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a b s t r a c t 

Library organizations in the Netherlands show an increasing interest to employ depots for low-cost stor- 

age and demand fulfillment of item requests. Typically, all libraries in an organization have a shared cat- 

alog, and, on local unavailability, requests can be shipped from elsewhere in the organization. The depot 

can be used to consolidate shipment requests by making tours along all libraries, delivering requested 

items, but also picking up items that have to be stored at the depot, or that have to be shipped from 

one library to another. Cross docking and delayed shipments are two preferred methods for fulfilling re- 

quests that cannot be directly met using on-hand stock at the depot. In this paper, we compare these two 

methods from an inventory control perspective. We model the library system as a Markov Decision pro- 

cess. For one- and two-location systems, we derive analytical results for the average-cost optimal policy, 

showing that the decision to store items from the location at the depot satisfies a threshold structure de- 

pending on the number of rented items. For larger instances, an effective heuristic is proposed exploiting 

this threshold structure. In numerical experiments, important managerial insights are obtained by com- 

paring cross docking and delayed shipments in different situations. Cross docking is shown to add most 

value in systems with low total stock, however, delayed shipments may achieve similar costs as cross 

docking when stock is high or when tours frequently visit all locations. Furthermore, effective decisions 

can be based on simple model formulations with memoryless rental time distributions. 

© 2020 Elsevier B.V. All rights reserved. 

1

 

o  

g  

t  

o  

e  

a  

h  

b  

s  

o  

t  

s  

c  

g  

o  

A  

p

k

 

t  

b  

t  

c  

t  

a  

l  

b  

r  

c  

p  

b  

a  

n

 

p  

s  

l  

t  

h

0

. Introduction 

People read fewer books and, as a consequence, public library

rganizations face a declining membership and need to cut bud-

ets due to lower revenues (Lammers, 2020) . Libraries are simul-

aneously seeking new ways to contribute to society, for example,

n social inclusion, equal access to information, and freedom of

xpression (Audunson et al., 2019) . For this purpose, new activities

re initiated and space in the library is reserved, for example, to

ost meetings. These trends induce a reduction in the number of

ooks that are on display in libraries. In this societal context, we

tudy the following setting. We consider a network of libraries co-

perating in a system of interlibrary loans, a service where a cus-

omer of one library can borrow books from another library. Such

ystem can serve to widen the variety of books that each library

an make available to its customers. Furthermore, the libraries en-

age in jointly managing their collections. An extensive description

f the essential underlying assumptions of our setting is given in

ppendix A , where we also provide a number of examples from

ractice. 
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There is one depot, i.e., a central storage facility that supports

he network of libraries. If a customer is looking for a particular

ook, there are several options. First, the customer may retrieve

he book locally, i.e., from the shelves of the library where the

ustomer is a member. Second, if there is no stock locally, the cus-

omer may request the book from the network. If the book is avail-

ble at the depot, it can be transshipped from the depot to the

ocal library. Finally, the book can be transshipped from another li-

rary to the local library. In all cases, the book is picked up and

eturned by the customer at the local library. This configuration is

ommon in the Netherlands. It is also seen elsewhere, for exam-

le, in San Francisco where a central library supports 26 branch li-

raries located in residential neighborhoods (Apte & Mason, 2006) ,

nd in New York where a central processing facility exists that con-

ects 150 involved libraries (Quandt, 2017) . 

In library networks with a depot, transportation usually takes

lace several times a week. The three types of transportation in the

ystem are shipments (transport from the depot to meet requests at

ibraries), take-backs (transport from the libraries to store items at

he depot), and lateral transshipments (transport between libraries

o meet requests). Take-backs occur either with the intention of

onger-term storage of books, or to pre-position books for upcom-

ng demand in the network. Every transportation leg either origi-

ates at or is destined to the depot; books are not directly moved

https://doi.org/10.1016/j.ejor.2020.08.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.08.034&domain=pdf
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from one library to another library. Hence a lateral transshipment

requires two transportation legs, first from the originating library

to the depot, and second from the depot to the destination library.

We distinguish two ways of handling lateral transshipments at the

depot. 

1. Cross docking . Two tours visit all libraries on the same day. All

items that need to be laterally transshipped are exchanged at

the depot in between the tours. 

2. Delayed shipments . One tour visits all libraries. All items that

need to be laterally transshipped are stored at the depot for

one period and shipped at the next transport opportunity. 

Numerical results and heuristics for delayed shipments can be

found in Van der Heide, Roodbergen, and Van Foreest (2017) . We

introduce cross docking in this paper. We consider this system

from an inventory perspective and optimize the operational deci-

sions for shipments, cross docking, and take-backs. Our contribu-

tions are as follows. We derive the structure of the average cost

optimal policy for a one-location problem and, under a mild re-

striction, for a two-location problem. The optimal policy for take-

backs can be characterized by a series of thresholds on the on-

hand inventories that depend on the number of loaned items at

each location. Based on this threshold structure and other numer-

ical insights, we develop a heuristic for a general number of loca-

tions. In numerical experiments, the heuristic is shown to be on

average within 1% from the optimal costs. 

Various managerial insights are provided by comparing situa-

tions with cross docking and delayed shipments. We find that, if

sufficient stock is available in the system and the depot is fre-

quently resupplied, both systems are equally effective. However, if

stock in the system is quite low, then the cross-docking option is

superior, which can be important considering the decreasing stock

at libraries. The insights from this paper can assist library profes-

sionals to determine the best option for their situation. Other man-

agerial insights concern the added value of the storage possibility

at the depot, and the required information about the duration of

borrowing for supporting effective decision making. 

Depots are used similarly in other sectors. Construction com-

panies, for example, share their expensive specialized equipment

between their construction sites. Local hardware stores allow

next-day delivery of rarely used tools from a nearby depot, while

keeping frequently used tools in stock. An important factor that

distinguishes libraries from other rental systems, is the higher will-

ingness of customers to wait. In rental systems for products such

as cars, clothing, and jewelry, customers may switch to a com-

petitor on product unavailability, resulting in lost sales. Another

difference is possible downtime for maintenance and cleaning of

returned products. As also several similarities exist, and analytical

results and insights in this paper may serve as inspiration for

other rental systems, we deploy the common term “to rent” rather

than “to borrow” or “to loan” in the remainder of this paper. 

The outline of the article is as follows. Relevant literature is re-

viewed in Section 2 . Then, in Section 3 , we present the main as-

sumptions and formulate the model as a Markov decision process.

Analytical results for the optimal policy for the single-location and

two-location problem are derived in Sections 4 and 5 . In Section

6 , a heuristic for the general problem is developed. Several ex-

periments are carried out in Section 7 , in order to investigate the

performance of the heuristic and to gain the discussed managerial

insights. Finally, Section 8 provides conclusions and directions for

further research. 

2. Literature 

Since we consider a stochastic multilocation rental problem

with a depot, we first review recent literature on stochastic rental
odels. Afterward, we discuss closely related stochastic inventory

ontrol models. 

Stochastic rental models can be grouped into single and mul-

ilocation models, with or without a depot. Single location rental

odels involve no depot and deal with particular issues such as

etting the total rental stock for a finite time horizon ( Pasternack

 Drezner, 1999; Slaugh, Biller, & Tayur, 2016 ), allocating demand

o different customer classes (Jain, Moinzadeh, & Dumrongsiri,

015) , and analyzing usage of newly introduced products under

 heterogeneous customer base (Bassamboo, Kumar, & Randhawa,

009) . 

Multilocation rental models without a depot can be divided

nto two main streams. The first stream concerns optimizing rental

eets. For a finite horizon, Baron, Hajizadeh, and Milner (2011) op-

imize the allocation of rental products to several rental locations

nder various demand and return patterns. Transferring products

etween locations during the horizon is not considered. Models

ptimizing rental stock under a long-run average cost criterion

re typically based on queueing theory. Given a policy for vehicle

epositioning, Papier and Thonemann (2008) and George and Xia

2011) determine the long-run optimal fleet size. Long-run cost ex-

ressions are based on the availability of rental stock in loss mod-

ls (Papier & Thonemann, 2008) and closed queueing networks

George & Xia, 2011) . 

