thereafter. The events were ordered in time such

that it would reflect a realistic situation as to how the model

would be used in practice, i.e., we trained using historical data

and tested on new unseen data.

To evaluate the performance of the response prediction

model, the classification accuracy, precision, recall and F1

score are calculated for the test set, i.e., the remaining 15%
of all power request events. In addition, we calculate the

Matthews Correlation Coefficient (MCC) as our primary per-

formance metric. The MCC metric takes both the true positives

and true negatives into account. It has been shown to be robust

against unbalanced classes [23]. The latter is important since

many batteries do not respond in most cases. Besides the

accuracy and MCC score of the model, we are also interested

in precision and recall. We want to identify batteries that are

most likely to respond to the setpoint instruction.

A. Baseline Performance of the Setpoint Response

The baseline method illustrates the naive way of approach-

ing the problem without using machine learning and is used as

a performance reference for the evaluation of the TCN model.

It is based on the intuition that, if a battery did not respond

recently in the past, it is less likely do so in the future. Its

predicted response r(b, w) for battery number b and window

size w (in hours, w ∈ {1, 4, 8, 16, 32, 64}) is formulated by

Equation 1.

r(b, w) =























{

1, if E[R|b] ≥ 0.5

0, otherwise
, if N = 0

{

1, if E[R|b, w] ≥ 0.5

0, otherwise
, otherwise

(1)

E[R|b] is the conditional expected response, i.e., the arith-

metic mean, with respect to battery number b, and E[R|b, w],
with respect to both b and window size w. The baseline

method uses the expected response E[R|b] only when there

has been no power setpoint requests in the past time window w

(N = 0). Otherwise, if the number of power setpoint requests

N within the window is greater than 0, it uses the expected

response E[R|b, w] within that window. If w = 1, no past

information is used, in which case N = 0.

B. Response Prediction Results

The classification performance, i.e., MCC, for different

trained response prediction models is shown in Fig. 6. A more

detailed overview of all used performance metrics is shown

in Fig. 7 for the best performing variant of each method.

Six different window sizes, namely, 1, 4, 8, 16, 32 and 64,

were evaluated. The use of two different sets of input metrics,

namely

• only power and power setpoint (TCN-pwr), and

• power, current, state-of-charge, voltage, and power set-

point (TCN-all),

was evaluated. This resulted in a total of 12 different model

configurations that were trained. In all cases, the model was

trained for 300 epochs on the training set, i.e., the first 85%

of the total dataset. During each epoch, a random set of 20%

Authorized licensed use limited to: University of Groningen. Downloaded on September 03,2020 at 09:38:36 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Performance results showing the Matthews Correlation Coefficient
(MCC) for the baseline method and two different versions of the trained TCN
model. The results shown are the mean scores over 100 different training runs.
The error bars indicate the 95% confidence interval.

Fig. 7. Accuracy, precision, recall, F1 score and MCC performance results
for the best performing variant of each method. The results shown are the
mean scores over 100 different training runs. The error bars indicate the 95%
confidence interval.

within the training set was used for validation. Only the trained

weights for which the network scored best on this validation

set were stored and later used for testing.

The reported performance measures are calculated on the

classification results of the remaining 15% of the total dataset.

These data were not used for training or validation during the

model development. Since the model performs differently after

each randomization of the order in the training set, the final

mean performance was calculated over a total of 100 runs per

model configuration. This resulted in a total of 1200 different

models being trained.

At window size 8, the baseline model performs slightly

worse than the TCN-based models in terms of its accuracy

and precision (Fig. 7). However, recall and MCC is much

lower than the TCN-based models for this window size. This

suggests that even if an optimal window size is chosen for

the baseline model, it still utilizes responsive batteries more

poorly than the TCN-based models.

Using all metrics (TCN-all), the model outperforms the

baseline model in many cases with minimal temporal informa-

tion (w = 1), as shown in Fig. 6. Unlike the baseline model,

the TCN-based model is unaware of the origin of the data, i.e.,

the battery number is not provided to the input. Performance

increases with more temporal information. Precision improves

as well. The performance of TCN-all decreases for window

sizes larger than 8 hours. However, this drop in performance

can be explained by the larger input size of the network

which requires longer training times. This large input size also

increases the chance of overfitting.

