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A Tutorial on Regression-Based Norming of Psychological Tests

With GAMLSS

Marieke E. Timmerman, Lieke Voncken, and Casper J. Albers
University of Groningen

Abstract

A norm-referenced score expresses the position of an individual test taker in the reference population, thereby
enabling a proper interpretation of the test score. Such normed scores are derived from test scores obtained
from a sample of the reference population. Typically, multiple reference populations exist for a test, namely
when the norm-referenced scores depend on individual characteristic(s), as age (and sex). To derive normed
scores, regression-based norming has gained large popularity. The advantages of this method over traditional
norming are its flexible nature, yielding potentially more realistic norms, and its efficiency, requiring
potentially smaller sample sizes to achieve the same precision. In this tutorial, we introduce the reader to
regression-based norming, using the generalized additive models for location, scale, and shape (GAMLSS).
This approach has been useful in norm estimation of various psychological tests. We discuss the rationale of
regression-based norming, theoretical properties of GAMLSS and their relationships to other regression-based
norming models. Based on 6 steps, we describe how to: (a) design a normative study to gather proper
normative sample data; (b) select a proper GAMLSS model for an empirical scale; (c) derive the desired
normed scores for the scale from the fitted model, including those for a composite scale; and (d) visualize the
results to achieve insight into the properties of the scale. Following these steps yields regression-based norms
with GAMLSS for a psychological test, as we illustrate with normative data of the intelligence test IDS-2. The
complete R code and data set is provided as online supplemental material.

Translational Abstract

Standardized psychological tests are widely used. Examples include intelligence, developmental, and neuro-
psychological tests. They are used for purposes as monitoring, selection, and diagnosing individuals. High-
quality standardized tests have normed scores, like the well-known IQ scores for intelligence tests. Normed
scores allow for properly interpreting an individual’s test score. They are derived in the test construction phase,
based on scores in a large normative sample. Normed scores express the position of an individual test taker
in the reference population. The reference population for a test typically depends on individual characteris-
tic(s), like age and possibly sex. This tutorial introduces the reader to a method to compute normed scores that
depend on individual characteristic(s), making optimal use of all background knowledge and the scores in the
whole normative sample. Therefore, the method yields potentially more realistic norms, and more precise
norms than traditional methods, using the same amount of data. This is an important asset, because gathering
sufficient data is difficult and costly. In this tutorial, we explain the technical background of the method, called
regression-based norming with the generalized additive models for location, scale, and shape (GAMLSS), and
explain how to apply it based on six steps. Following these steps yield regression-based norms with GAMLSS
for a psychological test, as we illustrate with normative data of the intelligence test IDS-2. The complete R
code and data set is provided as online supplemental material, so that test developers can apply the method
to derive high-quality norms for their own test.

Keywords: continuous norming, norm-referenced scores, norm generation, relative norming
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Standardized psychological tests are widely used. They play a
crucial role in individual assessments and in psychological re-
search. Individual assessments take place in clinical, developmen-
tal, and personal psychology practice, with the aim of individual
diagnosis, monitoring, or selection. Assessments can have a major
impact on individuals’ lives because important decisions, for ex-
ample on clinical interventions, are based on them. Thus, it is
essential to have high-quality tests.

A core feature of high-quality standardized tests is that they
have well-normed scores. The majority of psychological tests
have norm-referenced scores, including intelligence tests (e.g.,
Wechsler, 2008), developmental tests (e.g., Bayley, 2006), neuro-
psychological tests (e.g., Kaufman & Kaufman, 1994), and clinical
tests (e.g., Goodman, 1997). In a norm-referenced test, the raw
score is transformed into a norm-referenced score, which expresses
an individual’s performance relative to performances in the refer-
ence population of the test (e.g., Groth-Marnat & Wright, 2016,
pp. 11-12; Mellenbergh, 2011, p. 348). This contrasts to a
criterion-referenced test, in which the performance is compared
against a predetermined standard. The vast majority of normed
psychological tests make use of norm-referenced scores.

A salient feature of norm-referenced psychological tests is that
the norms typically depend on age (e.g., in intelligence tests as
Wechsler, 2014) and sometimes sex and/or educational level (e.g.,
in neuropsychological tests as Rommelse et al., 2018). This im-
plies that there are in fact multiple reference populations for which
norms are needed, which jointly make up the norm population of
the test. The norms are established during the test construction
phase, on the basis of scores collected in a sample of the norm
population.

In this tutorial we focus on obtaining high-quality norms for a
norm-referenced test, in which the norms may depend on individ-
ual characteristic(s) as age and sex. In what follows, we denote
these variables on which norms depend as norm-predictors. In
recent years, continuous norming (Zachary & Gorsuch, 1985) has
been embraced by test constructors to compute their norms (e.g.,
van Baar, Steenis, Verhoeven, & Hessen, 2014; Wechsler, 2014),
because of its favorable properties in terms of accuracy. The key
of continuous norming is that one explicitly uses the information
provided by the continuous (or ordered categorical) nature of the
norm-predictor(s; like age or educational level) in computing
the norms. Continuous norming can also be used when one or more
discrete norm-predictors are involved. Even for a single discrete
norm-predictor (e.g., sex only) continuous norming can be applied,
but then the advantage over traditional norming becomes much
smaller.

One can distinguish three types of continuous norming: semipa-
rametric norming (Lenhard, Lenhard, Suggate, & Segerer, 2018;
Snijders, Tellegen, & Laros, 1988), inferential norming (Angoft &
Robertson, 1987; Zachary & Gorsuch, 1985; Zhu & Chen, 2011),
and regression-based norming (Van Breukelen & Vlaeyen, 2005;
Voncken, Albers, & Timmerman, 2019b). Having normed scores
for a test means that one has the normed score available for each
possible combination of raw score and norm-predictor value.

In semiparametric norming, one models the raw scores as a
smooth, typically nonlinear function of the norm-predictor values
(e.g., age) and the normed scores (e.g., percentiles). In the mod-
eling process, one first discretizes the norm-predictor values into
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groups (e.g., per year of age) and then regresses the raw scores on
the discretized norm-predictors.

In inferential norming, the raw score distribution is estimated
using a two-step procedure: First, the mean, standard deviation,
skewness, and sometimes kurtosis are separately fitted with poly-
nomial regressions as a function of the norm predictor(s), using
discretized norm-predictor values into groups; the polynomial
functions are possibly manually adapted based on expert knowl-
edge. Second, the estimated parameters are used as parameters for
some parametric distribution that is deemed suitable. The resulting
normed scores are hand smoothed, both within and between
groups.

Regression-based norming has two great advantages over
semiparametric norming and inferential norming: First, it has
readily available statistical criteria for model selection and model
assessment. Second, in the computations there is no need for
discretizing a continuous variable as age, thereby avoiding the
arbitrary and possibly influential decision on the interval width
(see Lenhard et al., 2018; Zhu & Chen, 2011). We focus on
regression-based norming using the generalized additive models
for location, scale, and shape (GAMLSS; Rigby & Stasinopoulos,
2005; Stasinopoulos, Rigby, Heller, Voudouris, & De Bastiani,
2017). This highly versatile model family is suitable for a wide
range of empirical norming cases and encompasses—as far as we
know—all specific models used so far in regression-based norm-
ing.

To the best of our knowledge, there is no concise and clear
introduction aimed at test constructors that explains regression-
based norming. This article thus aims at (a) providing an overview
of all relevant aspects in regression-based norming with GAMLSS
for an empirical scale, deriving the norm-referenced scores from
the model and visualizations to achieve insight into the properties
of the scale; (b) outlining the commands used in R to achieve the
regression-based norming; and (c) describing the most common
issues encountered in norming practice. We do so on the basis of
six steps, which are presented in Table 1. Following these steps
yields appropriate regression-based norms with GAMLSS for a
psychological test, as we will illustrate using an intelligence test.
We further elaborate on the sensitivity to GAMLSS model spec-

Table 1
Six Steps to Arrive at Regression-Based Norms With GAMLSS
for a Psychological Test

Step Description

1 Define the test’s reference population(s), norm population
and target population

2 Design and carry out the study to gather the normative
sample data

3 Select a candidate GAMLSS distribution as a conditional
raw score model

4 Select candidate function(s) to relate the norm-predictor(s) to
the GAMLSS distribution parameters

5 Carry out the model selection to arrive at the estimated
GAMLSS model

6 Compute the normed scores for a scale based on the

estimated GAMLSS model

6.1) (Compute the normed scores for a composite scale)

Note.
shape.

GAMLSS = generalized additive models for location, scale, and



is not to be disseminated broadly.