The second stream concerns repositioning operations for rental

tock. Such problems are commonly modeled as a Markov deci-

ion process (MDP) (Puterman, 2009) . For a two location vehi-

le rental system, Li and Tao (2010) determine optimal fleet-sizes

s well as the optimal policy for repositioning vehicles at the

nd of every period. Brinkmann, Ulmer, and Mattfeld (2019) and

egros (2019) apply MDPs for dynamic repositioning in bike-

haring systems. For a library setting, Van der Heide and Roodber-

en (2013) optimize the trade-off between costs for lateral trans-

hipment (in response to demand) and costs for repositioning (in

nticipation of demand), without considering an option for low-

ost storage. 

Despite its practical relevance, only a limited number of authors

ave considered the use of a depot in multilocation rental models.

an der Heide, Van Foreest, and Roodbergen (2018) apply a queue-

ng approach for the tactical problem of optimizing the inventory

evels at the depot and each rental location under various types of

ackordering. However, it is not possible to dynamically reposition

nventory based on the system state. Most related to our work is

an der Heide et al. (2017) , who study a library system making use

f delayed shipments. The authors numerically investigate optimal

ecisions for shipments and take-backs by solving MDPs. Numeri-

al examples show that the optimal take-back policy has a state-

ependent threshold structure, however, no analytical proofs are

rovided for the optimal policy structure. In this paper, we prove

he policy structure in important special cases with one and two

ocations. In addition, we consider cross docking in our model and

ompare it to delayed shipments to generate new managerial in-

ights. 

Now we discuss related models in other application areas. In

pare parts, a closely related concept is a quick-response ware-

ouse that carries out shipments of spare parts to locations in re-

ponse to stock-outs (Axsäter, Howard, & Marklund, 2013) . Howard,

arklund, Tan, and Reijnen (2015) consider the use of pipeline in-

ormation and optimize threshold policies for shipments. Demand

s backordered if an order at a local warehouse will be delivered

efore a threshold time, otherwise it is met with a shipment from

he quick-response warehouse. While we consider a less complex

hipment policy, i.e., meet all demand, our rental system has sev-

ral complicating factors not addressed in the spare parts system.

amely, there are stochastic and state-dependent returns, it is pos-

ible to cross dock, and the analytically convenient property that
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Fig. 1. A multilocation rental system with a depot and n rental locations. 
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nventory positions at each location are constant does not hold due

o dynamic take-back decisions. 

Another related problem is the repositioning of empty trucks in

 hub-and-spoke system. Du and Hall (1997) determine effective

euristic threshold policies for sending empty trucks from the hub

o the spokes and vice versa. Song and Carter (2008) provide the

ptimal control policy for a system with two spokes. By decom-

osing the system into several systems with a single spoke and

 hub, they derive a heuristic policy that works well. We apply a

imilar approach in our heuristic by using structural results from

he one location problem. In these papers, trucks are transferred

etween hubs and spokes, which in our rental terminology implies

hat products rented from a location are by definition returned to

he depot and vice versa. The dynamics of such a hub-and-spoke

ystem differ from the typical rental system where products are

eturned to the location they were originally rented from and thus

equire different policies. 

In essence, the rental model can be seen as a lateral transship-

ent model with a specific transshipment structure; see Paterson,

iesmüller, Teunter, and Glazebrook (2011) for an extensive re-

iew. The combination of lateral transshipment and returns is

arely considered. Ching, Yuen, and Loh (2003) and Tai and Ching

2014) consider lateral transshipment in combination with an

xogenous return process, however, this does not appropriately

apture the endogeneity of the return process in rental systems.

ithout returns, Wee and Dada (2005) show a threshold policy

or a system with lateral transshipment between one location and

ne depot. We derive similar threshold policies, however, in our

ase the policy is state-dependent. 

Inventory-routing problems also study the trade-off between

ransportation and inventory costs in systems with multiple stock

oints (Coelho, Cordeau, & Laporte, 2014) . In some cases, lateral

ransshipment is also possible (Coelho, Cordeau, & Laporte, 2012) .

hese problems are typically solved using a rolling-horizon ap-

roach, solving deterministic problems every period by substitut-

ng in forecasts of the stochastic demand. Recent literature on rout-

ng deals with dynamic dispatching of demanded products from

 depot to delivery points, usually under capacity restrictions of

ehicles or delivery points ( Rivera & Mes, 2017; Ulmer & Streng,

019; Van Heeswijk, Mes, & Schutten, 2017 ). Though not consid-

red here, dynamic dispatching can be an interesting method for

ulfilling online demand in rental systems with a depot. 

. Model 

Underlying to our model are nine assumptions, which are all

ractically relevant. For brevity, we simply list these assumptions

ere, while an extended explanation and justification is presented

n Appendix A . We assume the following for the setting in which

ibraries operate: 

• Libraries work together and share an inventory. 
• Libraries ship substantial amounts of books to other libraries

every day. 
• Libraries face significant inventory holding costs. 
• There exists a (central) depot to store books. 
• The depot must be used if a book is shipped from one library

to another. 
• Costs for shipping books increase linearly with the number of

books shipped. 
• Return times are more or less independent of rental times. 
• Customers are willing to wait an infinite amount of time for a

book. 
• No preemptive supply of books is permitted, even if a library
runs empty. s  
In the remainder of this section, we start by describing the

roblem setting and by motivating the most relevant modeling

hoices. Afterward, we provide a mathematical formulation in

erms of a Markov decision process by describing the state, transi-

ions, actions, and costs. 

.1. Model description 

We consider a rental system with n rental locations and a de-

ot, depicted in Fig. 1 , where periodically transport takes place be-

ween the depot (index 0) and the rental locations. We are inter-

sted in the policy minimizing the long-run average cost of the

ystem, hence we consider a periodic review model with an infi-

ite horizon. We restrict the analysis to a single product type of

hich a finite number of items are available. We can repeat the

ame analysis for other product types. 

Every period, customers demand and return items at the rental

ocations. Demand at each location follows a distribution that is

iscrete, finite, nonnegative, stationary, and state-independent. De-

and distributions may differ between locations. Customers either

emand items online or by visiting the rental location in person.

egardless of its source, demand is met immediately if an item

s on hand (either picked up by a customer or kept aside for an

nline request). If no items are on-hand, customers can request a

elivery of the item at the next delivery moment, provided the re-

uest is placed before the order deadline. The time between the

rder deadline and the next delivery moment is used to carry out

ny necessary transport. We consider a subscription-based rental

ystem, so customers do not switch to competitors on a stock-

ut and are aware that not every request can be delivered imme-

iately. Customers receive a delivery notification when their re-

uested items are bound to arrive and are assumed to pick up

hese soon after the delivery moment. 

Rented items return at the same location where they have been

emanded and can be rented to another customer in the same

eriod. Customers rent items for a stochastic number of periods,

otivated by public library transaction data for the Groningen

rovince in the Netherlands. Due to different visiting frequencies

f customers and the possibility to request deadline extensions,

here is a considerable variation in rental times; in fact, we found

hat only 25% of all transactions are returned in the last week of

he three-week deadline. The rental time distribution is equal for

ach location since rental time mostly depends on product rather

han location. For ease of presenting the model and for analyti-

al tractability, we assume the rental time distribution is memo-

yless, i.e., geometrically distributed. This means we only track the

otal number of rented items at each location, rather than the ex-

ct rental time of each individual rented item. In an experiment in

ection 7.7 , we show that this choice leads to reasonable decisions

ven if the true rental time distribution is not memoryless. 

