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Abstract
CKD is a major public health problem. It is characterized by 
a multitude of risk factors that, when aggregated, can strong-
ly modify outcome. While major risk factors, namely, albu-
minuria and low estimated glomerular filtration rate (eGFR) 
have been well analyzed, a large variability in disease pro-
gression still remains. This happens because (1) the weight 
of each risk factor varies between populations (general pop-
ulation or CKD cohort), countries, and single individuals and 
(2) response to nephroprotective drugs is so heterogeneous 
that a non-negligible part of patients maintains a high car-
diorenal risk despite optimal treatment. Precision nephrol-
ogy aims at individualizing cardiorenal prognosis and thera-
py. The purpose of this review is to focus on the risk stratifi-
cation in different areas, such as clinical practice, population 

research, and interventional trials, and to describe the strat-
egies used in observational or experimental studies to afford 
individual-level evidence. The future of precision nephrolo-
gy is also addressed. Observational studies can in fact pro-
vide more adequate findings by collecting more information 
on risk factors and building risk prediction models that can 
be applied to each individual in a reliable fashion. Similarly, 
new clinical trial designs can reduce the individual variability 
in response to treatment and improve individual outcomes.

© 2020 S. Karger AG, Basel

The Complexity of CKD

CKD is defined as the presence of kidney damage, al-
buminuria in primis, with or without estimated glomeru-
lar filtration rate (eGFR) < 60 mL/min/1.73 m2 for at least 
3 months [1]. Incidence and prevalence of CKD have al-
most doubled in the last 3 decades, and the related CKD-
specific mortality has ranked in the top 15 of the causes 
of death worldwide [2]. Owing to the new perspective of 
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CKD as a global and public health problem, great effort 
has been made to identify patients at increased risk of de-
veloping unfavorable events over time. Indeed, predict-
ing outcomes in CKD is crucial for clinical, public health, 
and research perspectives. In clinical practice, a correct 
prediction could help establish screening and treatment 
based on the individual risk profile; at the population lev-
el, predicting outcomes may guide the appropriate alloca-
tion of resources [3–6]. From the research perspective, 
the knowledge of specific outcomes is extremely advanta-
geous for designing future clinical trials in terms of fea-
tures of patients to be included, sample size dimension, 
end points to be measured, and duration of follow-up [7, 
8].

Although a classification of CKD has already been es-
tablished and spread to the nephrology community, one 
of the major problems that limits confidence of the clini-
cians in using prediction tools is that CKD, as well as most 
chronic conditions, is characterized by a multitude of risk 
factors, which primarily influence the initiation and pro-
gression of the disease [9, 10]. The pathophysiological 

network is complex because (1) several pathways cause 
CKD in some patients and not in others and (2) not all 
pathways that drive a specific injury are active in all pa-
tients at all stages [7]. We can simplify the concept using 
the causal-pie model, an instrument widely used in epi-
demiology, in order to represent when and why risk fac-
tors can play a role in the disease [11]. In the causal-pie 
models, a sufficient cause is the minimum set of factors 
that, if present in a given individual, will produce the dis-
ease. In the context of CKD, for example, it has been dem-
onstrated that type 2-diabetes mellitus is the leading cause 
of ESKD [12]. However, although the presence of type 2 
diabetes can per se be a sufficient cause for CKD onset 
(Fig. 1a), in many cases, development of kidney disease 
occurs only if other risk factors coexist (Fig. 1b). This ep-
idemiologic concept is well supported by clinical studies. 
In the United Kingdom Prospective Diabetes Study, 
which enrolled about 5,100 patients with type 2 diabetes, 
only a fraction (25%) of the population developed an 
overt nephropathy over a long-term (10 years) follow-up 
[13].

Precision Nephrology
Over the past centuries, clinicians have mainly used 

their proper medical knowledge, personal experience, 
and “intuition” to make decisions about the individual 
patient. Laboratory and clinical measures have been con-
sidered to make decisions on individual treatments (for 
instance, levels of blood pressure guided the decision to 
increase or reduce antihypertensive medications and hy-
percholesterolemia to introduce a lipid-lowering agent) 
and to predict future clinical outcomes as accurately as 
possible. These tasks represented a challenge for nephrol-
ogists and also gave fascination to this specialty. Precision 
nephrology is a branch of medicine that came forward 
with the noble aim of providing information and meth-
odological tools that allow redefinition of CKD in terms 
of pathogenesis, prevention, prognosis, and treatment 
besides and beyond clinical intuition [14]. Precision ne-
phrology includes many areas, including better pheno-
typing, improved elucidation of disease mechanisms, 
customization of medical decisions, and better risk strat-
ification [15]. The major challenge for nephrologists and 
researchers, regarding precision nephrology, is amelio-
rating the knowledge of the mechanisms underlying the 
large variability of CKD. Variability can capture different 
meanings; with respect to prognosis, it can be translated 
into variability of patients’ characteristics, disease pro-
gression, and frequency of outcomes. For treatment, vari-
ability refers to individual differences in response to treat-

Type-II diabetes

a

Type-II diabetes Hypertension

Obesity

Dyslipidemia

Smoking habit

b

Fig. 1. Sufficient causes models in CKD: type II-diabetes alone as 
a cause of CKD (a), type-II diabetes may cause CKD only in the 
presence of other risk factors (b).
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ment. These concepts appear to be extremely intercon-
nected because reducing variability in drug response can 
reduce variability itself in disease progression, which in 
turn would allow a better prognosis to be obtained for 
each patient. Hence, precision nephrology encompasses 
both observational and experimental studies by focusing 
on individual estimates. Although the concept of “preci-
sion” is not new in medicine, the development of large 
databases, novel methods for characterizing patients 
(such as biomarker, proteomics, genomics, and metabo-
lomics assessments), and new computational techniques 
adopted to analyze these data have increased the overall 
interest toward this discipline [16].