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user anc

REGRESSION-BASED NORMING WITH GAMLSS 359

ification. Before discussing the six steps and their background into
detail, we introduce the core ideas of regression-based norming
and compare it to traditional norming.

This tutorial builds on recent developments in GAMLSS for
regression-based norming (Oosterhuis, van der Ark, & Sijtsma,
2016; Voncken, Kneib, Albers, Umlauf, & Timmerman, 2020;
Voncken, Albers, & Timmerman, 2020; Voncken, Albers, & Tim-
merman, 2019a; Voncken et al., 2019b) and the experiences we
gained in norming various psychological tests (Grob & Hagmann-
von Arx, 2018; Grob et al., 2018; Rommelse et al., 2018; Tellegen
& Laros, 2017; Voncken, Timmerman, Spikman, & Huitema,
2018).

Traditional Versus Regression-Based Norming

When norms depend on, for example, age, there are in fact
multiple reference populations for which norms are needed. Per
reference population (e.g., the general population at a specific
age), the norms themselves are derived from the observed distri-
bution of the raw test scores within the reference population
concerned. The traditional norming approach is to define the
various reference populations by categorizing the continuous vari-
able age and computing the norms per age interval (and—if
applicable—per sex and/or educational level; as e.g., in the
Wechsler Intelligence Scale for Children-III, Wechsler, 2014). The
traditional norming approach is problematic in that it easily yields
jumps between norms at successive age intervals. This implies that
the very same raw test score would be interpreted rather differently
for two individuals who are in two successive age intervals, yet are
of almost the same age (e.g., 12 years and 364 days, vs. 13 years
and 1 day). These jumps are often unrealistic, namely when they
conflict with theoretical knowledge on the construct measured
(Van Breukelen & Vlaeyen, 2005; Zachary & Gorsuch, 1985), that
is, that the test score distribution changes smoothly with increasing
age.

Traditional norming uses age intervals, thereby categorizing
age. It thus relies on the (implicit) assumption that the test score
distribution is constant within each age interval. In case of a
smoothly changing test distribution with age, this assumption
holds to a sufficient degree only when using narrow age intervals.
This phenomenon is illustrated in Figure 1, which depicts the raw
test scores as a function of age in an illustrative normative sample

A B

(N = 1,660) of Test 14 (“naming antonyms”) of the intelligence
test IDS-2. To ensure confidentiality of the original IDS-2 norms,
this sample is composed of random samples (n = 830 each) of the
normative sample of the Dutch IDS-2 (Grob et al., 2018) and the
German IDS-2 (Grob & Hagmann-von Arx, 2018). Because
the score distributions across age are rather similar in these nor-
mative samples, they may be combined, at least for illustration
purposes. The horizontal line in Figure 1, panel A, indicates the
estimated population median and the 95% confidence interval (CI)
per age interval, for an interval width of four years. Especially in
the lower age ranges, the estimated median appears to be a biased
estimate at almost all ages within the interval. In panel B, the
interval width is reduced to one year. As can be seen by comparing
panels A and B, narrowing the interval widths reduces the bias as
well as the jumps between different age categories, yet increases
the width of the 95% CI considerably. Thus, using narrow intervals
would substantially increase the total needed sample size to
achieve sufficient precision for each age interval. The unrealistic
jumps between norms in successive age intervals observed in
traditional norming are thus due to model error and/or sampling
fluctuations.

The approach used in regression-based norming is to model the
raw test score distribution as a continuous function of age. This
allows for the evaluation of the test score distribution at any
specific age, thereby referring to the reference population of that
age. The continuous function of age properly reflects the theoret-
ical knowledge on the development measured. For example, the
estimated population median of Test 14, based on a regression
model with a continuous nonlinear function of age, smoothly
increases with age (see Figure 1, panel C). Thus, this model for the
median is more realistic than the one associated with traditional
norming (Figure 1, panels A—B). Further, the model is estimated
based on the total sample, rather than subsamples with ages in the
same interval, implying that the estimation is statistically more
efficient (i.e., requiring a smaller total sample size to achieve the
same precision in estimation). Finally, in regression-based norm-
ing, the estimation takes place assuming a particular parametric
distribution for the raw scores. Provided that the assumption holds,
then the estimation is more efficient than with traditional norming,
where the empirical distribution is being used.

0 0
3 = 3

Test Score
Test Score

Test Score

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Age

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Age Age

Figure 1. Scores of the an illustrative normative sample (N = 1,660) of Test 14 of the IDS-2 as a function of
age, with the estimated median per age interval of 4 years (panel A) and 1 year (panel B) and the bounds of the
95% CIs of the median test score—as used in traditional norming, and as a continuous nonlinear function of
age—as used in regression-based norming—(panel C). See the online article for the color version of this figure.
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Regression-based norming with GAMLSS can be carried ac-
cording to the six steps presented in Table 1. In the next sections,
we describe each of the six steps, their theoretical background and
guidelines on how to implement these steps properly in empirical
practice to obtain relative norms for a psychological test.

Step 1: Define the Test’s Reference Population(s),
Norm Population, and Target Population

Normed scores are expressed in comparison to the reference
population of the test. For example, the reference population can
be the general population of a country with the same age as the
testee involved. All reference populations jointly (e.g., all ages
within the age range of the target population of a test) make up the
norm population of the test. The essence of regression-based
norming is that one models the distribution of the raw test scores
conditional upon the norm-predictor(s). The norm-predictor(s) are
the predictor(s) that define the reference population(s). Only the
norm-predictor(s) must be included in the norming model, even if
other predictors exist that would be related to the test scores. This
is so because otherwise the reference population would change and
thus the interpretation of the normed scores would alter. Further,
each norm-predictor should relate to the test score distribution, to
increase the estimation efficiency.

For example, suppose that the reference population of a test is
the community population of the same age and sex. Thus, the
norm-predictors are age and sex. Suppose further that the test score
distribution would be dependent on age and educational level and
independent on sex. Then, only the norm-predictor age is to be
used in the regression model. Including the predictor educational
level would completely change the reference population to the
community population of the same age, educational level, and sex,
and thereby also fundamentally change the interpretation of the
normed scores. Including the norm-predictor sex as a predictor in
the norming model would not make a difference at the population
level, but would make the estimation less efficient at the sample
level. In regression-based norming, the relationship of predictors
with the test score distribution received much attention (Oosterhuis
et al., 2016; Van Breukelen & Vlaeyen, 2005); yet, the essential
relationship with the reference population was neglected.

The reference population crucially depends on the test purpose.
For example, intelligence test norms typically depend on age only,
implying that the reference population is of the same age. The
normed scores thus express the intellectual ability relative to
individuals of the same age. In this way, the changes in test
performances due to natural development across the life span are
accounted for. This seems to be most useful for the test purposes
of monitoring and selection. As a side-note: Raw intelligence test
scores typically correlate with both age and educational level.
Because only age is accounted for in the normed intelligence test
scores, the latter will correlate with educational level.

Neuropsychological test norms typically depend on age, sex,
and (for adults) educational level (Rommelse et al., 2018; e.g.,
Voncken et al., 2018). For clinical diagnosis, it is needed to detect
normalities and abnormalities in performance across relevant per-
formance domains; herewith (ab)normality is defined in compar-
ison to healthy individuals. When test performance among healthy

individuals is known to depend on age, sex, and/or educational
level, this should be accounted for in the norms, to make the
reference population as similar as possible as the patient under
clinical assessment. This appears most useful for the test purpose
of clinical diagnosis.

In certain cases, it is not eminently clear what yields the most
informative norms, and different test constructors make different
choices for seemingly related test purposes. For example, the
occurrence of internalizing problems among children changes with
age (Durbeej et al., 2019) and are displayed more frequently
among girls than boys (Becker et al., 2018). The test score distri-
bution of a test measuring internalizing problems thus relates to
age and sex. Norms for such a test can thus be made age and/or sex
specific, depending on the purpose of the test. Severity of inter-
nalizing problems can be investigated with the Child Behavior
Checklist (CBCL; Achenbach, 1991) and the Strength and Diffi-
culties Questionnaire (SDQ; Goodman, 1997). The norms of both
tests depend on age, but interestingly sex specific norms are only
available for the CBCL. Obviously, this choice has repercussions
for the practical use of the test. For example, a screening with the
SDQ on internalizing problems (e.g., select the top 10%) would
result in the identification of more girls than boys at risk.

The target population of a test is the population for which a test
is suitable. The norm population of a test (i.e., all reference
populations of the test jointly) may be equal to the target popula-
tion or may be a part of the target population. For example, an
intelligence test aimed at the community population has the same
target and norm populations. A neuropsychological test typically
has as the norm population healthy individuals, while the target
population of the test includes both healthy and unhealthy indi-
viduals.