In order to maximize service and minimize waiting time for

ustomers, we assume all delivery requests are met whenever pos-

ible. The delivery requests are handled as follows. First, any re-

urns at a location are allocated directly to delivery requests at

hat same location (no transport takes place). Second, any remain-

ng delivery requests are met by a shipment from the depot, us-

ng available stock at the depot. Third, if the depot has insufficient

tock, then the request is met with on-hand stock from another
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Fig. 2. Example of a state during the transition and action phase. 
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t  
location. Besides meeting requests, it is possible to carry out take-

backs to resupply the depot for future shipment requests and to

deal with excess inventories at the rental locations. As indicated in

§1 , all transportation goes through the depot and cross docking is

used to deal with lateral transshipment requests. We exclude the

possibility to ship more items to a location than requested, because

under our assumptions it is better to store items at the depot and

ship them when they are needed. 

The costs of the rental system are modeled as follows. Rental

locations in our model are uncapacitated, so we model the (lack

of) capacity in reality through a holding cost, which varies between

locations and is higher for locations where capacity is tighter. The

depot has the lowest holding cost per unit of inventory, since it

has the largest storage space of all locations and it does not have

to keep its assortment on display. Customer dissatisfaction from

waiting is modeled by a backorder cost, incurred each period a

requested item is not delivered. Because many different product

types are transported together, typically every location has to be

visited every period. Therefore, fixed costs for driving to a location

and delivering crates with items cannot be avoided. The variable

costs are due to handling, because every item needs to be picked

manually and scanned on pick-up and delivery. Therefore, from the

perspective of a single product type, it is reasonable to assume

the transportation cost is linear. In addition, there is cross-docking

handling cost, measuring the extra cost for exchanging items at

the depot in between tours compared to a regular shipment. Usu-

ally, this exchange involves manual searching from crates, which is

more difficult than systematically picking items from the shelves at

the depot, hence the cross-docking handling cost is nonnegative.

All cost parameters are linear, and for our long-run average cost

analysis they are additionally assumed to be finite and stationary. 

3.2. State variable 

In period t , the state of the system is given by the tuple S t =
(x 0 t , x t , y t ) . Here, x 0 t represents the stock level at the depot. The

vectors x t = (x 1 t , . . . , x nt ) and y t = (y 1 t , . . . , y nt ) represent the stock

levels x it and number of rented items y it at location i , i = 1 , . . . , n . If

x it < 0, then location i has unmet requests. Define (x ) + = max { x, 0 }
and (x ) − = max {−x, 0 } as the positive and negative part function,

taken element-wise for vectors. The total number of items in the

rental system is denoted K , hence, for any state S t , it must hold

that x 0 t + 

∑ n 
i =1 (x it ) 

+ + 

∑ n 
i =1 y it = K. Note that due to this restric-

tion one dimension can be dropped from the state variable, but
e will not do that here to keep the presentation as simple as

ossible. 

Each period consists of a transition phase followed by an action

hase. In order to distinguish between these two phases, we indi-

ate the state variable after the action phase by a prime, i.e., the

tate after actions in period t is given by S ′ t = (x ′ 
0 ,t 

, x ′ t , y ′ t ) . 

.3. Transition phase 

In the transition phase, each location faces stochastic demands

nd returns by customers. The demands at each location during

eriod t are denoted D t = (D 1 t , . . . , D nt ) . Analogously, the returns

re during period t are denoted R t = (R 1 t , . . . , R nt ) . The success

robability of the geometric rental time distribution is denoted p ,

hich implies that R it is Binomial( y it , p ) distributed if there are y it 
ented items at location i . 

The left block in Fig. 2 shows an example of the state before

nd after the transition phase. Rental locations and the depot are

ndicated by triangles. Stock levels are depicted as white squares

nd rented items as black squares. Similarly, demands are indicated

s white circles and returns as black circles. For example, location

 has 0 on-hand and 2 rented items before the transition phase.

ecause 1 item is demanded and 2 are returned during the transi-

ion phase, location 1 ends up with 1 on-hand and 1 rented item

fter the transition phase. In location 2, demand exceeds the avail-

ble stock, hence the stock level after the transition phase becomes

egative. The depot faces no demand and therefore its stock level

oes not change. 

Expressed in mathematics, given a post-action state S ′ t−1 , the

tate variable S t after the transition phase evolves according to 

 0 t = x ′ 0 ,t−1 , (1)

 t = x ′ t−1 + R t − D t , (2)

 t = y ′ t−1 + (x ′ t−1 ) 
+ − (x t ) 

+ . (3)

qs. (1) and (2) are trivial. To derive (3) , note that on-hand items at

ocation i increase by (x ′ 
it 
) + − (x i,t−1 ) 

+ during the transition phase,

nd consequentially, rented items must decrease by the same

umber. 

.4. Action phase 

In the action phase, decisions are made to carry out transporta-

ion actions. The action vector a t = (a , . . . , a nt ) specifies the num-
1 t 
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a  
er of items taken back from each location to the depot. If a it is

egative, this number is shipped from the depot to location i . If

e let a t = (a t ) 
+ − (a t ) 

− then (a t ) 
+ and (a t ) 

− can be interpreted

s the number of items taken-back and shipped, respectively. We

ave the following constraints on the action: 

(a t ) 
+ ≤ (x t ) 

+ , (4) 

(a t ) 
− ≤ (x t ) 

−, (5) 

n 
 

i =1 

(a it ) 
− ≤ x 0 t + 

n ∑ 

i =1 

(a it ) 
+ , (6) 

n 
 

i =1 

(a it ) 
− = min 

{ 

n ∑ 

i =1 

(x it ) 
−, x 0 t + 

n ∑ 

i =1 

(x it ) 
+ 

} 

, (7) 

onstraint (4) ensures not taking back more from any location than

s on hand, while constraint (5) prevents shipping more to a lo-

ation than there are backorders. Constraint (6) prevents shipping

ore from the depot than is available after the take-back actions.

inally, constraint (7) ensures that all requests receive a shipment,

nless the total on-hand inventory in the system is too small. 

The right block in Fig. 2 shows an example for the action phase.

irst the action is shown, with the arrows indicating how many

tems are transported over an edge and in which direction. To

he right, the resulting state after completing the action phase are

hown. Here, the chosen action is a t = (1 , −2 , 1) . Location 2 has

 stock level of −2, so one item is shipped from the depot and

nother item is cross docked from another location with on-hand

tock. In addition, one item is taken back from the locations to re-

upply the depot. All requests at location 2 are now met, hence the

ented items there increase by 2. The stock at the depot remains

s is, because 1 item was shipped, but 1 was also taken back from

nother location. 

If S ′ t is the state after transitions, the state after actions is given

y 

 

′ 
0 t = x 0 t + 

n ∑ 

i =1 

a it , (8) 

 

′ 
t = x t − a t , (9) 

 

′ 
t = y t + (a t ) 

−. (10) 

n (8) , inventory at the depot follows from the net difference be-

ween shipments and take-backs. In (9) , the inventory position at

he locations changes by the amounts transferred to or from that

ocation. In (10) , all shipped items are allocated to outstanding re-

uests, so that the rented items increase by (a t ) 
−. Any remain-

ng unmet demand is backordered. After the action phase is com-

leted, costs are incurred and a new period starts with a transition

hase. 

.5. Costs and objective 

The following notation is used for the cost parameters. For each

nit of on-hand stock at the end of the period, the holding cost is

 0 at the depot and h i at location i , with h 0 < h i for i = 1 , . . . , n .

he backorder cost at location i is b i > 0 per backordered unit at

he end of the period. The cost per unit shipped to and taken back

rom location i is c i > 0. For cross docking, there is an additional

andling cost d ≥ 0 per item cross-docked. The total cost for cross

ocking from location i to j is thus c i + c j + d. 
The costs in period t for state S t and actions a t are given by 

(S t , a t ) = h 0 x 
′ 
0 t + d 

( n ∑ 

i =1 

(a it ) 
− − x 0 t 

)
+ 

+ 

n ∑ 

i =1 

(
h i (x ′ it ) + + b i (x ′ it ) − + c i ((a it ) 

+ + (a it ) 
−) 

)
. (11) 

espectively, this gives the holding cost at the depot, the handling

osts for cross docking, and the sum of the holding, backorder, and

hipment costs of the locations. For example, the cost for the ac-

ion in Fig. 2 is h 0 + d + c 1 + 2 c 2 + c 3 . 