Precision Nephrology in Observational Studies

Improving Patient Stratification: The Role of Risk 
Scores
A number of observational studies in nephrology have 

stratified patients into clinically relevant risk categories 
[17–19]. The purpose of all risk prediction models is, in 
fact, to allocate a larger number of patients in the true risk 
category, which corresponds to a low-risk category for 
patients who did not develop an event, or in a high-risk 
category for those who underwent the event itself [20]. 
The current classification of CKD considers 2 main pa-
rameters used to categorize CKD patients, namely, eGFR 
and albuminuria [21]. Even if the evidence available on 
the link between low eGFR or high albuminuria and 
worse outcomes are robust, such classification ignores the 
complexity of renal diseases and related risk factors as 
well. This was also defined as the “Reductionist approach” 
and a recent commentary showed as most nephrologists 
are steadfast with this approach [22]. In fact, both albu-
minuria and eGFR have been shown to have limitations 
in estimating individual prognosis in CKD patients. The 
presence of albuminuria, despite being strongly associ-
ated with the development of cardiovascular (CV) and 
renal events over time, fails to characterize CKD patients 
because it is a marker of all-cause kidney damage rather 
than being specific to 1 single primary renal disease [1, 
21]. Moreover, it has been widely demonstrated that in-
creased albuminuria is a hallmark of systemic endothelial 
dysfunction, and this explains why it predicts CV events 
also in the general population (GP) [14, 18, 23]. In con-
trast, eGFR is considered the best index to estimate the 
overall kidney function [21]. However, a reduction in 
eGFR may imply either progression of an underlying dis-
ease or the onset of a superimposed and often reversible 

problem (e.g., decreased renal perfusion caused by vol-
ume depletion), or being merely dependent on the bio-
logical and analytical variations in serum Cr levels. Simi-
larly, an increase in eGFR may also not herald a good 
prognosis if it is the sign of hemodynamic hyperfiltration 
as is often seen in the early stage of diabetic kidney dam-
age [24]. The use of eGFR and albuminuria, as criteria of 
CKD detection, leads to an overall late diagnosis of this 
condition, being rarely involved in the initiation of kid-
ney disease [14]. In addition, how often albuminuria and 
eGFR should be measured over time and what changes of 
these 2 kidney measures predict cardiorenal risk accu-
rately both remain to date clinically meaningful unan-
swered questions. Following the “reductionist” approach, 
for example, it is not clear how to incorporate the prima-
ry renal diagnosis of CKD into prognostic categories, de-
spite the important finding that renal diagnosis plays a 
significant role in predicting mortality and CKD progres-
sion regardless of albuminuria and eGFR with a weight 
that is almost equal to that of albuminuria [25, 26].

In the era of precision medicine, the aim has been 
changed by focusing more on individual risk. An initial 
effort has been undertaken to incorporate risk factors of 
CKD into multivariable scoring systems that provide risk 
estimates for small group of subjects, rather than calculat-
ing an average risk for each variable or disease category 
[27]. Such a method is similar to the Framingham Risk 
Score that is currently used to determine the individual 
risk for ischemic heart disease in GP [28]. It is important 
to emphasize that the risk value for a single subject, com-
puted through an individual prediction model, provides 
the risk of the group of subjects with the same predictors 
of the examined subject and not the probability of devel-
oping an event in a random patient. This permits to com-
pute, for example, a 10-year risk (%) of coronary heart 
disease in a 65-year-old man, current smoker, with 150 
mmHg of systolic blood pressure and 149 mg/dL of LDL 
cholesterol. In this way, the estimate obtained for an in-
dividual risk model could be applied to new patients to 
predict outcome. This attractive approach can be consid-
ered a first step toward precision nephrology by using ob-
servational data. The main advantage of the risk scores is 
that they combine the prognostic information derived 
from multiple parameters, thus improving the accuracy 
in predicting individual patient outcome. Physicians 
would be, therefore, facilitated in deciding whether and 
how to intensify or reduce monitoring and treatment. 
The investigators of reduction of end points in NIDDM 
with the angiotensin II receptor antagonist losartan study 
framed the first score for patients with type 2 diabetes and 
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nephropathy [29]. This score focused on the prediction of 
CKD progression, and ESKD onset and was, therefore, 
labeled as renal risk score. The authors demonstrated 
that, by combining the effects of urine albumin-to-Cr ra-
tio (ACR), serum albumin, hemoglobin, and serum Cr, 
prediction of ESKD improved by 30%, as compared with 
serum Cr alone. In subsequent years, Tangri et al. [27, 30] 
developed a risk prediction model, validated internation-
ally, the so-called Kidney Failure Risk Equation that ac-
curately predicts the progression to ESKD for the indi-
vidual patient with CKD stage III to V by input of age, 
gender, ACR, and eGFR. More recently, an additional 
score for estimating ESKD risk in CKD patients (stage 3 
or 4) has been published by the Kaiser Permanente North-
west, a health maintenance organization that serves sev-
eral areas of the US [31]. The CKD-Prognosis Consor-
tium also developed and validated risk scores for the pre-
diction of ESKD, nonfatal CV events and death in 
advanced CKD (eGFR < 30 mL/min/1.73 m2) [32, 33]. 
These prediction models may significantly improve both 
the understanding of prognosis of patients with CKD and 
change the perspective of the decision-making process in 
nephrology from the eGFR-based to the multimarker-
based approach [34].

However, the risk scores do not fully reach approval 
and diffusion within the nephrology community [35, 36]. 
Nephrologists are in fact well aware that the CKD popula-
tion has a complex nature, due to the large heterogeneity 
of patients and outcomes. Three strategies have been, 
therefore, proposed to improve the implementation of 
risk prediction models [36]. The first one is to consider 
the sources of variability of CKD in building the model as 
accurately as possible. The second one consists of im-
proving the methodological development and validation 
of a prediction model. Indeed, although it may seem 
counterintuitive, an individual risk prediction model 
must satisfy many methodological steps before being 
transferred into clinical practice [37]. Intriguingly, a re-
cent systematic review has shown that only a few studies, 
aimed at predicting the risk of CKD progression, did ac-
tually meet the criteria for clinical decision-making [38]. 
The third strategy, which is similarly critical, is to favor 
dissemination among nephrologists of risk prediction 
models.