Step 2: Design the Study to Gather the Normative
Sample Data

A well-composed normative sample is crucial to achieve correct
norms. Correct norms are unbiased and sufficiently precise. These
can only be achieved with unbiased and sufficiently precise esti-
mated distribution(s) of the raw test scores conditional upon the
norm-predictor(s). We first consider the issue of achieving unbi-
ased estimates and then the issue of estimation precision.

As is well-known, an unbiased estimate can be obtained based
on a random sample from the population. In norming, random
sampling from the population typically is an unattainable ideal. In
many cases, the individual members of the population are un-
known, rendering it impossible to draw a random sample. For
example, members of a clinical population are not listed. In other
cases, privacy regulations, like the European General Data Protec-
tion Regulation (European Parliament and Council of the Euro-
pean Union, 2016), preclude random sampling. For example, most
countries have a population register that would be of use to sample
from a community population, but the population register is not
accessible to researchers. In some cases, random sampling seems
feasible using hierarchical sampling. This is possible when the
higher-level units are publicly known and thus can be sampled
from. For example, organizations as schools and hospitals within a
certain country are often neatly listed. However, even when a
random sample could be approached, there remains a serious
threat, namely nonresponse bias. In practice, it is common that a
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substantial part of the invited participants does not participate. If
the resulting missing data are missing not at random (see, e.g., van
Buuren, 2018, pp. 8-9), then the estimates based on available data
will be biased.

An alternative to random sampling that is practically feasible, is
judgmental sampling (Mellenbergh, 2011, p. 351). Judgmental
sampling is akin to stratified sampling, in that strata (subpopula-
tions) are identified based on characteristics that relate to the test
score and for which the population distribution is known. Then,
sampling of individuals takes place such that the sampling distri-
bution of the strata mimics those as known in the population. In
judgmental sampling, unlike stratified sampling, the specific indi-
viduals selected result from the recruitment procedure applied,
rather than from random sampling. Strata are often considered
based on different variables, such as educational level, ethnicity,
and region. Proper stratification would require the use of the joint
distribution in the population, rather than their univariate distribu-
tions separately. Unfortunately, current norming practice seems to
only consider the univariate distributions, thereby often leaving
unclear whether there has been sampled under the assumption of
independency (e.g., Wechsler, 2018). Though random sampling
would be ideal from a theoretical perspective, a carefully designed
and followed judgmental sampling scheme seems the best one
could achieve in practice. Note that variables that determine
the reference populations are of no use at all to define the strata.
These variables are used as predictors in the regression model (i.e.,
the norm-predictors) and thus are conditioned upon. Because they
are conditioned upon, this implies that a representative sample
with respect to these variables is not needed. Note further that one
should refrain from using the variables used to define the strata as
norm-predictors (i.e., predictors in the norming model), because
this would completely alter the nature of the reference populations
and thus the interpretation of the normed scores.

Generally, the estimation precision depends crucially on the
sample size. A larger normative sample thus results in more
precision. In norming, the precision must be considered in terms of
the estimate of the distributions conditional upon the predictors.
Further, one needs observations across the full predictor space, to
make sure that the model can be reliably estimated (i.e., the
estimates are supported by data across the full predictor space).
Currently, detailed knowledge is lacking on how large the sample
size should be to achieve sufficient precision for regression-based
norming. When standard linear regression is applicable, some
guidance is available (Oosterhuis et al., 2016). In cases where
more flexibility is required, larger samples sizes will be needed. It
is highly desirable that generally applicable guidance becomes
available, because typical norming models involve nonlinearity,
non-normality, and heteroscedasticity. Such guidance should take
into account the presumed nature of the model (e.g., models with
more parameters typically require larger sample size to achieve the
same precision) and minimally required precision.

For the time being, it seems wise to identify the minimum
needed sample size based on standard linear regression (Ooster-
huis et al., 2016) and use this as a lower boundary for the sample
size needed. Furthermore, given that the model at the boundaries
of predictor values suffer from limited precision, it is wise to
collect some observations beyond these boundaries, provided that
the test is suitable for the individuals involved. For example, the
reference population of the IDS-2 is aged 5 to 20 years. Thus, to

increase precision in norms at the age boundaries, one needs to
include in the normative sample testees with an age slightly
outside the boundaries. This is only useful in as far the IDS-2 is
suitable for these individuals, which probably is more of a concern
for the younger children than it is for the young adults.

Step 3: Select a Candidate GAMLSS Distribution as a
Conditional Raw Score Model

The core step in regression-based norming is to get a proper
model of the raw test score distribution as a function of the
norm-predictor(s). The type of modeling required in norming is
related to standard (linear) regression modeling, yet has two im-
portant differences. First, a standard linear regression model in-
volves rather strict assumptions. The assumptions are that the
relationships between predictor values and the distribution means
are linear and that the residuals are independent and normally
distributed with constant variance. The normality assumption of
the residuals can also be described completely equivalently in
terms of the normality assumption on the test score distribution
conditional upon the predictors. In what follows, we adopt the
terminology of distributions of test scores conditional upon pre-
dictor(s), because this complies perfectly with GAMLSS modeling
to computed normed scores. In norming practice, the predictor(s)
often are related in a nonlinear way to the test score distribution
and the test score distribution conditional upon the predictors often
deviates severely from homoscedastic normality. This thus calls
for the use of a more flexible model than the standard linear
regression model.

Second, in applying standard linear regression modeling, the
typical goal is to either obtain a model that clarifies the effects of
the predictors on the outcome variable for the population under
study or to predict the value of future values of the predictor as
accurately as possible. These goals imply that the interpretation of
the specific model for the predictors is of key interest. Further, the
explained variance needs to be substantial and thus the residual
variance small. Both aspects sharply contrast to regression-based
norming. There, the function of the predictor(s) in the model is
solely to identify the reference populations (e.g., the community
population of the very same age, across a certain age interval).
Further, in regression-based norming, the spread in the distribution
conditional upon the predictors needs to be substantial, because
this spread expresses the individual differences in the construct to
be measured by the psychological test. After all, a small spread
would imply that the test distinguishes between individuals only to
a minor extent.

To properly model the raw test score distribution in the norma-
tive sample, one needs a flexible modeling approach, which is
found in GAMLSS. GAMLSS (Rigby & Stasinopoulos, 2005;
Stasinopoulos et al., 2017) are univariate distributional regression
models, in which all parameters of the assumed distribution can be
modeled as additive functions of the predictor variable(s). For
example, when using the normal distribution, one may model both
the mean () and standard deviation (o) as a function of the
predictor(s). GAMLSS can be fitted in R (R Core Team, 2019)
using the gamlss package (Rigby & Stasinopoulos, 2005). The
package includes over 100 continuous, discrete, and mixed classes
of distributions for modeling the outcome variable. This offers
great flexibility for modeling, making it rather likely that a prop-
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erly fitting model for the raw test scores can be found. Further, also
truncated versions of the distributions can be used, which allow for
capturing floor and ceiling effects in raw test scores and taking into
account theoretical minima and/or maxima in raw test scores. The
flexibility makes GAMLSS eminently suitable for its use in norm-
ing.

To specify a GAMLSS model, one needs to select a likely fitting
distribution. The distributions available and their properties are
summarized in Stasinopoulos, Rigby, Heller, Voudouris, and De
Bastiani (2017, pp. 58—63) and described in detail in Rigby,
Stasinopoulos, Heller, and De Bastiani (2019). Suitable candidates
for a distribution to use are identified by matching with the nature
of the raw test scores, considering the score range, and considering
their discrete or continuous character. In general, it is wise to take
a distribution with as few parameters as possible, so as to avoid
overfitting. Further, once the GAMLSS distribution has been se-
lected, one needs to determine the so-called link function for each
of the distributional parameters. The link function in combination
with the distribution function completely determine the possible
range of the parameter values. Highly popular functions are the
identity link, which retains the parameter values in its original
range, and the log link function, which restricts the parameter
values to be nonnegative. Typically, the identity link function is
used for the parameters . (related to location) and v (skewness),
and the log link function for o (scale) and T (kurtosis). We now
describe a few distributions that we found useful in GAMLSS
modeling of test scores of psychological tests, thereby covering the
most common scale types found in psychological tests.