A stationary policy π specifies for each state S a corresponding

ction a . The goal of this paper is to determine a policy π that

inimizes the average cost 

lim 

→∞ 

1 

t 
E 

π

[ 

t ∑ 

s =1 

C(S s , a s ) 

] 

. 

lthough the cost structure is linear, the problem features various

nteresting trade-offs. The choice of actions depends, among oth-

rs, on the different cost parameters, the demand rates, and the

urrent state of the system. An action can impact the system state

everal periods into the future, since if an item is shipped to a cer-

ain location now, that location will have more inventory when the

tem returns. The optimal policy takes into account this trade-off

etween the direct and future impact of actions. 

. Single-location problem 

In this section we analyze the average-cost optimal policy for

he single-location problem (SLP). With a single location, cross

ocking is not possible and shipments from the depot are carried

ut as soon as the location has a stock-out. What remains to be

ptimized are the take-back actions, i.e., transporting items from

he location to the depot. We prove that the optimal take-back ac-

ion satisfies a threshold structure: it is optimal to take back all

n-hand items above a threshold, and otherwise do nothing. This

hreshold is state-dependent: it decreases in the number of rented

tems. 

The intuition behind the decreasing threshold follows by con-

idering the last item at the location. Suppose we label one on-

and item at the location as the last item, to be rented to cus-

omers only if all other items at the location are rented. We can

ecide to take back the item to the depot and ship it back when

t is requested, saving holding costs every period the item is at

he depot. The holding cost savings exceed the transportation costs

nly if it takes long enough for the last item to be requested. All

lse being equal, the last item will be requested later if the number

f on-hand items at the location increases. This implies that there

ust be some threshold inventory level above which we want to

ake back all items. All else being equal, the last item will also be

equested later if the number of rented items increases, because

eturning rented items can be used to fulfill demand. Therefore,

he threshold decreases in the number of rented items. 

In the remainder of this section, we formally prove the thresh-

ld structure. We first explain the idea for the proof. After provid-

ng the proof, we derive analytical expressions for some threshold

alues, and we provide a fast iterative procedure to obtain all other

hreshold values. 

emark 1. Our analytical results from Sections 4 and 5 extend

o various other settings with linear costs. The backordering as-

umption plays no role in the analysis, hence the same analysis

pplies to settings where demand is lost if not met at the first de-

ivery moment. Furthermore, the two-location analysis extends to

ny setting where lateral transshipments are carried out when the
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Fig. 3. Optimal take-back policy for the last item and its implications. 
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depot is out of stock, by replacing the cross-docking handling cost

by an appropriate lateral transshipment cost. 

Remark 2. While the system stock level K is an important parame-

ter in our problem, our analytical results are valid for any K . There-

fore, we do not study K explicitly until the numerical experiments

in Section 7 . 

4.1. Idea for the proof 

Our proof is based on studying the last item at the location. We

formulate a finite MDP for the last item, and use its properties to

prove the threshold structure. Fig. 3 illustrates the optimal take-

back actions for some states, where 1 indicates that a take-back

is optimal and 0 that it is not. The middle diagonal represents the

state space of the last item. Every period, the state moves along the

diagonal: up if returns exceed demand, and down if demand ex-

ceeds returns. The last item is requested when the on-hand inven-

tory reaches 0. The first step of the proof is proving that the op-

timal take-back action decreases along the diagonal, i.e., first ones,

then zeros. The next step is showing how optimal actions on a di-

agonal imply the optimal actions on adjacent diagonals, indicated

by arrows in Fig. 3 . We prove that if a take-back is optimal (not

optimal) in a state, then it is also optimal (not optimal) in a state

with one more (fewer) on-hand or rented item. By induction, it

then follows that the threshold is non-increasing in the number of

rented items. 

4.2. Finite MDP for the last item 

We now formulate a finite MDP to optimize the take-back ac-

tions of the last item until it is requested at the location. It is im-

portant to note that irrespective of the actions taken, the last item

will be rented to a customer in the exact same period (either from

on-hand stock, or by a shipment from the depot if it was taken

back at some point). Our actions only impact the state of the sys-

tem until the request occurs, therefore, it suffices to consider only

this time frame. Without loss of generality, we subtract h 0 from

each holding cost parameter, as this part of the holding cost can-

not be influenced by our actions. 

Dropping time and location indices for the remainder of this

section, suppose that the location currently has x > 0 on-hand and
 rented items. We label the last item at the location as m = x + y .

tem m is rented as soon as y = m . Therefore, the state space for

tem m consists of states y = 0 , . . . , m, with y = m the absorbing

tate. 

Consider any state y , y < m . The action αm 

y ∈ { 0 , 1 } indicates

hether or not item m is taken back in state y . If we choose
m 

y = 1 , we pay the take-back cost 2 c . After the take-back, we can

mmediately enter the absorbing state because an item at the de-

ot incurs no further costs. Otherwise, if αm 

y = 0 , we pay h − h 0 
nd make a transition to a new state. It follows that the costs for

ction αm 

y are given by 

(y, αm 

y ) = 2 c αm 

y + (h − h 0 )(1 − αm 

y ) . (12)

he transition probabilities are as follows. If αm 

y = 1 , we move to

he absorbing state m , hence 

 ym 

(αm 

y = 1) = 1 . 

f αm 

y = 0 , we move to state z with probability 

 yz (α
m 

y = 0) = P( min { y + D − R, m } = z) 

= 

∞ ∑ 

d=0 

y ∑ 

r=0 

1 { min { y + d − r, m } = z} P(D = d) P(R (y ) = r) , (13)

here P (D = d) is the probability mass of the demand distribution

nd P (R (y ) = r) the probability mass of the Binomial( y , p ) return

istribution. 

The value function satisfies the optimality equation 

 

m (y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

min 

αm 
y 

{ 

C(y, αm 

y ) + 

m ∑ 

z=0 

P yz (α
m 

y ) V 

m (z) 

} 

if y < m, 

0 if y = m. 

his optimality equation has a solution because the expected time

ntil absorption is finite. 

.3. Optimal policy structure 

We are now ready to provide structural results. Lemma 1 shows

hat the MDP from Section 4.2 has a monotone optimal policy. Fur-

hermore, relations between decisions for MDPs with different val-

es of m are proven. The proofs of all lemmas and propositions can

e found in the appendix. 

emma 1. Monotonicity properties of optimal take-back decisions for

he SLP. 

(i) For fixed m , the optimal action αm 

y is monotone decreasing in

y. 

(ii) If αm 

y = 1 for some y and m , then αm + k 
y + k = 1 for all k =

0 , . . . , K − m . If αm 

y = 0 for some y and m , then αm −k 
y −k 

= 0 for

k = 0 , . . . , y . 

(iii) If αm 

y = 1 for some y and m , then αk 
y = 1 for all k ≥ m. If αm 

y =
0 for some y and m , then αk 

y = 0 for all 0 ≤ k ≤ m. 

The interpretation of (i) is that it is relatively better to take back

he last item if there are fewer rented items (or, equivalently, if the

n-hand stock is higher). This also implies that, if many items are

ented, it is sometimes better to postpone a take-back until more

tems return. For (ii), note that the on-hand stock x = (m + k ) −
(y + k ) is constant in k . Hence, with the same on-hand stock, it

s better to carry out a take-back if there are more rented items.

imilarly, (iii) shows that with the same number of rented items, it

s better to carry out a take-back if there are more on-hand items.

The monotonicity properties in Lemma 1 immediately imply a

hreshold structure. We find that the threshold is decreasing in the

umber of rented items, with steps of at most 1. 

roposition 1. The optimal take-back policy for the SLP has the fol-

owing structure. 
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(i) The optimal take-back policy for the SLP is a threshold policy.

There exists a threshold x ∗( y ) that leads to take-back actions 

a = 

{
x − x ∗(y ) if x > x ∗(y ) , 
0 if x ≤ x ∗(y ) . 