Sources of Variability in CKD
Variability of CKD can be depicted over different 

scales. From a general view, CKD patients referred to out-
patient nephrology care constitute a peculiar, high-risk, 
setting. Referred patients profoundly differ from the un-

selected CKD GP in terms of basal characteristics and 
prognosis. Prevalence of type 2 diabetes reached 34–46% 
in the referred CKD patients of Chronic Renal Insuffi-
ciency Cohort and Italian multicohort, respectively, 
whereas prevalence of established CV disease (CVD) was 
about 25–30% [39, 40]. CKD patients selected from the 
GP are characterized by a lower intrinsic risk profile com-
pared with those who are referred with the prevalence of 
diabetes and CVD being often below 10–15% [41]. As ex-
pected, these features have a major impact on prognosis. 
Indeed, absolute risks of ESKD, CV fatal and nonfatal 
events, and mortality are significantly higher in referred 
CKD patients compared with the GP. In the Italian mul-
ticohort, 21.4% of patients reached ESKD after an average 
of 4.1 years, whereas a much smaller proportion of sub-
jects (0.3%) developed the same end point over the same 
time frame in the Alberta Kidney Disease Network that 
was built with the aim of identifying patients at high risk 
for CKD in the Canadian province of Alberta [42, 43].

Variability is also present with respect to CKD prog-
nosis. Many longitudinal studies, which measured the 
eGFR decline over time, reported different values in terms 
of punctual estimates and measures of variability. In a 
joint analysis of CKD cohorts from Europe, eGFR decline 
ranged from 0.77 mL/min/year in the Belgium cohort to 
2.43 mL/min per year in the Spanish cohort [44]. More-
over, in a cohort of referred CKD patients, the median 
change of eGFR over 2 years was −1.7 mL/min/1.73 m2/
year with an interquartile range of −4.6 to +0.8 mL/
min/1.73 m2/year [45], thus indicating substantial het-
erogeneity. Overall, the nonlinear eGFR trajectories, de-
fined by the presence of periods of rapid declines alternat-
ing with periods of stability, may occur in up to 42% of 
CKD patients [46, 47]. Noteworthy, this large variability 
of disease progression has also emerged in randomized 
clinical trials despite the strict selection of high risk pa-
tients (presence of high albuminuria and/or low eGFR 
levels). An example is the placebo group of the Irbesartan 
Diabetic Nephropathy Trial, where eGFR decreased by 
6.5 mL/min/1.73 m2 per year with a coefficient of varia-
tion (standard deviation/mean) of 135% [48].

Variability can also emerge between geographic areas. 
The association between CV risk factors and mortality is 
different between the US and Europe, the age-adjusted 
mortality for coronary heart disease being 3-fold higher 
in men from the US and Northern Europe than Mediter-
ranean Europe, even when similar values of blood pres-
sure and cholesterol are presented [49]. This is in accor-
dance with the different degree of inflammatory status in 
CKD patients of the US and Europe [50].
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In the past years, numerous prognostic models have 
shown that besides eGFR and albuminuria, numerous 
covariates, such as age, gender, presence of diabetes or 
metabolic syndrome, primary renal disease, blood pres-
sure, hemoglobin, previous CVD, and serum phosphate, 
are strong predictors of eGFR decline, ESKD, CV events, 
and mortality [10, 17, 18, 25, 27]. Nevertheless, the role 
and the weight of each risk factor for disease progression 
are still unknown. For example, even if albuminuria acts 
a toxic effect on the glomerulus and the renal tubule, 
many patients progress without or with a low degree of 
albuminuria [6]. Similarly, a consistent number of dia-
betic patients remain at increased risk of CKD progres-
sion and mortality despite a non-albuminuric phenotype 
[51].

Among demographic and clinical variables that are 
sources of individual variability, it is interesting to men-
tion the variability related to sex. It has been shown that 
men seem to have a faster eGFR decline than women [52]. 
More recently, Minutolo and colleagues have reported 
how this excess of renal risk in men is partially associated 
with a dissimilar burden of proteinuria between men and 
women (Fig. 2) [53]. This impressive finding can be trans-
lated into the practical concept that nephrologists should 
differentiate monitoring also by the sex of patients.

All these sources of variation are potentially sources of 
bias in building a prediction model. This concept has 
probably contributed to the limited dissemination of pre-
diction models in nephrology practice.

Framework for Developing Individual Risk Prediction 
Models for Use in Precision Nephrology
To implement risk scores into clinical practice, it is rec-

ommended, according to previously published literature, 
to tackle several methodological steps. The first step con-
sists of clarifying the purpose, or the “intended use” of the 
model. Patients want to know their specific risk and if the 
prediction is reliable. On the other hand, the aim of clini-
cians is to predict an outcome in a way that outperforms 
their clinical intuition or ability. Hence, the intended use 
should include the population evaluated, the predicted 
outcomes, and the variables used to compute prediction. 
The second step is selecting population from which the risk 
prediction model will be derived. It is highly plausible that 
a risk score built in CKD patients provides different re-
sults from another similar score derived from the GP or 
from a high-risk population other than CKD. Hence, a 
sufficient number of patients with different degrees of kid-
ney impairment as well as different primary renal diagno-
ses should be included and several basal characteristics 
need to be considered. In the case of too many variables 
included, stratified models and interaction analyses are 
available to better assess risk stratification and reach a 
proper “phenotyping” of CKD [54]. The third step is the 
outcome selection. It is noteworthy that all available risk 
scores have focused on renal end points, such as ESKD 
and CKD progression. Recently, a validation of the Kid-
ney Failure Risk Equation has been extended to elderly 
CKD patients for the prediction of mortality end point 
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[55]. However, a CV risk score, predicting fatal and non-
fatal CV events in CKD population, is still highly awaited, 
particularly after the description of the lack of accuracy of 
Framingham risk score when applied to CKD patients 
[56]. The perspective of CKD as CV risk equivalent has, 
indeed, raised concerns in the scientific community be-
cause, following this statement, all patients with CKD are 
now considered at high risk for CV events, regardless of 
the exact value of eGFR, albuminuria, smoking habit, cho-
lesterol levels, blood pressure, and several other parame-
ters, whose weight needs to be assessed [57]. Potential oth-
er outcomes of interest are acute kidney injury, stability of 
eGFR over time, and hospitalizations [31, 58].