A commonly occurring type of raw scale is ordered categorical,
with fixed minimum and maximum scores. This type occurs when
the test score is the sum of the scores on the items that make up the
scale. Typical item scores are binary (e.g., 0 = false; 1 = correct),
or multiple ordered categories, as in a Likert scale. For a limited
range of scores conditional upon the predictor(s; say, maximally
25), we found the beta binomial (BB) distribution (i.e., X ~ BB(bd
W, 0)), with X the observed score and bd the maximally theoreti-
cally possible score (i.e., binomial denominator) to fit rather well
for many ordered categorical scales. For example, it has been used
to model the scales of the nonverbal intelligence test SON-R 2—8
(Tellegen & Laros, 2017). The BB distribution is theoretically
motivated if one has a scale composed of binary items where the
distribution of the ability of the individuals follow a beta-
distribution and the items are of equal difficulty (Wilcox, 1981), or
where the difficulty of the items that make up the scale follow a
beta-distribution and the ability of the individuals is equal (Albers,
Vermue, de Wolff, & Beldhuis, 2018). Under either one of these
assumptions, observed scales scores follow the BB distribution. In
the norming models for scales composed of binary items it may be
that both the item difficulty and the ability levels vary across items
and individuals. The ability level variability will often be limited
somewhat because one conditions on the norm-predictor(s). Fur-
ther, even if these assumptions are not met, the BB distribution
may offer a proper statistical fit. Yet, it remains important to
evaluate model fit.

A continuous distribution is of use to model scales measured on
a continuous scale, as well as to approximate categorical scales
with a sufficiently large number of categories (say, more than 25).
The Box-Cox power exponential (BCPE) distribution (Rigby &
Stasinopoulos, 2004; i.e., X ~ BCPE(w, o, v, 7)) is a flexible, in

practice often well-fitting continuous distribution. For example,
the BCPE has been used to model the scales involving a reaction
time (RT) as test score of the neuropsychological test COTAPP
(Rommelse et al., 2018). The justification for using the BCPE
distribution is of a statistical nature, in that it is a flexible distri-
bution that can fit a broad range of continuous empirical distribu-
tions. As far as we know, there is no theoretical justification for
modeling scales with the BCPE distribution. The BCPE distribu-
tion has four parameters, related to the location (., median), scale
(o, approximate coefficient of variation), skewness (v, transfor-
mation to symmetry), and kurtosis (T, power exponential param-
eter). Note that the symbols p and o in the context of a BCPE
distribution refer to the median and scale, thereby bearing a dif-
ferent meaning than their default ones (i.e., mean and standard
deviation). The normal distribution (i.e., X ~ NO(u, o)) is a
special instance of the BCPE distribution, namely when v = 1 and
7 = 2 (Voudouris, Gilchrist, Rigby, Sedgwick, & Stasinopoulos,
2012, p. 1283).

As an alternative to the BCPE distribution, one might consider
the reparametrized version (Wiirtz, Chalabi, & Luksan, 2006) of
the skew Student ¢ distribution (Fernandez & Steel, 1998;i.e., X ~
SST(w, o, v, 7)). This distribution has four parameters, namely
mean p, standard deviation o, and v and 7 that relate to the
skewness and kurtosis, respectively. It simplifies to the normal
distribution when v = 1 and T = . In a simulation study
(Voncken et al., 2020), it appeared problematic to estimate the
reparametrized version of the skew Student ¢ distribution for
simulated data sampled from a normal population, presumably
because of extremely large estimated T parameters. The distribu-
tion could be estimated well for skewed data. Further, the BCPE
distribution did not suffer from estimation problems for normally
distributed data. Combined with our experience that BCPE model
appeared to fit generally well in norming empirical scales, we
consider the BCPE distribution as the first choice for continuous
scales and categorical scales with sufficiently many categories.
However, the reparametrized version of the skew Student ¢ distri-
bution may yield proper fit as well in empirical practice.

Step 4: Select Candidate Function(s) to Relate the
Norm-Predictor(s) to the GAMLSS Distribution
Parameters

Once the candidate distribution for test scores has been identi-
fied, the parameters of the candidate distribution are to be modeled
as additive functions of the norm-predictor(s). Modeling takes
place as is common in regression modeling, taking into account the
nature of the predictors, and in case of more than a single predic-
tor, taking care of properly expressing any interactions between
predictors. We refer to Cohen, Cohen, West, and Aiken (2003) as
a great source for multiple regression modeling.

Norm-predictors can be categorical, ordered categorical, or con-
tinuous. Any categorical predictor needs to be modeled via dummy
variables. Ordered categorical variables can be modeled via
dummy variables, or treated as a continuous predictor—taking care
that the resulting model fits the data well.

For a continuous predictor, a simple approach is to use a linear
model for each of the parameters. For example, using a normal
distribution would then result in both p and o being linearly
dependent on the predictor(s). Note that if ¢ would be modeled
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with an intercept only (i.e., taken as independent of any norm-
predictor), the model would boil down to a standard linear regres-
sion model. Such a standard linear regression model is actually
used in regression-based norming of psychological tests (e.g.,
Agelink van Rentergem, de Vent, Schmand, Murre, & Huizenga,
2018; Grober, Mowrey, Katz, Derby, & Lipton, 2015). However,
nonlinear relationships with norm-predictors are found rather often
in continuous norming practice, as Bechger, Hemker, and Maris
(2009) indicated, and we saw confirmed in our norming of various
psychological tests (e.g., Grob et al., 2018; Rommelse et al., 2018;
Voncken et al., 2018), rendering the need for modeling nonlinear-
ity.

Nonlinearity that involves smooth relationships between norm-
predictor(s) and outcome variables, can be modeled using polyno-
mials or splines. Polynomials are the simplest way, and pertain to
adding to the linear equation one or more higher-order terms (e.g.,
age?, age®). To avoid estimation problems due to multicollinearity
of the predictors, it is advised to use a centered version of the
predictor and/or an orthogonalized version of the norm-predictor
set.

Splines (for a review, see Perperoglou, Sauerbrei, Abrahamow-
icz, & Schmid, 2019) are piecewise polynomial functions, which
are used to transform the norm-predictor(s). Using these trans-
formed norm-predictors in the regression results in a smooth
estimated function. Such a function can take any smooth functional
form. The critical issue in using splines is the degree of smooth-
ness required to achieve a model that represents the population
well. Thus, as in any model, one needs to balance underfitting and
overfitting. Different spline types manipulate smoothness in dif-
ferent ways. A popular type is P-splines (Eilers & Marx, 1996;
Eilers & Marx, 2010), because of its favorable properties (e.g.,
numerically stable and easy to implement). Further, it requires
only a single penalty parameter to manipulate the degree of
smoothness of the complete function, making P-splines easy to
apply. The monotonic P-spline variant is of use to achieve a more
efficient estimation if it is known a priori that the smooth function
is monotonically increasing (or decreasing). Such a monotonicity
constraint is particularly useful when modeling test scores that are
known to gradually increase with age, as for example intelligence
scores in childhood. In the GAMLSS model this can be expressed
by a monotonicity constraint on the location parameter () as a
function of age. Note that a monotonicity constraint on the other
parameters, as spread and skewness, is typically not appropriate,
because these typically do not show a monotonic pattern.

Both polynomial regression with higher order terms and splines
yield a fair approximation to many types of relationships. Yet,
polynomial regression is criticized, for its possibly undesired peaks
and valleys in the estimation function (Harrell, 2015, p. 21) and the
theoretically undesirable property that observed scores at a certain
value or range of the predictor values may influence largely and
undesirably the predicted scores at very different predictor values
(Magee, 1998). In our experiences in continuous norming, we
found both approaches to yield a proper and comparable fit in
many instances; we also found instances for which P-splines
showed local misfit, while polynomial regression yielded a proper
fit overall and the other way around. For both approaches it holds
that model selection is of key importance.

In modeling nonlinearity across the norm-predictor space (i.e.,
the complete range of observed norm-predictor values), disconti-

nuities might occur. A typical case for which the piecewise ap-
proach seems to be favorable, is when a test uses different tasks for
different age groups and the resulting score distributions show a
jump at the boundary of the age groups. Then, piecewise functions
might be useful to include. The core idea is to define various pieces
of the predictor space (e.g., age < 10, age = 10) and estimate a
model for each piece separately, using splines or polynomials.
Restricting the models to first-order polynomials yields the well-
known piecewise linear functions (e.g., Snijders & Bosker, 2012,
pp. 268-270). Using piecewise linear functions adds flexibility—
possibly yielding better fit—but also introduces additional bound-
aries, increasing the uncertainty in model fit at these boundaries.
These sources of model fit should be balanced in deciding whether
to adopt this approach. It may be useful to adopt a piecewise
function for a subset of the distributional parameters only.