(14) 

(ii) The threshold x ∗( y ) is decreasing in y , with steps of at most one

item, i.e. 

0 ≤ x ∗(y ) − x ∗(y + 1) ≤ 1 . 

.4. Obtaining the threshold policy 

In order to obtain the threshold policy, we analytically derive

ome of the threshold values and we explain an iterative proce-

ure to obtain all remaining values. For the analytical expressions,

e first need to characterize the time τ ( x , y ) until the last item is

equested when starting with x on-hand and y rented items. We

btain 

(x, y ) = min 

{ 

t : 

t ∑ 

s =1 

D s ≥ x + 

t ∑ 

s =1 

R s (y s −1 ) 

} 

, (15)

.e., τ ( x , y ) is the first period in which the total demand equals (or

xceeds) the initial inventory plus total returns. In (15) , the returns

 s (y s −1 ) depend on the rented items in the preceding period, with

 0 ≡ y . The expectation of τ ( x , y ) can be obtained using standard

ethods for finite Markov chains (Kemeny & Snell, 1976) . 

We can now state the threshold values for which we have ana-

ytical expressions. 

roposition 2. Threshold values for the SLP. 

(i) x ∗(0) = min { x ≥ 0 : (h − h 0 ) E[ τ (x + 1 , 0)] > 2 c} , 
(ii) x ∗(y ) = 0 for y ≥ ȳ , with ȳ = min { y : P (D − R (y ) > 0) ≤

h −h 0 
2 c } , where P (D − R (y ) > 0) is the probability of positive net

demand conditional on having y rented items. 

The threshold at y = 0 is defined by a simple comparison be-

ween transportation costs and the expected holding costs until

he location runs out of stock. Furthermore, if y increases, the

hreshold becomes zero at some point because the number of re-

urning items R ( y ) in the next period is almost always sufficient

o cover demand. Note from (ii) that when transportation is very

heap, i.e., 2 c < h − h 0 , then it is optimal to always store all items

t the depot. 

For intermediate values of y , we have no analytical expressions

ecause we need to take into account that it is sometimes opti-

al to wait for rented items to return before carrying out a take-

ack. However, we can obtain the optimal threshold values using

n iterative procedure. The procedure is based on finite Markov

hains and therefore has significantly shorter computation times

han solving a Markov decision process. 

The idea for the procedure is as follows. Suppose x ∗( y ) is known

or some y and we want to determine the threshold for y + 1 . Since

he threshold decreases by steps of 1 ( Proposition 2) , the thresh-

ld is either x ∗( y ) or x ∗(y ) − 1 . We study the absorption time of a

nite Markov chain to determine the correct threshold. The finite

arkov chain has states z = 0 , . . . , m, with m = x ∗(y ) + 1 + y . In all

tates z ≤ y a take-back of item m is necessary (the on-hand inven-

ory exceeds x ∗( y )). Therefore, all states z ≤ y are absorbing with

alue V m (z) = 2 c and state m is absorbing with value V m (m ) = 0 .

tarting from transient state y + 1 , we calculate the cost V m (y + 1)

ntil absorption, incurring a holding cost h − h 0 each period the

hain is not absorbed. If V m (y + 1) > 2 c, then it is cheaper to carry

ut a take-back in state y + 1 than to wait until absorption, so we

et x ∗(y + 1) = x ∗(y ) − 1 . Otherwise, we set x ∗(y + 1) = x ∗(y ) . The

omplete threshold can be obtained by starting at x ∗(0) and itera-

ively applying this procedure until x ∗(y ) = 0 . 
. Two-location problem 

We now analyze the average-cost optimal policy for a two-

ocation rental system with a depot. The main difference with the

ingle-location problem is cross docking: local items are cross-

ocked when the depot has insufficient stock to meet all requests

t the other location. Under a mild restriction, we prove that the

ptimal take-back action in the two-location problem follows a

tate-dependent threshold policy. The threshold at a location is

ow two-dimensional, depending on the number of rented items

t both locations. The threshold decreases in the number of rented

tems at the location itself, however, it increases in the number of

ented items at the other location. The latter is the case because

he probability of having to cross dock in the next period increases

hen the other location has more rented items. By carrying out a

ake-back, we can avoid possible cross-docking handling costs. 

.1. Approach 

We apply the same approach as in Section 4 , studying the costs

f the last on-hand item at a location. Without loss of generality,

e study costs of the last item of location 1, denoted m = x 1 + y 1 ;

y symmetry, the same argument can be repeated for location 2.

e derive optimal take-back actions for item m by considering the

xpected costs of all possible scenarios for the item until it is re-

uested at either of the two locations. 

Fig. 4 can be used to calculate costs for different scenarios for

tem m . Let τ 1 and τ 2 be the period in which item m is requested

t location 1 and 2, respectively. Every period before a request oc-

urs, we can decide to either take back item m or leave it at lo-

ation 1. For example, when item m is kept at location 1, we pay

 1 each period, and depending on whether τ 1 or τ 2 occurs first,

e pay 0 or c 1 + c 2 + d. When item m is taken back to the depot

node 0), we pay c 1 once, h 0 each period, and c 1 or c 2 when τ 1 or

2 occurs. 

For the single-location problem, we used the analytically con-

enient property that take-back actions only impact the state of

he system until item m is requested. In the two-location problem,

here exists one event where this property does not necessarily

old. This event occurs when τ1 = τ2 , i.e., item m is requested at

oth locations at the same time. If the item has not been taken

ack to the depot, it will be rented with certainty at location

. However, if it has been taken back, we may decide to ship it

o location 2 instead of location 1. In order to make an optimal

ecision, we would have to know the expected difference in

uture costs of the item ending up at location 1 and 2. We avoid

his by imposing the restriction that we always ship to location
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1 if τ1 = τ2 . We believe that this restriction does not lead to a

significantly different optimal policy for the following reasons. The

event τ1 = τ2 is most likely when item m is in high demand at

both locations. In this case the choice for a shipment location is

typically not required under an optimal policy: since the demand

is expected to occur soon, it seems suboptimal to incur an extra

cost for a take-back and shipment. The choice seems more relevant

when item m is in low demand at one or both locations, however,

then the event τ1 = τ2 is not likely. 

Remark 3. It is challenging to extend the last item approach to

systems with more than two locations. With two locations, the

only possible candidate for cross docking is the other location,

however, with multiple locations, there can be multiple candidates.

It is impossible to select the correct candidate by considering only

the last item of location 1. 

5.2. A finite MDP for two locations 

As before, we model this as a finite Markov decision process,

which can now be absorbed in multiple states. Since location 2

uses stock from itself and the depot before demanding item m ,

we can set x 0 = 0 and x 2 = K − m − y 2 without loss of generality.

Since x 1 = m − y 1 and x 2 = K − m − y 2 , we can represent the state

of this MDP by S = (y 1 , y 2 ) . The MDP is absorbed when y 1 = m

(corresponding to time τ 1 or a take-back) or when y 2 = K − m + 1

(corresponding to τ 2 ). 

The binary take-back decision for this problem is denoted by

αm 

y 1 ,y 2 
. The two-dimensional transition probabilities can be com-

puted analogous to the SLP. The costs for the two location problem

are slightly different due to the cross-docking action. The trans-

portation cost c 1 + c 2 when item m is demanded at location 2 is

unavoidable, so we only incur extra costs for a take-back if τ 1 ≤ τ 2 ,

hence 

C(y 1 , y 2 , α
m 

y ) = 2 c 1 P (τ1 ≤ τ2 ) α
m 

y 1 ,y 2 
+ (h 1 − h 0 )(1 − αm 

y 1 ,y 2 
) , 

for y 1 < m, y 2 < K − m + 1 . (16)

The probability P ( τ 1 ≤ τ 2 ) can be computed by solving the cor-

responding finite Markov chain with starting state y 1 , y 2 where

we set αm 

y 1 ,y 2 
= 0 in all states. Finally, if we are absorbed in y 2 =

K − m + 1 before carrying out a take-back, we pay the additional

cross-docking cost d . 