Fig. 8. An example of the raw data resampled at different intervals.

Using only the power and power setpoint metrics (TCN-

pwr), the model performs poorly compared to the baseline

model (Fig. 6) when minimal temporal information is used

(w = 1). However, the more temporal information is used, the

better the performance becomes. This suggests that there is

relevant information captured in the temporal patterns of the

power metric that compensates for the lack of information.

When the window is set to 32 hours, the performance is better

than that of the model using all metric information. This can be

explained by the larger input size which typically increases the

chances of overfitting while requiring more training epochs.

C. Resampling Effects

The dataset used in the experiments uses a resampling

interval of 60 minutes. The mean value is calculated within

the interval. Fig. 8 provides an example of the effect of

using a smaller resampling interval on the raw data. At higher

resolutions, e.g., intervals of 15 minutes, the signals become

noisier. When using a resampling interval of 15 minutes,

the mean MCC performance (over 100 runs) for the best

performing variants of the TCN models, TCN-all (w = 8)

and TCN-pwr (w = 32), are 0.749 and 0.794 on the test set,

respectively. This performance is similar to the original TCN

models trained on the dataset using a larger resampling interval

of 60 minutes, as shown in Fig. 7.

Providing the limited effect of using a smaller resampling

interval, and the advantage of reducing noise, outliers and

the size of the dataset at larger resampling intervals, justi-

fies our choice for resampling the data at hourly intervals

in this particular case. However, for other datasets with a

higher power usage frequency, smaller resampling intervals

are recommended.

VI. CONCLUSION

In our paper, we showed how to use a Temporal Convo-

lutional Neural Network (TCN) for a Digital Twin to predict

CPES behavior. We used battery data from a real-life flexible

energy system that are noisy, contains outliers and has large

periods of missing data, to compare a baseline method, namely,

the mean expected responsiveness to our TCN method. We

Authorized licensed use limited to: University of Groningen. Downloaded on September 03,2020 at 09:38:36 UTC from IEEE Xplore.  Restrictions apply. 



have demonstrated that the model more accurately predicts

whether batteries will respond to instructions they receive.

Our method benefits from using more temporal information,

i.e., using larger window sizes. Accuracy performance, i.e.,

being correct in the predicted response, and precision per-

formance, i.e., selecting relevant batteries that will actually

respond to the negative setpoint of the model, improved.

This implies that there is relevant information captured in the

temporal patterns that cannot be inferred directly from the

reported state of the battery.

Our results suggest that the temporal patterns can com-

pensate for the lack of information, e.g., only knowing the

power level in time, in CPES systems. This is useful to

improve management of energy ecosystems that are composed

of non-transparent or poorly documented systems. Despite not

knowing important battery features, like battery type and age,

knowing only battery behavior prior to prediction, the model

still predicts well.

Our research proposes how Machine Learning can help,

by way of the Digital Twin, to better utilize an existing

system. The method minimizes the need to acquire or disclose

potentially sensitive detailed information such as firmware, age

or sensitive user information. Effectively, we extended Pileggi

et al.’s work [1], shown in Fig. 1, to include an additional

Machine Learning black-box model for the Digital Twin. This

information can be sent to the controller via the flexibility

information and assists in energy flexibility profile calibration.

Trust is an important aspect, particularly for energy control

systems. The system should be safe and secure. Our model pre-

dicts behavior using only prior data, without needing sensitive

information about the battery itself. Knowing the relationship

between the Machine Learning model and the expert-model

twins improves trust. Amongst others, it would help address

system verification and validation.

In future work, we intend to experiment with energy assets

in a controlled environment. Learning asset features and using

that for energy flexibility profile calibration would make such

systems more efficient and safer. Moreover, the aim would be

to do this in a confidential and privacy-secure (safe) way, i.e.,

without having to expose sensitive information about the asset.

Furthermore, we aim to explore the possibilities of not just

making both the expert model and Machine Learning model

complementary to each other to provide different insights, like

identifying anomalies and predicting behavior, but also to have

them update each other. The aim of the latter is to make the

Machine Learning model more explanatory while improving

the performance and validating the rules of the expert model.
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