Step 5: Carry Out the Model Selection to Arrive at
the Estimated GAMLSS Model

Fitting a function with either polynomials or P-splines requires
model selection. This boils down to selecting either the polyno-
mial(s) to include in the function in polynomial regression, or the
value of the penalty parameter in P-splines. There is no general
consensus on how to select these parameters. A popular approach
is to select one or two promising candidate models from a range of
presumably well-fitting models using statistical criteria. Of these
candidate models the model fit of is then assessed via visual
diagnostics.

There are two types of statistical model selection criteria avail-
able. Both aim at properly fitting the sample data while preventing
overfitting, to ensure generalizability of the model to the popula-
tion. In cross-validation, this is done directly by evaluating the
quality of the model’s prediction of new data. In generalized
Akaike information criteria (GAIC; Akaike, 1983), this is done
indirectly by penalizing the number of parameters to include in the
model. Different GAIC variants exist that differ in their degree of
penalizing, such as the Akaike information criterion (AIC),
GAIC(3), and Bayesian information criterion (BIC), with penalties
on the number of parameters equal to 2, 3, and In(&), respectively.
There is no general knowledge on which degree of penalty is
needed for what type of model selection problem. For all GAIC
criteria it holds that the model with the lowest GAIC value among
the range of models considered, is favored.

When defining the range of presumably fitting models it is
important to note that most GAMLSS distributions have dependent
parameters. That is, a change in the regression model for one
parameter (e.g., p in the BCPE distribution) affects the estimates
in the regression models for the other parameters (i.e., o, v, 7). To
avoid the heavy computational load needed to consider all possibly
useful combinations of number of polynomials for all four param-
eters of a BCPE distribution, an efficient algorithm has been
developed and implemented for one continuous predictor (Von-
cken et al., 2019b). This so-called free order procedure searches
for the model favored according to a specified model selection
criterion. In a simulation study, the comparative performance of
the AIC, GAIC(3), BIC, and cross-validation in identifying the
best fitting polynomial models for the four parameters of the
BCPE distribution has been assessed (Voncken et al., 2019b).
Generally, cross-validation performed worse than the three, about
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equally performing, GAIC criteria. As of the three, the BIC favors
the simplest model. Therefore, we recommend the BIC as the
primary statistical criterion to identify the candidate model(s) and
assess the consistency in favored models with another GAIC
criterion (e.g., AIC).

Model fit inspection of the candidate model(s) can take place in
two ways. First, a worm plot (van Buuren & Fredriks, 2001) shows
the relationship between the empirical quantiles and the model-
implied quantiles. These detrended Q-Q plots include 95% bands
that enable to assess to what extent observed deviations may be
due to sampling fluctuations. Under the theoretical model, it is
expected that 95% of the deviations lie within the confidence
bands. It is useful to assess local model fit, by considering worm
plots for multiple levels and/or ranges of the norm-predictor(s).
Figure 2 shows example worm plots of two normative data models,
to be discussed into detail in the Illustrative Example section.

Second, a percentile plot shows the model implied percentiles
and the observed scores, as a function of a continuous predictor. If
more than a single predictor (continuous and/or categorical) is
used, centile plots are to be made for each possible combination of
predictors (e.g., age per sex). This provides additional insight into
the local fit of the model. Further, it gives an impression of the
amount of data that supports the various regions of the estimated
centiles. Figures 3 and 4 show examples of percentile plots, to be
discussed further in the Illustrative Example section.

Given : xvar

05 10 15

T
-0.5

Deviation

05 10 15

-0.5
Il

-15

'
'
'
'
'
!
'
T T T T T T T
0

Unit normal quantile

If the worm plots and centile plot(s) clearly suggest misfit, one
proceeds by adapting the model to remedy the misfit. Adaptations
can be in trying a different distribution for the outcome variable,
and/or using different function(s) to model the relationship(s) with
the distribution parameters. Otherwise, one can proceed to deriv-
ing the normed scores.

Step 6: Compute the Normed Scores for a Scale Based
on the Estimated GAMLSS Model

The transformation of the raw test scores into any type of
desired norm score is done based on the cumulative distribution
function (CDF). From an estimated GAMLSS model, one can
obtain a model-implied CDF for each value of the predictor (or, in
case of multiple predictors, any combination of predictor values).
The norms can thus be derived for any desired reference popula-
tion. Note that extrapolating beyond the boundaries of observed
data is discouraged.

One can distinguish three types of normed scores: percentile-
based, distribution preserving, and normalized normed scores
(Mellenbergh, 2011). Percentile-based normed scores include de-
ciles, percentiles, and stanines. Because these type of normed
scores directly relate to percentiles, they are readily derived from
the CDF.
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Figure 2. Worm plots for the normal model (panel A) and the default BCPE model with splines (panel B) for
the illustrative normative sample of Test 14, with the predictor (xvar) age. The blue bars above the worm plots
indicate the predictor range of age in each panel, which are ordered row-wise from the bottom left to the top right
panel. See the online article for the color version of this figure.
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Figure 3. Test scores as a function of age for the illustrative normative sample of Test 14, and the percentile
curves (.4, 2, 10, 25, 50, 75, 90, 98, 99.6 percentile) of the default BCPE model with splines (panel A) and the
default BCPE model with splines and for the skewness a separate intercept for age = 9 (panel B).

Distribution preserving normed scores are standardized to have
a specific mean and standard deviation. The most often used forms
are Z-scores (. = 0, ¢ = 1), Wechsler scaled scores (n = 10, 0 =
3), T scores (. = 50, ¢ = 10), and IQ-scores (i = 100, o = 15).
These can be computed by linearly transforming the raw scores,
using the CDF’s mean and standard deviation. Some GAMLSS
distributions have explicit expressions for their mean and standard

deviation (e.g., normal and BB-distributions), others require nu-
merical approximation (e.g., BCPE distribution, for which the
and o parameter express the median and scale, respectively).
Normalized normed scores have a normal distribution, with a
specific mean and standard deviation. The most often used forms
are the same as the ones mentioned under the distribution preserv-
ing normed scores, yielding, for example, normalized /Q-scores. In
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Figure 4. Percentile curves as a function of age for the default BCPE model with splines for the illustrative
normative sample of Test 14, and the observed scores indicated as dots. Each line in the plot is associated with
an observed score (ranging from 0 to 34), and in increasing order, with the lowest line pertaining to score 0, and
the highest to 34. See the online article for the color version of this figure.
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test manuals, one typically uses the term /Q-score (e.g., Wechsler,
2018), rendering it necessary to carefully check in test practice
whether the normed scores are normalized or follow the raw score
distribution. Normalized normed scores are obtained by applying
the appropriate linear transformation to the standard scores (i.e.,
Z-scores under the normal distribution), which are derived from
the model-implied CDF.

For both distribution preserving and normalized normed scores,
it is common practice to truncate the continuous distribution at 3
SDs around the mean (e.g., Tellegen & Laros, 2017). The idea
behind this is that observations in the tails are so scarce that the
tails cannot be estimated with sufficient reliability, and that dis-
tinguishing individuals within these tails is not of relevance.

The estimated CDF is based on sample data, rather than data of
the full population. Therefore, it is of use to express the uncertainty
in the normed score due to sampling variability. CIs for norms
based on a GAMLSS model with polynomials can be reliably
obtained using posterior simulation (Voncken et al., 2019b). We
recommend to be cautious in using this procedure for spline-based
models because it requires the parameter’s variance-covariance
matrix and it is not known to what extent this one can reliably be
estimated for splines. Note that these CIs only express the uncer-
tainty due to sampling variability, and not uncertainty due to the
unreliability of the test.

Step 6.1: Compute the Normed Scores for a
Composite Scale

A composite scale is based on a linear combination of tests. The
weights can be identified beforehand, typically using weights
equal to one (as, e.g., in the composite scale “verbal skills” of the
IDS-2; Grob & Hagmann-von Arx, 2018). Alternatively, the
weights can be based on factor analysis. Herewith, one expresses
differences in degree to which individual tests contribute to mea-
suring the construct associated with the composite scale (as, e.g.,
in the “response speed” scale of the COTAPP; Rommelse et al.,
2018). The linear combination is commonly based on Z-scores of
the individual tests, rather than the raw test scores, precluding that
arbitrary differences in mean and standard deviation between tests
play a role. If also distributional differences between the tests are
considered to be arbitrary, one needs to use the standard scores
(i.e., normalized Z-scores) of the individual tests.