The next step to be included in the model is selecting 
variables. Individual risk prediction models are generally 
represented by multivariable models. Unlike the associa-
tive models, for which the aim is to evaluate the relation-
ship between exposure and the clinical outcome, the goal 
of individual risk prediction models is to generate the best 
possible estimate of the value of the outcome variable for 
each subject. The focus of these models is, therefore, the 
outcome rather than the predictors. Variables selection 
could be done with data-driven automated methods or 
based on the plausible (already known) biological link be-
tween exposure and outcome (knowledge-driven or “a 
priori” selection). Either method is acceptable and widely 
used in the literature, while the decision of what is more 
appropriate depends on the research question [59].

Use of a rigorous methodology is essential. In order to 
provide appropriately individual risk estimates, it is not 
sufficient to build and present a multivariable model. Ir-
respective of the aim, the first question to be answered is 
whether the model is “reliable” and can be used in clinical 
practice. The statistical tool that provides this measure is 
calibration. Calibration is the degree of agreement be-
tween observed and predicted outcomes. It is usually 
shown graphically by plotting the mean predicted prob-
ability versus the mean observed outcome for intervals of 
risk (deciles) in a predictiveness curve or by plotting ob-
served event rates versus average modeled risk, thus pro-
ducing points that should lie along a 45° line if the model 
is well calibrated. This is called the calibration plot [37]. 
Figure 3 represents an example of a calibration plot com-
puted on a cohort of 4,000 CKD patients referred to ne-
phrology clinics in Italy [40]. In support of graphical as-
sessment, the Hosmer-Lemeshow test is often presented 
as test of calibration, based on the comparison between 
observed and predicted risks. Even if calibration is as-
sessed on the dataset for which the model was developed, 
it may not be valid in all study populations. Beyond cali-
bration, it is central, from a statistical perspective, to 
quantify overall model performance, the so called “good-
ness of fit” (GOF), describing how well the model fits a 
set of observations. In order to compute GOF, the most 
frequently used measures are the explained variation of 
the model (R2) and the Brier score. R2 expresses the per-
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centage (%) of contribution of a covariate of interest to 
the overall model-explained variation, thus allowing the 
estimation of the weight of each risk factor [60]. The Bri-
er score computes the squared difference between ob-
served outcomes and predictions [61]. A further step, dis-
crimination, is required. Discrimination evaluates the 

separation between distribution of the risk predictor in 
events and in nonevents. A prediction model for a binary 
end point produces a risk score depicting the predicted 
probability of experiencing an outcome given the ob-
served values of a set of covariates. Therefore, discrimina-
tion will show whether patients, who develop the event, 
have higher risk predictions than those who do not. Dis-
crimination is tested by computing receiver operating 
characteristic (ROC) curve that plots sensitivity and spec-
ificity for the entire range of possible classification thresh-
olds. A common way to summarize the ROC curve is the 
area under the curve, also known as c statistic. That pa-
rameter measures the probability that the individual risk 
is higher for the end point-positive than the end point-
negative patients. Both ROC curve and c statistic can be 
calculated from survival models. Figure 4 shows the ROC 
curve evaluating the discrimination ability of 2 prediction 
models, with and without eGFR, for ESKD risk within 
3-years of follow-up. More complex reclassification met-
rics, such as net reclassification improvement (NRI) and 
integrate discrimination index (IDI), are available when 
the research question is to assess the incremental value of 
a biomarker on top of traditional, already well-accepted 
risk factors (Table 1). NRI can be calculated by comput-
ing the difference between the proportions of individuals 
moving up and the proportion of individuals moving 
down for those who develop end points and the corre-
sponding difference in proportions for those who not de-
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Fig. 4. ROC curves for the prediction of ESKD event within 3 years 
of follow-up. CVD, previous cardiovascular disease; eGFR, esti-
mated glomerular filtration rate; ROC, receiver operating charac-
teristic; AUC, area under the curve.

Table 1. Principal measures for assessing performance of risk prediction models

Statistical metrics Description Measures

Calibration [36, 37, 57] Measure of the degree of correspondence between 
observed and predicted risk. Miscalibrated model 
produces invalid risk estimates and can introduce 
errors in decision-making.

Graphical plots 
– predictiveness curve
– calibration plot
Tests
– Hosmer-Lemeshow

Discrimination [36, 57] Ability of a model to correctly distinguish between 
2 events (i.e. ESKD yes vs. ESKD no)

ROC curve
AUC 
concordance statistic (c-index)

Goodness-of-fit [36, 57, 59] Measure that quantifies the overall model fit Brier Score;
Nagelkerke’s R2

Reclassification [36] Measure of the movement of patients from one class  
to another based on changes to assignment to risk 
categories.

Continuous NRI (Net Reclassification 
Improvement)
Categorical NRI
Integrated discrimination improvement (IDI)

Validation [31, 57] Measure of the reproducibility and transportability  
of the prediction model to other populations

Internal validation
External validation
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velop end points. The IDI measures the differences in av-
erage risk probabilities between events and nonevents. 
This parameter is considered more accurate than NRI be-
cause, unlike the NRI, IDI is independent from risk cat-
egories and estimates the magnitude of reclassification.

The final step of each prediction model is to guarantee 
its transportability, the ability of the model to provide ac-
curate predictions in a different sample of patients. The 
best way to assess transportability is the validation in a 
fully independent, external data, the so-called external 
validation. When an external cohort is not directly avail-
able, it is possible to test the internal validation. However, 
internal validation is useful to assess the reproducibility 
(in a different cohort with similar characteristics) and can 
be computed using bootstrapping or cross-validation 
methods [61].