 

m (y 1 , K − m + 1) = d for y 1 < m. 

5.3. Threshold policy 

Lemma 2 shows monotonicity of the optimal decisions in y 1 
and y 2 . Take-back becomes less interesting as y 1 increases and

more interesting as y 2 increases. The relation with y 1 has the same

interpretation as in the SLP. Take-back becomes more interesting as

y 2 increases because handling costs can be avoided when item m

is demanded soon at location 2. 

Lemma 2. Monotonicity in the finite MDP for two locations. 

(i) For fixed y 2 , α
m 

y 1 ,y 2 
is monotonic non-increasing in y 1 . 

(ii) For fixed y 1 , α
m 

y 1 ,y 2 
is monotonic non-decreasing in y 2 . 

The monotonicity can be exploited in a similar way as for the

SLP to show a threshold structure. We obtain the following. 

Proposition 3. Threshold policy of the two-location problem. 

(i) The optimal take-back action for location 1 in the two-

location problem is a threshold policy. There exists a threshold

x ∗
1 
(y 1 , y 2 ) that leads to take-back actions 

a 1 = 

{
x 1 − x ∗1 (y 1 , y 2 ) if x 1 > x ∗1 (y 1 , y 2 ) , 

∗ (17)

0 if x 1 ≤ x 1 (y 1 , y 2 ) . i
(ii) For fixed y 2 , x ∗1 (y 1 , y 2 ) decreases in y 1 and for fixed y 1 ,

x ∗1 (y 1 , y 2 ) increases in y 2 . 

(iii) For fixed y 1 , x 
∗
1 
(y 1 , y 2 ) ≤ x ∗

1 
(y 1 ) for all y 2 . 

Hence, we now have a threshold policy that depends on both

 1 and y 2 . Interestingly, in the two-location setting we always take

ack at least as much in the single-location setting. The reason for

his is the extra cross-docking cost that we could prevent by tak-

ng back in time, especially when the on-hand stock at location 2

s low. The holding cost trade-off from the single-location setting

hus also applies to the two-location setting, with cross-docking

osts as an additional incentive for take-backs. 

For the special case m = 1 , and K = 1 , there is a simple expres-

ion for the take-back decision when x 1 = 1 . 

emma 3. For m = 1 and K = 1 in the two-location problem, a take-

ack of item m is optimal if 

 (D 1 > 0) ≤ h 1 − h 0 + d 

2 c 1 + d 
. (18)

Hence, we carry out a take-back only if the demand rate at

ocation 1 is small enough, and the higher d becomes, the more

ikely we are to take back. 

.4. Constructing the take-back policy 

Similar to Section 4.4 , we now state a procedure for obtain-

ng the state-dependent take-back policy. The idea is to repeatedly

ompare the holding cost during the expected time until demand

ith possible transportation costs and cross-docking costs, taking

nto account that it may be optimal to postpone a take-back until

e reach another state. 

Let A be the set of states in which it is optimal to carry out

 take-back and τA be the first moment we enter a state in set

 . The holding costs until absorption coincide with the moment of

bsorption, min (τ1 , τ2 , τA ) . Cross-docking handling costs will only

ave to be paid if the first demand for item m happens at location

 before the postponed take-back is carried out, i.e. if τ 1 > τ 2 and

2 ≤ τA . The extra transportation cost 2 c for carrying out a take-

ack now can only be prevented if the demand at location 1 occurs

efore the postponed take-back, i.e. if τ 1 ≤ τ 2 and τ1 ≤ τA . There-

ore, we base the decision on the condition 

(h 1 − h 0 ) E[ min (τ1 , τ2 , τA )] + d P 
(
τ1 > τ2 , τ2 

≤ τA 
)

≥ 2 c 1 P 
(
τ1 ≤ τ2 , τ1 ≤ τA 

)
. (19)

n words, we take back item m if the expected holding costs and

ross-docking handling cost of not taking back right now exceed

he expected take-back costs. 

We can use Eq. (19) to iteratively generate optimal take-back

ctions by running diagonally over all possible states. We start

ith A = ∅ and the most extreme state y 1 = 0 , y 2 = K − m . If the

ondition holds, add this state to A . Now iteratively check the con-

ition with the updated A , keeping y 1 constant and decreasing

 2 by 1. If the condition holds, we add the state to A , if it does

ot, we stop checking for z ≤ y 2 . Then we increase y 1 by 1, set

 2 = K − m and repeat the above procedure. We continue this until

or some y 1 and y 2 = K − m the condition does not hold, or until

 1 = m . Repeating the same procedure for all possible m yields the

omplete take-back policy. 

. Heuristic 

For a general number of locations, it is challenging to obtain an-

lytical results and to solve the MDP to optimality. Therefore, we

ropose a heuristic in order to take effective decisions in reason-

ble time. Any heuristic for our problem must include the follow-

ng elements: 
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• A rule to select receiving locations in case of shipments and

cross docking. 
• A rule to select sending locations in case of cross docking. 
• A rule to determine how much stock to take back from each

location to the depot. 

Van der Heide et al. (2017) propose various effective rules for

hipments and take-backs, which we adapt here to tackle the sit-

ation with cross docking. The rules for selecting locations in Van

er Heide et al. (2017) are based on an extensive numerical study

f the optimal solution of the MDP in small instances. For the rules

or take-backs, there is now a solid theoretical basis, drawing from

he analytical results in Sections 4 and 5 . 

The heuristic consists of three phases. The first phase is the

hipments/cross-docking phase, which is concerned with dealing

ith all unmet requests in the system. The second phase is the

hreshold take-back phase, which deals with taking back all on-

and items above the single location thresholds. The third phase

s the preventive take-back phase, and is concerned with resup-

lying the depot in order to prevent future cross-docking handling

osts. In what follows, rules used in these respective phases are

escribed in more detail. Pseudo-code for the heuristic is shown

n Algorithm 1 . 

lgorithm 1 Heuristic. 

Z = min { ∑ n 
i =1 x 

−
it 
, x 0 t + 

∑ n 
i =1 x 

+ 
it 
} � Shipments/cross-docking

for z = 1 , . . . , Z do 

if z ≤ x 0 then 

i ∗ = 0 

else 

i ∗ = arg min i ∈{ j: x j > 0 } c i − h i + b i q i 

j ∗ = arg max i ∈{ j: x j < 0 } b i − c i + b i g i (y i ) 

x i ∗ := x i ∗ − 1 

x j ∗ := x j ∗ + 1 , y j ∗ := y j ∗ + 1 

for i = 1 , . . . , n do � Threshold take-backs

z = (x i − x ∗
i 
(y i )) 

+ 

x i := x i − z 

x 0 := x 0 + z 

i ∗ = arg min i ∈{ j: x j > 0 } (2 c i − h i + h 0 ) q i � Preventive take-backs

while 
∑ n 

i =1 x 
+ 
i 

> 0 and (2 c i ∗ − h i ∗ + h 0 ) q i ∗ ≤ (d + h i ∗ − h 0 )(1 −
q i ∗ ) s i ∗ do 

x i ∗ := x i ∗ − 1 

x 0 := x 0 + 1 

i ∗ = arg min i ∈{ j: x j > 0 } (2 c i − h i + h 0 ) q i 

In the shipments/cross-docking phase, the total number of

tems to be sent is known, and denoted by Z . We repeatedly se-

ect sending and receiving locations and update their stock levels

ntil all Z items are sent. As long as the depot has stock, the de-

ot is the sending location. Otherwise, cross docking is necessary,

nd the sending location is a location with stock that minimizes

 i − h i + b i q i , where 

 i = P ( D i − R i (y i ) > x i − 1 ) 

s the stock-out probability at location i after removing one item.

his minimizes a combination of the direct costs in the current

eriod and the expected backorder costs in the next period due to

aving lower inventory. The receiving location is a location with

ackorders that maximizes b i − c i + b i g i (y i ) , where 

 i (y i ) = 

{
1 

P(R (y i ) > 0) 
if y i > 0 , 

M if y i = 0 , 

s the expected number of periods until the first return when y i 
tems are rented, with M some large number. This maximizes a
ombination of directly prevented backorder costs and future back-

rder costs when the location needs to wait for an item to return.

nder this rule, items are typically sent to locations with low y i ,

hich should be prioritized because they are least likely to have

eturning items in the next period that can meet the backorder. 