The composite score of a test (Z,,,,) is thus a linear combina-
tion of (possibly normalized) Z-scores of tests. To achieve the
desired normed composite score (e.g., Z-score), the composite
score itself needs to be linearly transformed, where the transfor-
mation may depend on the predictors (i.e., Zm, = (Zeomp —
eomp)/ T comp> With Beomp and G oy the estimated population mean
and standard deviation of the composite score, conditional upon
the norm-predictor(s)). This linear transformation is needed be-
cause the variance of the composite scores is not known. That is,
the composite score variance conditional upon the norm-
predictor(s) depends on the variances of the Z-scores of the tests,
and the covariances between the Z-scores of the tests, both con-
ditional upon the norm-predictor(s). While the variances of the
Z-scores conditional upon the predictor(s) are known (i.e., one),
the covariances conditional upon the norm-predictor(s) are un-
known, and they may depend on the predictor values. Thus, one
needs the estimated CDF of the composite scores, taking into

account the predictors. The estimated CDF can be obtained by
fitting a GAMLSS model to the composite scores, including the
predictors. For composite scores based on normalized Z-scores,
one fits the normal distribution (as a linear combination of nor-
mally distributed variables is also normally distributed). For com-
posite scores based on Z-scores, one needs to select a potentially
suitable continuous distribution.

Thus, the transformation of the raw test scores into a norm score
on the composite scale essentially takes place in three steps: First,
compute the (normalized) Z-scores of tests involved. Second,
compute the composite score as the (possibly weighted) sum of the
(normalized) Z-scores. Third, compute the normed composite
score, via a suitable linear transformation.

For tests that make up a composite scale and that are not
perfectly correlated, one may note a peculiarity in comparing the
normed scores of the individual tests and of the composite. That is,
when a testee has normed scores on the individual tests that are
consistently higher (or lower) than the mean, then the normed
composite will be further away from the mean than the average
normed score across the individual tests. Further, this effect will be
larger for individuals scoring more extreme (either high or low).
This effect may be surprising for a test administrator. However, it
is just an expression of regression to the mean.

Ilustrative Example

In the illustrative example, we describe how to arrive at normed
scores for scales of the IDS-2 intelligence test applying GAMLSS.
The composition of the illustrative normative data (N = 1,660)
were described in the Traditional Versus Regression-Based Norm-
ing section. We will present the example along the six steps
outlined in Table 1.

Step 1 involves defining the various populations. The reference
populations for the Dutch IDS-2 are the general population in the
Netherlands of the same age as the testee involved, in the age range
5; 0-20; 11 years. For the German IDS-2, the reference popula-
tions are analogous, yet with Austria, Germany, and the German
speaking part of Switzerland as the target countries. The norm
population then is the general population in the respective target
country or countries in the age range 5; 0-20; 11. For the IDS-2,
the norm population equals the target population of the test.

Step 2 involves designing and carrying out the study to gather
the normative sample data. For both the German and Dutch IDS-2,
judgmental sampling was used to achieve a representative sample.
For example, the Dutch sample was stratified on sex, education
level of the mother, migration status, urbanization degree, country
region, education type (for those attending high school), and
clinical status. The target figures were obtained from the Dutch
central agency for statistics. Further, to achieve decent sample
sizes across the full range of the norm-predictor age, minimal
sample sizes per year of age were set (i.e., 100 for age 5; 0-12; 0,
and 50 for 12; 0-20; 11). The minimal numbers were exceeded
considerably, resulting in a total sample of N = 1,665. Given that
age is used as a norm-predictor, and that this sample is properly
stratified, exceeding the minimally set sample sizes only has a
positive effect, namely leading to more precise norm estimation.
For details on the sampling procedure, we refer to the Dutch 2
(Grob et al., 2018) and German manuals of the IDS-2 (Grob &
Hagmann-von Arx, 2018).
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In the next sections, we will illustrate Steps 3 to 6 to arrive at the
normed scores with GAMLSS, for a test and a composite scale that
are normed conditional upon age. We do so for Test 14 (“naming
antonyms”) and the composite scale “verbal skills,” which is
composed of Test 7 (“naming categories”) and Test 14. We further
illustrate how to compute CIs around the normed scores, which
express the uncertainty due to sampling variability (Voncken et al.,
2019a).

The illustrative data of Tests 7 and 14 and the R code to carry
out the complete norming as described here, can be found in the
online supplemental materials. The analyses were performed using
R Version 3.6.1 (R Core Team, 2019), gamlss Version 5.1-4
(Rigby & Stasinopoulos, 2005), and gamlss.tr Version 5.1-0 (Sta-
sinopoulos & Rigby, 2018).

For both Test 7 and Test 14, the raw test scores equal the
number of correct items; each with a theoretical score range from
0 to 34. Both tests are administered according to predefined
starting and stopping rules, to keep the administration time as short
as possible. The items are ordered in difficulty. The starting item
of a test is determined based on age, where 5- to 8-year-olds start
with Item 1 for all tests. For Test 7, 9- to 12-year-olds start with
Item 5, and 13- to 20-year-olds with Item 10. For Test 14, 9- to
20-year-olds start with Item 11. In case a testee gives an incorrect
answer to the starting item, the item set before the starting item is
administered; otherwise the items succeeding the starting item are
administered. The nonadministered items before the start item are
scored as being correct, thereby assuming that the noncompleted
previous items would be answered correctly.

Norming Test 14 With GAMLSS

Figure 1 depicts the raw test scores of Test 14 in the normative
sample as a function of age. The figure shows a clear positive
relationship between the raw test scores and age. A notable obser-
vation is the extremely small number of observed raw test scores
(i.e., dots) below 10, as of the age of 9. This is likely due to the
starting rule, which essentially implies that a testee of 9-years-old
receives a minimum score of 10, unless the testee answers Item 11
incorrectly.

Step 3 involves identifying one or a few candidate distribution
types for the raw test scores. The raw test scores have an ordered
categorical scale with a maximum theoretically possible score (i.e.,
34). The range in the observed raw test scores conditional upon
each age, within the age interval observed, is about 15. We
consider three candidate distribution types. First, the BB distribu-
tion, because the test scores are ordered categorical with a limited
range (i.e., lower than 25) and the BB distribution is the theoretical
distribution of the test score when the difficulties of items stem
from a beta distribution. Second, the BCPE distribution, because
the range of test scores might be large enough to approximate the
ordered categorical scale with a continuous distribution and the
four parameters of the BCPE offer flexibility in fitting the shape of
the distribution. Third, the right-truncated BCPE distribution, for
the same reasons as the continuous BCPE distribution, plus ac-
counting for the maximally theoretically possible score (at test
score 34). Note that a BCPE distribution is by definition left-
truncated at zero. To avoid test scores equal to zero, one must add
a very small constant (i.e., 0.0001) to the raw test scores in any
BCPE model estimation. The normed scores must be created for

these adjusted raw scores and then the test scores must be trans-
formed back to the original raw scores by subtracting the constant.

Step 4 is to select a candidate model to relate the norm-predictor
variable (i.e., age) to the parameters of each of the three candidate
distributions. For each distribution, we chose to select two types of
functions to relate the predictor age to the model parameters,
namely one using polynomials and one using P-splines. For both,
the BIC was used as the statistical criterion to select the optimal
model from a range of possible models. The AIC was considered
as well to assess consistency in model selection. For the polyno-
mials, we considered orthogonal polynomials of age, with poly-
nomial degrees from O up to 4, for all distributional parameters
(e.g., i, 0, v, T for the BCPE distributions). Thus, five potential
models were considered for each distributional parameter of the
distribution involved. Herewith, a polynomial with degree O is the
simplest model, involving an intercept only. A polynomial func-
tion up to degree 4 thus has five terms, typically offering sufficient
flexibility in modeling the relation between the predictor and
the distributional parameter involved. For the BB distribution, we
fitted all 25 combinations of models (i.e., 5%, for W, o). For the
BCPE distributions, we used the free order selection procedure
(Voncken et al., 2019b). For the P-spline models, we modeled with
splines the parameters that appeared to be nonlinear in the poly-
nomial model—we refrained from using splines for parameters
that appeared linearly related to, or independent of age because
splines for these kinds of effects may easily result in estimation
problem. We used monotonically increasing P-splines to model for
., thereby expressing that test scores generally increase with age,
and regular P-splines for the other distributional parameter(s).

Apart from these six (i.e., 3 [candidate distributions] X 2 [type
of function]) potentially well-fitting candidate models, we fitted a
standard linear regression model, using a normal distribution with
constant variance. This normal model can be expected to fit poorly
and is presented here for illustrational purposes.