Improving Development and Diffusion of Risk 
Prediction Models to the Nephrology Community
The risk prediction tools have been widely implement-

ed in CV medicine [62]. The European guidelines on 
CVD prevention supported the use of the individual risk 
scores for predicting CV outcomes and for individualiz-
ing preventive and therapeutic strategies [63]. Several ini-
tiatives have also been started to stimulate the dissemina-
tion of these tools. The Joint British Societies and the 
Framingham Investigators created an online tool through 
which individuals can identify and select the risk factors 
that need to be changed. Such self-assessed scores helped 
individuals to gain awareness about the underlying dis-
ease and the benefits of behavioral or prevention changes. 
Moreover, support to clinicians or patients for selecting 
the best prediction tools for each individual based on 
medical history, outcome measured, and methodological 
validation has also been provided [64]. Conversely, in the 
context of nephrology, the routine application of risk 
scores is still lacking, and this is determined by several 
cultural or practical obstacles [36]. Clinicians are usually 
uncertain about the discrepancy between the simplicity of 
risk prediction scores and the clinical complexity. In 
CKD patients, this is complicated by the fact that progno-
sis is multifactorial and heterogeneous and clinical out-
comes need several years, even decades, to manifest. An-
other nontrivial limitation is that in the nephrology field, 
marketing and branding of new concepts and tools are 
not as easy as in other fields of medicine. The mentioned 
technological steps, already taken in the CV field, have 
been invoked also for the nephrology community. In 
2016, the International Society of Nephrology (ISN) 
planned a set of activities, called “closing the gaps,” aimed 

at improving the global outcome of CKD patients [65]. 
ISN enhanced, with this long-time project, the need to 
cooperate with other professional organizations and reg-
ulatory agencies, such as the National Kidney Foundation 
and the Food and Drug Administration (FDA) to realize 
large-scale prediction models, which include kidney mea-
sures, and to incorporate the final results in the interna-
tional guidelines. Moreover, other objectives of the ISN 
initiative are (1) to involve patients actively in the clinical 
decision-making, as this patient-centered approach could 
be useful for achieving better health outcomes and patient 
satisfaction; (2) to build up training for young researchers 
focused on the development, validation, and clinical ap-
plication of risk prediction models [66]. What is certain-
ly needed in nephrology is the development and valida-
tion of risk models that could demonstrate an improve-
ment in the management of CKD when compared with 
the standard clinical care. This step goes along with the 
assessment of the role of new biomarkers in CKD. A great 
effort has been made in the past decades to find novel bio-
markers which may improve “accuracy” of already exis-
tent risk prediction models. The use of cystatin C for es-
timating eGFR has shown to improve the discrimination 
of patients with and without CKD and also to refine CV 
and renal risk prediction [67, 68]. Blood levels of cardiac 
troponins (high sensitivity cardiac troponin [hs-cTnT]) 
and natriuretic peptides (N-terminal pro-B-type natri-
uretic peptide [NT-proBNP]) have both been associated 
with the development of heart failure and ESKD in pa-
tients with CKD, regardless of traditional risk factors and 
kidney measures (eGFR and proteinuria) [67]. Increased 
levels of fibroblast growth factor 23 appeared to predict 
worse end points in CKD patients as well [69]. To account 
for the large heterogeneity of CKD, more sophisticated 
approaches for biomarker detection have also been used 
[70]. Proteomics provided an important contribution in 
finding biomarkers from blood, urine, and kidney biop-
sies [71]. Furthermore, proteomics allowed combining 
the information obtained from panels of peptides to de-
rive a combination of these peptides that classifies pa-
tients – hence the name of classifier – into relevant clini-
cal or risk categories. A promising classifier is CKD273, a 
panel of 273 urine peptides that was primarily found to 
detect CKD risk regardless of the underlying etiology 
[72]. Intriguingly, in following cohort studies with up to 
7 years of follow-up, CKD273 was able to predict eGFR 
decline in CKD patients (with multiple etiologies) be-
yond eGFR and proteinuria, even at early stages of kidney 
disease [70, 73, 74]. More specifically in diabetic patients, 
CKD273 has been shown to predict the onset of albumin-
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uria and the progression to diabetic nephropathy with a 
higher accuracy when compared with the 2 kidney mea-
sures (eGFR and albuminuria) alone [75]. However, the 
additional value of measuring a biomarker/classifier in-
cludes the fact that it refines risk stratification, but also 
that is able to identify therapeutic targets for intervention 
(biomarker guided treatment). This means that each sig-
nificant change of the biomarker level in response to a 
treatment must be associated with a change in the risk of 
developing an unfavorable outcome. Such implementa-
tions overall need reliable threshold tests to be performed 
and that studies comparing biomarker guided treatment 
versus standard of care should be kicked-off. All these 
strategies could also represent a positive way to close the 
gap also with respect to other fields of medicine and to 
increase the social awareness of CKD, which is still low; 
indeed, only 10% of patients are aware of their future risks 
[41].

Precision Nephrology in Intervention Studies: 
Reducing Variability in Drug Response to Improve 
Patients’ Prognosis

Variability in Drug Response
Along with the increase in observational cohort stud-

ies, many intervention studies have been carried out in 
the past 2 decades with the final goal of achieving a better 
control of CV and renal risk in CKD patients [76–78]. 
Drugs that inhibit the renin-angiotensin-aldosterone sys-
tem (RAAS-I) reduce CV and renal risk [79, 80]. Other 
studies have assessed the effect of other agents like eryth-
ropoiesis-stimulating agent in the TREAT trial, endothe-
lin receptor antagonist in the SONAR trial, and inhibitor 
of sodium-glucose cotransporter 2 in the CREDENCE 
trial [81–83]. Although all these trials have revealed the 
possibility to reduce the ESKD and CV risk, a large por-
tion of the trial population was left at high residual risk 
despite optimal treatment. Moreover, the presence of 
CKD is per se an additional risk factor that contributes to 
the residual risk of CV events [84]. A major reason why 
these multiple interventions do not confer a full risk re-
duction is the individual variability in drug response. Sev-
eral analyses of past clinical trials have examined the fre-
quency and the determinants of individual response to 
treatments. In some albuminuria end point studies, pa-
tients who respond in the first months, in comparison 
with those who do not respond at all or who respond lat-
er, show the greatest risk reduction of developing hard 
end points in the long term [85, 86]. Moreover, the vari-

ability in albuminuria response is reproducible upon re-
exposure to a drug, when an anti-albuminuric drug is up-
titrated or when another drug of the same class is admin-
istered [87, 88].