In the threshold take-backs phase, all items exceeding the

ingle location thresholds x ∗
i 
(y i ) are taken back from the loca-

ions to the depot. This choice is motivated by the result in

roposition 3 (iii), showing that the two-location threshold is at

east as low as the single-location threshold. Since the cost trade-

ffs yielding this result also exist in the general problem, we

hoose to apply this same property to the general problem. It is

mportant to note that this step approximates the optimal solution

hen K is large. When K is large, the depot almost always has suf-

cient on-hand stock for shipments, hence each location can carry

ut its optimal single location policy without being affected by

hat happens at other locations. 

As we observed from the thresholds in the two-location prob-

em in Section 5 , in the preventive take-backs phase the depot is

esupplied for future shipments so that lower cross-docking han-

ling costs are incurred. Clearly, this is necessary only if there is a

igh enough probability of having to cross dock in the next period.

e model this by a regret based rule, comparing the expected re-

ret of a take-back with the expected regret of no take-back. After

arrying out a take-back, with probability q i the item is demanded

gain at location i in the next period at extra cost 2 c i − h i + h 0 ,

o the expected regret of a take-back is (2 c i − h i + h 0 ) q i . Let the

tock-out probability of the depot, excluding demand at location i ,

e given by 

 i = P 

( ∑ 

j � = i 
(D j − R j (y j ) − x j ) 

+ > x 0 

) 

. (20) 

hen no take-back is carried out, with probability (1 − q i ) s i the

tem needs to be cross docked to another location at extra cost

 + h i − h 0 , so then the expected regret is (d + h i − h 0 )(1 − q i ) s i .

e carry out preventive take-backs as long as the regret of a take-

ack exceeds that of no take-back. 

emark 4. The probability in Eq. (20) is a convolution of 2(n − 1)

andom variables, so we may need to approximate it for large n .

n case D i is Poisson for i = 1 , . . . , n, we can use the approximation

y Van der Heide et al. (2017) . They approximate the distribution

f (D i − R i (y i ) − x i ) 
+ by a Poisson (− log (P (D i − R i (y i ) ≤ x i )) distri-

ution, so that 
∑ 

j � = i (D j − R j (y j ) − x j ) is also Poisson distributed. 

. Numerical experiments 

In this section, numerical experiments are carried out with sev-

ral aims. First, we test the quality of the heuristic by comparing

t to the optimal solution. Second, we compare cross docking and

elayed shipments, to find out which type of transportation to use

n which circumstances. Third, we determine the value of storage

t the depot and we evaluate the benefits of using complete rental

eturn time distribution information over using aggregated infor-

ation only. Finally, we want to see whether there is an inven-

ory pooling effect in instances with high demand rates and a high

umber of locations. Before carrying out the experiments, we dis-

uss the set of instances used in most experiments and the nu-

eral implementation of the MDP. 

.1. Instances 

We create a set of 50 instances with different parameter con-

gurations that we use in most of our experiments. The included

arameters and their values are shown in Table 1 . The parameter
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Table 1 

Possible parameter values in the instances. 

Parameter Symbol Level 1 Level 2 Level 3 Level 4 Level 5 

System stock level K high low 

Visit frequency f 1 2 3 4 5 

Depot holding cost h 0 0.4 0.5 0.6 0.7 0.8 

Backorder cost b 8 11 14 17 20 

Shipment cost c 2 4 6 8 10 

Cross-docking handling 

cost 

d 0 1 2 3 4 

Demand rate λ 0.05 0.1 0.15 0.2 0.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Summary statistics for the percentage optimality gap of the heuristic. 

n Average Min. 1st quartile Median 3rd quartile Max. 

2 0.40 0.00 0.00 0.00 0.04 6.25 

3 0.59 0.00 0.03 0.15 0.50 4.52 

4 0.63 0.00 0.05 0.14 0.74 4.29 
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values are inspired by public libraries in the Netherlands, and some

are based directly on library transaction data from the Groningen

province. We use an orthogonal design, which allows for testing a

wide range of parameter values with a limited number of experi-

ments (Taguchi, 1986) . Specifically, we use the L50 array (see, e.g.,

NIST, 2017) , which has 1 two-level factor and up to 11 five-level

factors. We used the first 7 factors of the L50 array, in the same

order as in Table 1 . We repeat all 50 instances for different num-

bers of locations, and for a fair comparison between instances with

a different n , all rental locations in an instance have identical cost

parameters and demand/return distributions. 

The two-level factor is the system stock level K . Although we

have been unable to formally establish convexity, we observe nu-

merically that the optimal average cost is convex in K . Therefore,

we determine a value for K by calculating the optimal average cost

for K = 1 , 2 , . . . until it no longer decreases, which we label as ‘high

K ’ since it turns out to be rather high. Note that this choice for K

does not involve purchasing costs. In practice, fewer items may be

purchased due to budget cuts, so we check the impact of having

‘low K ’ by setting 

K = 1 . 5 

∑ n 
i =1 λi 

p 
, (21)

rounded to the nearest positive integer. 

Without loss of generality, the weekly holding cost is h i = 1

for i = 1 , . . . , n in all experiments; all other cost parameters can

be scaled accordingly. We do vary the holding cost at the depot

and the other cost parameters. As customers arrive randomly over

the week, we assume the weekly demand follows a Poisson dis-

tribution with rate λ. The values are based on our data set, where

weekly demand rates for almost all items are in the range [0, 0.25].

Furthermore, the weekly return probability in the same data set is

p = 0 . 3 . 

The visit frequency f measures the number of times per week

transportation takes place between the depot and the locations.

Where appropriate, we rescale the other parameters to match their

correct weekly rates, e.g., the holding cost per period should be

h i / f if the visit frequency is f . In order to have a weekly return

probability of p , the return probability per period for a given f is

1 − (1 − p) 1 / f . 

7.2. Implementation details 

The MDP and the heuristic have been implemented in Python.

All experiments are run on a computer with a Core i7-4770 CPU

(3.4 gigahertz) and 16 gigabytes memory. In order to have fi-

nite demand, we cut off the Poisson demand distributions at their

99.99% quantile. Moreover, in order to have a finite state space, we

introduce a maximum number of backorders B = 2 at each loca-

tion after demands/returns, with lost demands penalized at cost

� = 2 b. The number of possible states in the MDP with n locations,
 items, and B maximum backorders per location is 

S| = 

n ∑ 

i =0 

(
2 n + K − i 

K 

)(
n 

i 

)
B 

i . 

sing value iteration, instances with n = 4 , K = 8 , and B = 2

185,526 states) are solvable within 2 minutes. Instances with n =
 , K = 9 , and B = 2 (2,930,642 states) take several days, which is

hy we limit the instance size for the MDP to at most 4 locations.

.3. Performance of the heuristic 

In this first experiment, we evaluate the performance of the

euristic. For each value of n , we run the 50 instances (150 in to-

al), comparing the average cost of the heuristic with the average

ost of the optimal policy from the MDP. Summary statistics for

he optimality gap of the heuristic are shown in Table 2 . 

The average optimality gaps are similar for each value of n and

re well within 1%. In 126 out of 150 instances, the optimality gap

s within 1%, and in the remaining instances, the gap is at most

.25%. The heuristic has the largest optimality gaps in instances

ith a combination of high c , high λ, and high K , because it can

lightly overestimate the take-back amounts to the depot. 

.4. Cross docking vs. delayed shipments 

We now want to obtain managerial insights into the different

ransportation methods for dealing with lateral transshipment re-

uests. To that end, we compare the difference in costs between

ituations with cross docking (as presented in this paper) and de-

ayed shipments (Van der Heide et al., 2017) . Figs. 5 and 6 show

he resulting average costs for both policies for high and low val-

es of the total system stock. Separate graphs are shown for each

arameter, and the point at each parameter value gives the average

or all configurations with that same value. 