Step 5 is to carry out the model selection to arrive at the
estimated GAMLSS model. The model fit, as expressed by the
BIC and AIC, and the degrees of the polynomials of the six
candidate models and the normal model is presented in Table 2.
Among the seven models considered, both the BIC and AIC favor

Table 2

BIC and AIC Values of the Selected Models of Test 14, as Fit
With the BCPE, Right-Truncated BCPE, BB Distributions Using
Polynomials and Splines, and With the Normal Distribution for
the Polynomial Models, the Degrees for the Parameters

Are Indicated

Polynomial P-splines

degrees for
(m, o) or

Model distribution (L, o, v, 7) BIC AIC BIC AIC

Default BCPE (2,1,0,0) 8404 8367 8403 8361
Right-truncated BCPE (2,1,0,0) 8456 8429 8456 8426
BB (2,2) 8463 8430 8529 8507
Normal (1,0) 8555 8538

Note. BCPE = Box-Cox power exponential; BIC = Bayesian informa-
tion criterion; AIC = Akaike information criterion; BB = beta binomial.
Lowest BIC and AIC values among the seven models presented here are
indicated in bold face.
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the default BCPE model with P-splines. Therefore, we selected
this model as the candidate model of which the model fit is to be
inspected visually. The normal model fits worst, as was expected.

In Figure 2, worm plots for the default BCPE model with
P-splines (panel B) and the normal model (panel A) are presented.
The worm plot is a series of detrended Q-Q plots, split by sub-
ranges if the norm-predictor values (here: age). The worm plot
visualizes how well the statistical model fits the data, for finding
locations at which the fit can be improved, and for comparing the
fit of different models. The blue bars above the worm plots
indicate the predictor range in each panel, which are ordered
row-wise from the bottom left to the top right panel. The worm
plots of the BCPE model (panel B) show that most observations
(i.e., dots) are within the 95% bands, suggesting a decent fit of the
model for all age ranges, except for the age range 8 to 12 (bottom
right plot). The local misfit might be due to the extremely small
number of observed raw test scores below 10, as of the age of 9,
which was already noted in Figure 1. The worm plots of the normal
model (panel A) suggest considerable misfit at all ages ranges, as
was expected.

Figure 3, panel A, depicts the observed scores as a function of
age and the estimated percentile curves of the default BCPE model
with P-splines. Figure 3 supports the interpretation of the worm
plots: The percentile curves seem to fit generally well, except for
the age 9-12. Indeed, the lack of observations below 10, as of the
age of 9 seems responsible for the misfit. As indicated, we deem
this likely due to the starting rule applied, yielding an overopti-
mistic view on the performance of some low-scoring children. If
such a situation is detected in practice, the test constructors might
consider to adapt the starting rule a bit, for example by adminis-
tering Items 1 to 10 also when Items 12 and/or 13 are answered
incorrectly. We expect that this would yield an increase in ob-
served raw scores in the range 5 to 10, for children just above the
age of 9. The current BCPE model seems to be in line with this
scenario.

Alternatively, we may try to capture the discontinuity in the
lowest part of the distribution at the age of 9. We did so by adding
piecewise functions to the selected default BCPE model with
P-splines, with the pieces pertaining to the age below and above 9.
That is, we fitted all combinations of models with piecewise linear
functions (i.e., intercept and/or slope may differ for age < 9 and
age = 9) for the scale, skewness and/or kurtosis (i.e., o, v, T); as
no discontinuities are to be expected for the median, we keep the
monotonically increasing P-splines. Of all these possible combi-
nations, the BIC appeared lowest for the default BCPE model with
P-splines extended with a separate intercept for age = 9 for
skewness. The estimated percentile curves are represented in Fig-
ure 3, panel B. This figure clearly illustrates the discontinuity in
the lowest part of the distribution, as captured by the model. Note
that actually no observations are available in the age 9 to 12 for the
estimated the .4 to second percentile—implying that this part of the
model is completely supported by the surrounding observations
and the models assumptions (i.e., related to the score distribution
and smoothness). The BIC of this model is 8405, which indicates
a slightly worse model fit than the default BCPE model with
P-splines (depicted in panel A), which is 8403. Therefore, we
proceeded with the default BCPE model with P-splines.

Figure 4 shows the percentile curves as a function of age
associated with each possible score (i.e., in the range 0 to 34) and

the observed scores. It can be seen that for each possible score, the
associated percentile curve is monotonically nonincreasing. This is
in line with what would be expected from a theoretical point of
view. Further, these estimated curves are decently supported with
observed scores throughout the complete estimated region, both in
age and scores. For some curves, support is offered outside the age
region, which will increase the precision of the estimates close to
the age boundaries of the test. Finally, the steps in percentile
curves between successive scores can be seen directly: Smaller
steps offer a more fine-grained distinction between testees.

Step 6 is to compute the normed scores based on the estimated
GAMLSS model. This selected normative model defines the CDF
for each age value. Using these CDFs, the percentiles can be
obtained for each possible raw test score conditional on each exact
age value in the age range. In the illustration, the percentiles were
calculated for each possible raw score conditional on 1,000 equally
spaced age values in the range of 5 to 21 years (i.e., about one age
value per week). These percentiles were transformed to normalized
Z-scores via the inverse CDF of the normal distribution and then
truncated to the range [—3; +3].

CIs around the normed scores that express sampling variability
can be computed using posterior simulation (Voncken et al.,
2019a). We illustrate the computation based on the polynomial
BCPE model, rather than its P-spline version, because the proce-
dure’s performance is only known to be proper for the polynomial
models. This can be done here, as both models showed about equal
fit. We simulated 5,000 sets of model parameters from a multi-
variate normal distribution defined by the point estimates of the
parameters and the corresponding variance-covariance matrix. For
all 5,000 simulated sets, we computed the normed scores for the
raw test scores conditional on the age values of interest. As an
example, we computed the normed scores for raw test scores 15
and 20, conditional on age 7 and 17, respectively. Then, using the
percentile CI method, the 2.5th to 97.5th percentiles of the result-
ing simulated normed score distribution defined the boundaries of
the 95% CI. The 95% CI expressing uncertainty due to sampling
variability in the percentiles of someone of age 7 with test score 15
was [82.98, 86.55] and for someone of age 17 with test score 20 it
was [12.55, 16.62].

Norming the Composite Test “Verbal Skills”

Step 6.1 deals with norming a composite scale. The composite
scale “verbal skills” is composed of Tests 7 and 14, with both tests
weighing equally. To norm a composite test, one needs the normed
scores of its parts. The norming of Test 14 is described in the
previous section. The norming of Test 7 was carried out analo-
gously and will not be described further. A scatterplot of the
normalized Z-scores of Tests 7 and 14 is provided in Figure 5,
panel B. It can be seen that there is a positive linear relationship
between the scores on both tests.

We computed the unweighted sum of the normalized Z-scores of
Tests 7 and 14 in the normative sample. Then, a normal model was
estimated, with possibly w and/or o depending on age. The rela-
tionship of age with each parameter (i.e., i, o) was modeled with
an intercept only and a linear effect, resulting in four estimated
models. Using the BIC as selection criterion, the model with age
independent w and o was favored. To illustrate this model, Figure
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Figure 5. Scatterplot of the Z scores of Subtest 7 and Subtest 14 (panel A); sum of Z scores of Subtests 7 and
14, as a function of age, and the percentile curves (.4, 2, 10, 25, 50, 75, 90, 98, 99.6 percentile) of the normal
distribution with constant mean and variance across age (panel B).

5, panel B, depicts the estimated percentile curves and the ob-
served sum of Z-scores as a function of age.

The estimated . and o were used to linearly transform the sum
of normalized Z-scores into the normed composite scores. An
additional check revealed that the resulting composite scores had
an estimated age independent mean << 0.001 and age independent
standard deviation of 0.998. We deem this sufficiently close to the
desired O and 1, respectively.

Reflection on Step 5: Sensitivity to Model Specification

The norms are determined completely on the basis of the esti-
mated GAMLSS model. This means that it is essential to have an
estimated GAMLSS model that properly fits the raw score popu-
lation distribution as a function of the norm-predictors. Because
the population model is unknown and the estimation takes place on
the basis of sample data, an important question is how sensitive the
estimates are to model misspecification. In the current context,
model misspecification may stem from two sources, namely from
the candidate GAMLSS distribution and the candidate model to
relate the norm-predictors to the GAMLSS distribution parame-
ters. Further, model misspecification can occur in two forms,
namely a too strict or a too flexible model, meaning that the model
either has too few parameters or more parameters than strictly
needed, respectively, to adequately capture the population charac-
teristics. Generally, a too flexible model can be expected to have
smaller bias than its too restricted nonfitting version, yet it has
larger sampling variability.