The second reason, which further complicates all these 
mechanisms, is that nephroprotective drugs act by chang-
ing several biomarkers other than those usually measured 
to assess their own efficacy, which is the “primary” target. 
Several drugs determine “secondary” effects; typical ex-
amples are the effects of RAAS-I on hemoglobin, serum 
potassium, blood pressure, and uric acid levels or the ef-
fect of endothelin receptor antagonist on body weight. 
The sum of all these effects, rather than the single prima-
ry response, determines the final patients’ outcome. In-
triguingly, it has also been demonstrated that a certain 
degree of variability is present also for the “secondary” 
effects of each drug [89]. The importance of such findings 
has further raised the interest in evaluating how to over-
come individual therapy resistance and reduce this wide 
variability in disease progression as much as possible. A 
lower variability in response to treatment may lead to a 
lower variability in CKD progression, better characteriza-
tion of existing drugs, and disease pathways, which in 
turn should allow better prognosis. This point represents 
a major objective of precision nephrology. In fact, the 
variability in response to treatment affects not only the 
drug development but also the individual patient care. It 
has been shown that in patients with diabetic kidney dis-
ease, the residual risk is extremely high, being similar to 
the mortality in treated cancers [90]. In CKD patients 
from all etiologies, the residual risk for both CV fatal and 
nonfatal events and renal events was 2- to 3-fold higher 
in patients with a residual proteinuria of 0.5 g/day or 
higher, albeit under maximum RAAS inhibition [42]. To 
provide more insights into individual variability in drug 
response, the “ideal” path to follow is to find out the 
mechanism of damage in each individual and to find the 
drug that can significantly influence that mechanism, 
thus pursuing a targeted treatment approach. The prog-
ress obtained by “omics,” namely, novel techniques used 
to analyze molecular processes associated with the disease 
(genomics, proteomics, metabolomics, and transcrip-
tomics) will likely allow the discovery of novel pathways 
of damage and consequently potential targets for thera-
peutic interventions [71, 91]. Genome-wide association 
studies identified the variants of the UMOD gene that 
cause overexpression of uromodulin and upregulation of 
the tubular transporter NKCC2. The effects of the phar-
macological inhibition of NKCC2 in lowering blood pres-
sure strictly depend on expression of uromodulin, the lat-
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ter, therefore, being a possible therapeutic target for pre-
serving renal function by reducing blood pressure [92]. 
Similarly, the discovery that DNA hypermethylation was 
associated with the downregulation of the KLOTHO gene 
and with a worse prognosis of CKD identified KLOTHO 
as another potential target with the aim of slowing CKD 
progression [93]. Proteomics detected, other than the 
classifier CKD273, several other interesting biomarkers, 
such as the transforming growth factor beta 1 (TGF-β1). 
TGF-β1 plays an important role in the pathogenesis of 
glomerular and tubular fibrosis [94]. It has raised great 
interest, so that the development of drugs can directly 
neutralize that polypeptide [95].

However, the application of all these findings in the 
context of precision nephrology is not straightforward. 
What complicates this step is that CKD is multifactorial, 
with the pathways involved in initiation, progression, 
and comorbidities being complex and often different. 
One necessary way is to predict the individual response 
to a specific treatment by using biomarker panels (bio-
marker guided treatment). Such a strategy has been test-
ed in diabetic kidney disease with the response panel pa-

rameter response efficacy score, a combination of both 
clinical and laboratory parameters that have been used to 
predict the CV and renal outcomes, based on the change 
of the parameters included in the score (urinary ACR, 
systolic blood pressure, hemoglobin, uric acid, potassi-
um, and cholesterol levels) in response to a treatment 
[96]. These panels, however, should be implemented by 
including all the other CKD etiologies and treatment ef-
fects [70]. Another promising method, already devel-
oped by Mayer et al. [97], is the use of molecular path-
ways or network models to obtain, for each patient, a 
specific molecular process associated with a specific phe-
notype of CKD and also biomarkers associated with 
these processes. By matching the mechanism of a drug’s 
action with these molecular models, we could also be able 
to select a correct treatment as accurately as possible and 
to better depict the individual variability to drug re-
sponse in the future.

New Designs of Clinical Trials
A great effort in designing new clinical trials (RCT) for 

reducing the variability in response to treatment and 

Table 2. Principal types of new clinical trials designs assessing the individual response to treatment

Trial design Description

Biomarker-based enrichment [7, 90] Patients are selected on the basis of the presence of absence of a marker of disease. This 
approach may also include patients at increased risk of developing a disease, thus allowing to 
anticipate treatment. 

Adaptive enrichment [81] All patients who meet inclusion criteria start a run-in phase in which they receive the study 
drug. Only patients who respond to the experimental treatment are then randomized to 
placebo or control group. 

Multimarker-based enrichment [81] Patients are selected based on the individual response to many, primary and secondary, risk 
markers.

Cross-over design [105, 106] Patients are randomly assigned to receive a sequence of different treatments. These studies 
uncover the information about which drug each patient shows the best response.

n-of-1 design [105, 106] Also called single subject clinical trials, consider an individual patient as the sole unit of 
observation in a study investigating the efficacy or side-effect profiles of different drugs.  
The ultimate goal of these studies is to determine the optimal or best intervention for an 
individual patient.

Umbrella design [105] Testing multiple targeted therapies in a single disease where various biomarker-based 
subgroups are identified and different drugs are tested in these subgroups of patients.

Basket design [105] Testing a single targeted therapy in multiple diseases that could benefit from the same drug, 
given the etiology and pathophysiological mechanisms.

Platform design [105] Patients are constantly followed over time with laboratory and clinical exam (that are 
recorded in a platform) and intervention drugs allowed to enter or leave on the basis of 
precision schemes. This strategy allows to conduct clinical trials for personalized medicine 
quickly and at lower costs. 
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prognosis of CKD is ongoing. One key example is the 
novel approach to RCT design in diabetic kidney disease 
(Table 2) [7]. Three different strategies that use biomark-
ers have been recently proposed: biomarker-based en-
richment approaches, individual response-enrichment 
designs, and multiple biomarkers-based enrichment.

The first approach, also called target RCT design, con-
sists of enriching the population with patients at increased 
risk of disease progression. The PRIORITY trial (pro-
teomic prediction and renin angiotensin aldosterone sys-
tem inhibition prevention of early diabetic nephropathy 
in type 2 diabetic patients with normoalbuminuria) en-
rolled normoalbuminuric patients at higher risk of devel-
oping microalbuminuria [98]. This risk estimate has been 
derived from the urine proteomic classifier (CKD273) 
that was used to discriminate high- and low-risk patients. 
Only high-risk patients (n = 209 out of 1,775 total par-
ticipants) were randomized to receive spironolactone or 
placebo and the development of confirmed microalbu-
minuria was assessed as primary end point. High-risk pa-
tients, identified with the urinary CKD273, were at sig-
nificantly higher risk of progression to microalbumin-
uria, compared with low-risk patients (p < 0.001), thus 
confirming the validity of the classifier as an early marker 
of risk of kidney disease progression in diabetic patients. 
However, spironolactone did not prevent the develop-
ment of microalbuminuria in patients at high-risk of re-
nal progression selected on the basis of CKD273 urinary 
levels (p = 0.41). Reasons to explain the lack of effect of 
spironolactone on the primary outcome have been prin-
cipally related to the study power [99]. In fact, the number 
of patients allocated in the high-risk group was lower 
than the 1 planned in the sample size calculation (12 vs. 
20%) [98]. This finding, together with the low rate of 
event in the placebo group, reduced the study power. 
However, it could not be excluded that an absence of spi-
ronolactone effect in this population gambled a decisive 
role [98]. By contrast, it is important to emphasize that, 
in this study, originally, an anti-albuminuric drug is pri-
marily started in patients without albuminuria, but at in-
creased risk to develop it. This is an example of RCT de-
sign guided by a prognostic classifier that could be, in this 
case, informative for planning early intervention. Alter-
native albuminuria-lowering drugs, such as SGLT-2 in-
hibitors, should be tested in the future in patients at in-
creased-risk of albuminuria detected by urinary pro-
teomics [98].

An alternative approach is to enroll patients who are 
likely to respond to a new intervention (individual re-
sponse-enrichment designs or, also called, adaptive en-

richment design). This type of enrichment approach 
was used in the study of diabetic nephropathy with the 
endothelin receptor antagonist atrasentan (SONAR). 
An enrichment period was performed to separate 
atrasentan responders from nonresponders based on 
the level of reduction in urinary ACR. All patients who 
qualified for the trial at screening were exposed to 6 
weeks of atrasentan therapy. Then, only patients who 
responded to atrasentan, defined by a 30% reduction in 
UACR, were randomized into placebo or active arms. 
Importantly, the SONAR trial can also be considered a 
multiple biomarkers-based enrichment RCT. Indeed, it 
also considers the individual’s response in “secondary” 
risk markers (that we previously mentioned): patients 
with increasing body weight or B-type natriuretic pep-
tide levels (proxies of sodium retention) at the end of the 
enrichment period were excluded to ensure the safety of 
the intervention [81]. The main methodological differ-
ence between the biomarker-based enrichment and 
adaptive designs is that the previous one ignores wheth-
er patients do respond or do not respond to the new ex-
perimental treatment. Conversely, in the adaptive en-
richment design, a main step is represented by monitor-
ing the treatment effect for a specific biomarker, before 
randomization. However, a clinical benefit has also been 
observed in the nonresponder patients enrolled in the 
SONAR trial [81]. Incidence of primary outcome was 
slightly lower, even if not significantly, in nonresponder 
patients assigned to atrasentan compared with placebo. 
Moreover, nonresponder patients showed a reduction 
in albuminuria during follow-up. These findings were 
truly unexpected, since only a small portion of nonre-
sponders showed an albuminuria reduction during the 
enrichment phase. The phenomenon of regression to 
the mean played a role in this case, so that nonresponder 
patients were instead responders during the enrich-
ment. It seems also possible that responders have been 
insufficiently separated from nonresponders, due to the 
random variation of proteinuria that could have masked 
the true response to atrasentan [81, 100]. Not unlikely is 
the possibility that a legacy effect may have played a role 
in the placebo arm; indeed, all patients had been active-
ly treated with atrasentan for 6 weeks before being ran-
domized in placebo and (again) atrasentan. Finally, it 
has been hypothesized that atrasentan could slow renal 
disease progression through mechanisms other than 
change in albuminuria [101].

These issues have raised concerns around the assess-
ment of the individual response to a treatment through 
the change of biomarker levels (i.e., albuminuria) in large 



Provenzano et al.Nephron12
DOI: 10.1159/000508983

intervention studies and increased the interest on how to 
improve the methodology of enrichment design and how 
to find other study designs that are able to overcome the 
individual variability in drug response. To achieve that, 
we need to move from large international trials to smaller 
studies that will not encompass all the spectrum of kidney 
diseases, but only patients with the same type of kidney 
damage and the same response to treatment.