The sensitivity of certain GAMLSS norm models (i.e., involving
normal, skew Student 7, and BCPE distributions) to different forms
and sources of model misspecification has been examined in a
simulation study (Voncken et al., 2020). This study showed that
models with too strict distributional assumptions yield biased
estimates, whereas too flexible models yield increased variance.
Based on the findings, it is recommended to use the BCPE distri-

bution rather than the skew Student 7 distribution (to avoid esti-
mation problems for normally distributed data) and to select the
specific model parameters (e.g., degrees of the polynomials for the
GAMLSS model parameters) using a criterion that properly pe-
nalizes the model complexity (e.g., using the BIC).

For details on the simulation study and their interpretation, we
refer to Voncken, Albers, and Timmerman (2020). Here, we pro-
vide an illustration of the sensitivity of model estimation to model
specification. From the simulation study by Voncken et al. (2020),
we selected a specific condition to highlight effects of estimating
the model that fits at the population level, a too strict model, and
a too flexible model. Specifically, we drew a sample of N = 1,000
from a normal population model, with a linear relationship be-
tween the norm-predictor age and its expected value, and het-
eroscedasticity (denoted as the Li-HeNo condition in Voncken et
al., 2020). On this sample, we estimated five models: (a) true
model (i.e., linear normal model, with heteroscedasticity); (b) strict
model (i.e., linear normal model, yet imposing homoscedasticity);
(c) too flexible distribution, with a far too small penalty on model
complexity (i.e., BCPE model with P-splines, with GAIC(0.1)
criterion, denoted as BCPE(GAIC(0.1))); (d) same model as c., yet
penalizing model complexity based on the AIC (denoted as
BCPE(AIC)); (e) same model as ¢ and d, yet penalizing model
complexity based on the BIC (denoted as BCPE(BIC)).

In Figure 6, for each of the five estimated models, we present in
the left column nine estimated percentile curves (i.e., 1, 5, 10, 25,
50, 75, 90, 95, 99 percentiles; dashed lines), population percentile
curves (straight lines) and the sample scores (gray dots) as a
function of age; in the right column the associated worm plots of
the estimated models are depicted. The plots in the left column
indicate how close the model estimated percentile curves (dashed
lines) are to the population curves (straight lines). The plots in the
right column indicate to what extent the sample scores comply
with the estimated model. In practice, we only have the informa-
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Figure 6. The five rows pertain to five estimated model; from top to bottom these are true model, strict model,
BCPE(GAIC(0.1)), BCPE(AIC) and BCPE(BIC). Each plot in the left column: Nine percentile curves as based
on the estimated model (at 1, 5, 10, 25, 50, 75, 90, 95, 99 percentiles; dashed lines), population percentile curves
(straight lines) and sample scores (gray dots) as a function of age. Each plot in the right column: worm plots
associated with the estimated models. See the online article for the color version of this figure. (Figure continues

on next page.)

tion from the right column, while we aim at having close popula-
tion fit, as depicted in the left column.

In the left column plots in Figure 6, it can be seen that the
estimated and population percentile curves are rather close for
the true and BCPE(AIC) estimation models. The good model fit to
the population is also reflected in the worm plots, which show the
fit at the sample level. The estimated and population percentile
curves deviate considerably for the strict model (as the estimated
model is restricted to linear percentile curves), the BCPE
(GAIC(0.1)) model (the estimated percentile curves toward
the percentile boundaries are too wiggly) and somewhat for the
BCPE(BIC) model (the estimated percentiles toward the percentile
boundaries at the age boundaries are too straight). The bad model
fit to the population is also reflected in the worm plots for the strict
model and the BCPE(BIC) model. In contrast, the worm plot of the
BCPE(GAIC(.1)) model indicate very good model at the sample
level. This is not surprising as the model complexity is hardly
penalized, thereby overfitting the sample data. In practice, one
needs to safeguard oneself to overfitting, by using a model selec-
tion criterion that penalizes model complexity reasonably well, and
by examining the percentile curves in relation to what would be
expected on a theoretical basis.

The example illustrates four important findings, which are cor-
roborated by extensive simulation studies (Voncken et al., 2019b;
Voncken et al., 2020): (a) both a too strict and a too flexible model
yield misfit to the population model; (b) both a true model and a
properly penalized flexible model yield estimated models that are
well fitting to the population; (c) misfit with underfitting models
can be diagnosed with worm plots, which are sample-based only;
(d) misfit with overfitting models cannot be diagnosed with worm

plots, yet can be precluded by applying a model selection criterion
penalizing model complexity (as the AIC and BIC) and judging the
estimated percentile curves based on theoretical knowledge. These
findings provide important support for the use of GAMLSS mod-
eling, provided that proper model selection takes place, to compute
norms.

Discussion

This article serves as an introduction to regression-based norm-
ing with GAMLSS: a parametric modeling approach to estimate
norm-referenced scores that depend on one or more individual
characteristics. We have discussed the background of continuous
norming and presented the important issues for regression-based
norming with GAMLSS in six steps. Steps 1 and 2 pertain to issues
in designing and carrying out the norming study, to gather the
normative sample data. We further stressed the importance of
identifying the norm-predictors that comply with the reference
population, so as to ensure norms that express a comparison to the
intended population. These issues are important for norming, irre-
spective of the specific method to actually estimate the norms.
Steps 3 to 5 pertain to proper ways to arrive at a well-fitting
GAMLSS model for the normative data. We discussed the impor-
tance of a proper model selection, where a flexible distribution can
be used when combined with some penalty for model complexity
in the model selection. We illustrated that a proper model selection
appears possible based on sample data. Step 6 pertains to comput-
ing the normed scores based on the selected GAMLSS model for
the normative data; Step 6.1 deals with normed scores for com-
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Figure 6. (continued)

posite scales. The principles described apply generally to any
continuous norming method.

We illustrated the steps explained using an example norma-
tive data set, in computing the norms for a single scale and a
composite scale. Further, we showed a useful way to visualize
the norms of a test and their associated test scores related to
age. The percentile plot (as in Figure 4) reveals the nature of the
relationship between test scores and norms and shows whether
all parts are supported by empirical data. The annotated R code
and the example normative data set that we offer, allow readers
to gain “hands on” experience in regression-based norming with
GAMLSS and may serve as a basis for their own norming
endeavor.

We focused on regression-based norming, primarily because
of their statistically well-founded criteria for model selection
and model assessment. These criteria are lacking in the other
available continuous norming methods, inferential norming
and semiparametric norming. Regression-based norming with
GAMLSS offers large flexibility, implying that one likely finds
a proper fitting model for the normative data. Note that a proper
fitting model is essential to achieve high-quality norms, because
the norms completely depend on it. Therefore, one needs to
follow a good model selection procedure, fitting the sample
while guarding against overfitting, and carefully assessing the
estimated model quality via visual inspection. In case no fitting
GAMLSS model could be identified, an alternative continuous

norming method could be of use. In these conditions, we
consider semiparametric norming to be most promising, be-
cause inferential norming (Zhu & Chen, 2011) still relies on
distributional assumptions.

One might ask whether a semiparametric method would be
preferred in general, because of its loose assumptions. We conjec-
ture that generally regression-based norming is statistically more
efficient than semiparametric norming, implying that one reaches
a higher level of estimation precision using the same sample size.
We conjecture this because generally regression-based norming
requires a smaller number of parameters to estimate and there is no
need to discretize the norm-predictors (which possibly introduces
imprecision). As far as we know, there is only one study that
examined this issue (Lenhard, Lenhard, & Gary, 2019) in a norm-
ing context. Results of the simulation study partly support our
conjecture, with the exception in the extreme conditions (i.e., easy
and difficult test scales). We conjecture that the poor performance
of the regression-based norming could be attributable to poor
model fit. In their simulation study, only continuous GAMLSS
distributions (i.e., normal, Box-Cox, truncated Box-Cox and Box-
Cox Power Exponential distribution) were included, despite the
simulated data being ordered categorical, with a relatively small
range. This implies that it needs to be studied further how the
performance of both methods relate under various conditions. This
must offer insight which of the methods is preferable under which
conditions.
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Via this tutorial, we aim to stimulate the application and inves-
tigation of proper continuous norming methods. Despite the avail-
ability of publications and R code that is of use to carry out
continuous norming, more research is needed to serve empirical
practice. In our view, the main challenges involve guidance on the
use of parametric versus parametric methods, guidance on plan-
ning a sampling scheme and extending the method to multilevel
data (for cases in which hierarchical sampling is used).
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