One strategy is to test 1 or 2 treatments in more than 
1 disease within the same trial, the so-called master trial 
protocol [102]. Master protocols may be planned with 
multiple interventions, each targeting a specific biomark-
er-defined population or disease subtype. Under this de-
sign, structured platform, umbrella, and basket trials are 
grouped together (Table 2). Platform trials could be con-
sidered a direct extension of enrichment design trials. 
While the adaptive enrichment studies, like the SONAR, 
are designed to investigate 1 drug in homogenous patient 
population, platform trials are planned to identify effec-
tive treatments tailored to a particular subgroup of pa-
tients [103]. The term “platform” in particular refers to 
the creation of an experimental platform that will con-
tinue to exist after the evaluation of any particular treat-
ment, being generally long-term studies [104]. Within the 
platform, multiple treatments are started or discontin-
ued. Subgroups from heterogeneous populations could 
be selected for treatment based on histology, biomarkers, 
disease risk factors, clinical variables such as age or gen-
der. Next, decision rules (e.g., the likelihood of a treat-
ment benefit) or Bayesian probabilities are used to assess 
whether a treatment should be continued or discontin-
ued, based on its efficacy. If continued, a treatment could 
be moved to the clinical setting and could replace or im-
plement the standard of care. Conversely, if a treatment 
is discontinued, it may be replaced by a new one. This 
approach allows saving time and resources, since a unique 
trial infrastructure could be used to evaluate multiple 
drugs efficiently; to select the best treatment for a sub-
group of patients, thus improving the clinical decision-
making for future individual patients [105]; to avoid un-
necessary/unresponsive treatments that last for long 
time, while the disease progresses [106]. Such interesting 
frontier of clinical trials has also been recently imported 
in the nephrology field through the proposal of a global 
CKD-platform approach [107]. Similar strategies, as 
those seen for the platform, are used in the “basket” and 
“umbrella” trials (Table 2). Biomarker-based approaches 
also need more consideration in future CKD clinical tri-
als. Biomarkers could detect patients who are at increased 
risk of developing a cardiorenal outcome. For example, 

several clinical trials, conducted in the previous decades, 
enrolled CKD patients based on the levels of eGFR or pro-
teinuria. This is also called prognostic enrichment based 
on biomarkers. Interestingly, biomarkers could also be 
measured to identify a population which more likely can 
respond to a particular treatment before exposing the 
population to such a treatment (predictive enrichment) 
[71].

Finally, another type of clinical trial design deserves 
consideration in the context of precision nephrology, as 
it allows an understanding of how to overcome the drug 
resistance to standard treatments: the crossover study. In 
this alternative study design, more treatment periods 
with different drugs are used, and correlations between 
responses to 1 drug with each other are measured. The 
“ROTATE” clinical trial is an example of such a study, in 
which patients receive, in random order, 4 weeks of the 
ARB telmisartan, the SGLT2 inhibitor empagliflozin, the 
DPP4 inhibitor linagliptin, and the glycosaminoglycan 
sulodexide with 4-week washout periods in between 
(NCT03504566). This trial is designed to assess individ-
ual drug response and will provide additional insight into 
which patients respond best to which drug. More cross-
over studies testing interventions with completely differ-
ent mechanism of actions from RAAS-I should be per-
formed in the future.

Finally, drug development, as well as new clinical trials 
design, also requires support from the regulatory agen-
cies, European Medicine Agency (EMA) and FDA [108]. 
It has been advocated that EMA and FDA should shorten 
the duration of the consultation procedure before giving 
the “qualification opinion,” which is mandatory before 
starting a clinical trial [109, 110]. This is important since 
novel trials, as previously described, could also enroll a 
small number of patients and could last for short periods 
of time. Moreover, mechanisms, which can allow for a 
better collaboration between FDA and EMA (periodic 
teleconferences, disease-specific meetings, and research 
consortia), should be implemented in order to reach the 
precision medicine aims [111].

Conclusions

In conclusion, precision nephrology is not confined to 
targeting treatment for each patient but also encompass-
es individualization of risk, clinical management, and 
prognosis [112–114]. The variability of CKD, in its broad-
er definition, is an old concept. CKD patients have vari-
able outcomes, which often also take a long time to occur, 



Precision Nephrology in Observational 
and Intervention Studies

13Nephron
DOI: 10.1159/000508983

and show variable responses to treatment. Moreover, 
CKD is per se characterized by a variability in the risk fac-
tors which are active in each patient at each stage of the 
disease. For all these reasons, nephrologists have based 
clinical decisions mainly on their knowledge and experi-
ence. A relevant step forward has been represented by the 
incorporation of epidemiology in CKD. Precision ne-
phrology adds opportunities and challenges for both ob-
servational as well as interventional studies.

In observational studies, personalized information on 
a patient’s prognosis can be reached by building indi-
vidual risk prediction models. The process of risk predic-
tion model building requires that (1) the research ques-
tion and the intended use are clearly specified; (2) the 
population under study and outcomes of interest are well 
defined; (3) variables are included in the model using a 
rigorous statistical approach; (4) models provide indi-
vidual measures, such as calibration, discrimination, and 
GOF. For the trial perspective, efforts can be made to 
ameliorate the individualization of treatment. This goal 
can be attained by implementing new designs such as 
adaptive enrichment studies, which take into account the 
individual response to treatment or crossover studies, 
where patients undergo a sequence of treatments over 
time. More sophisticated designs like the “umbrella,” 
“basket,” and “platform” trials will be tested in the near 
future.

Therefore, a very important challenge is to better un-
derstand variability of CKD and variability of individual 
drug response. The term variability accompanies a large 
part of experimental and observational clinical research 
and reconciles the 2 parts with the common aim that a 
better comprehension and assessment of variability lead 
to a better prognosis. A proof of this theory is represented 
by the inclusion in the modern CV risk prediction models 
computing 5- or 10-year CV risk, the information of re-
sponse (or not response) to treatments together with the 
standard laboratory and clinical variables. This is done in 

the U-prevent CV risk calculator [64]. Novel “omics” 
techniques have demonstrated to be promising in detect-
ing the specific pathopshysiological process in each pa-
tient that could be matched with a drug with an appropri-
ate treatment. It would be desirable that in the future, also 
nephrologists benefit from more and also more specific 
tools to improve their clinical practice which is needed to 
guarantee better treatment of patients and, in turn, better 
clinical outcomes.
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