From Fig. 5 , we observe that the difference between cross dock-

ng and delayed shipments is small when K is high. The system

tock level is high enough for the depot to have sufficient stock to

eet all shipment requests. This implies that cross-docking actions

nd delayed shipments are not used much, and therefore, both

olicies have practically the same cost in most cases. The same

easoning also explains why the average cost is almost constant

n the graphs for b , d , and f . The average costs do increase strongly

n n , c , and λ, for obvious reasons. Interestingly, delayed shipments

ometimes have lower costs than cross docking due to the delay

f one period. Items returning during the delay can be used to

eet backorders, avoiding the need to ship and saving shipment

osts in the process. This is most relevant when b is very low or

hen f is large, because then the backorders costs incurred during

he delay are limited. Hence, costs can sometimes be saved by not

ross docking, which we further investigate in Section 7.5 . Overall,

elayed shipments seem preferred to cross docking in cases with

igh stock, because resulting costs are similar without the need to

isit rental locations a second time. 

For our practical case, we see that library organizations may

urchase fewer books due to budget cuts. The clear gap between

ross docking and delayed shipments for low K in Fig. 6 indicates

hat cross docking can be quite important in such situations. The
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Fig. 5. Cost of delayed shipments and cross docking when K is high. 

Fig. 6. Cost of delayed shipments and cross docking when K is low. 
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verage gap between the two is 9.56%. With low system stock,

ross docking and delayed shipments are more often necessary and

he average costs are much higher than for high K . It is no longer

ossible to avoid situations with backorders, as can be seen from

he increase of the average cost in b . Part of the gap is caused by

he direct backorder cost incurred for delayed shipments. Besides

hat, delayed shipment essentially prolongs the rental time by one
eriod, resulting in higher utilization of the stock in the system

nd extra backorders. Delayed shipments save cross-docking han-

ling costs at the expense of backorder costs, therefore the gap de-

reases in b and increases in d . The visit frequency also has signif-

cant impact. If the visit frequency is once per week, the average

ap is 20.51%. However, if the visit frequency is higher, the gap

etween cross docking and delayed shipments becomes smaller
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Fig. 7. Cost of cross docking and unrestricted actions when K is high. 
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quickly. The delay becomes shorter, therefore less backorder costs

are incurred during the delay. This interplay between visit fre-

quency and transport method is important to consider when or-

ganizing transportation in a rental system with a depot. 

7.5. Unrestricted actions 

An important observation from Section 7.4 is that sometimes

cost savings are possible by choosing not to ship/cross dock. There-

fore, we compare our cross-docking model to a model with un-

restricted actions, which is free to decide whether to ship, cross

dock, or do nothing when there is a backorder. Note that the model

with unrestricted actions has cross docking and delayed shipments

as special cases. 

On average, the cost reduction from unrestricted actions is

0.14% for low K and 1.08% for high K . Waiting for a returning item

rather than shipping/cross docking immediately is most interesting

in situations where a location has many rented items, therefore the

potential gains are larger for high K . Fig. 7 displays the impact of

the three most influential parameters for high K . Evidently, unre-

stricted actions are most effective when backorder costs are low or

shipment costs are high. Furthermore, if the holding cost at the de-

pot is quite low, we may prefer to keep items at the depot rather

than shipping them. Overall, the gains from unrestricted actions

are limited in most cases, so we would advise to always meet de-

mand to maximize customer satisfaction. 

7.6. Value of storage 

One of the main reasons to use a depot is to reduce holding

costs at the locations. To gain more insight into the extent of the

possible gains, we study a variant of the model where take-back

actions are prohibited, so that the depot cannot hold stock and

shipment requests must always be met by cross docking. 

The average gap between ‘no take-backs’ and cross docking is

1.37% for low K and 7.68% for high K . Under high K , some items are

not used much, so it is useful to store them at the depot. In con-

trast, under low K , most stock is in demand, so we cannot achieve

a similar benefit. Fig. 8 shows the gaps for some parameters under

high K . The most clear effects are visible in the graphs for the de-

pot holding cost and the shipment cost. Clearly, if the holding cost

at the depot is lower, the gains from storing at the depot will be

larger. Similarly, if the transport is cheap, we can afford to store

more items at the depot. The absolute gap remains more or less

constant in the demand rate, so the relative benefit of the depot

is largest for low demand rates. We also tested this for extremely

low demand items with λ< 0.01; then the gap can be over 50% in

some instances. 
.7. Value of rental information 

The aim of this experiment is to provide insights into the re-

uired information about rented items for making good decisions.

his helps to determine when it is appropriate to use simple in-

ormation structures (tracking only the number of rental items at

ach location) over more advanced information structures (track-

ng the rental time for each rented item). To that end we compare

olicies under geometric and time-dependent return distributions

ith each other. We solve MDPs with time-dependent distributions

o optimality, and then evaluate the optimality gap by using the

ptimal actions from the MDP with geometric returns in the same

tate of information. 

We generate 10 0 0 random configurations. The time-dependent

eturn distribution has probability density function f ( j ) for j =
 , . . . , T , where T is the due date. Each f ( j ) is randomly gener-

ted from a Uniform(0, 1) distribution, rescaled such that the

otal sums to 1. The corresponding parameter of the geomet-

ic distribution is p = 1 / 
∑ T 

j=1 j f ( j ) . We sample n , K , and T uni-

ormly from the sets {2, 3}, {2, 3, 4}, and {2, 3, 4}. The cost pa-

ameters are uniformly distributed between ranges 0.3 < h 0 < 0.9,

0 < b < 20, 1 < c < 10, and 0 < d < 5. The demand parameters λi are

niform (v 1 , v 1 + v 2 ) distributed with v 1 ∼ Uniform (0 . 05 , 0 . 15) and

 2 ∼ Uniform (0 , 0 . 2) . The remaining parameters are f = 1 , B = 2 ,

nd � = 2 b. Fig. 9 shows a histogram of the deviations in all con-

gurations. 

The average deviation is 0.1%, indicating that the geometric

ptimal policy gives good results even if the returns are time-

ependent. Of the 10 0 0 configurations, there are 92 for which

he deviation exceeds 0.3%, with the maximum being 0.89%. In

hose configurations typically the average return time is long and

he backorder cost is small compared to the sum of the cross-

ocking and shipment cost. Overall the assumption of geometric

eturns appears to yield good results in this experiment, in line

ith the findings of Alfredsson and Verrijdt (1999) for exponential

ead times in a base-stock system. 

.8. Pooling effect in larger systems 

In this final experiment, we study the impact of a larger num-

er of locations and higher demand rates on the costs of operat-

ng the rental system. We do this by simulating the average cost

f the heuristic for a base case from our experimental design. The

ost of every instance is based on 10 0 0 simulation runs of 10 0 0

eriods, excluding a 100 period warmup that starts with all stock

t the depot. The parameters of the base case are f = 1 , b = 14 ,

 = 6 , d = 2 , h 0 = 0 . 6 . We vary the number of locations n between

 and 50, and the demand rate λ between 0.1 and 5. We optimize
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Fig. 8. Percentage cost increase of not using the depot. 

Fig. 9. Histogram of the deviations in the 10 0 0 configurations when using geomet- 

ric policies in case of time-dependent returns. 

Fig. 10. Average costs per rental. 
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Fig. 11. Time-average items per location for λ = 1 . 
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 in the range [ K min , 5 K min ] by a bisection search on the simulated

osts, where K min = 
 nλ/p � is the smallest value of K needed for

tability. 

Fig. 10 shows the average cost per rental for different values of

 and λ. The average cost per rental decreases in n and also in λ.

he decrease in λ is due to demand becoming more predictable

the coefficient of variation 1 / 
√ 

λ decreases in λ). The decrease in

 is due to the inventory pooling effect visible in Fig. 11 , depicting

everal time-averages for λ = 1 . The average on-hand inventory per

ocation, both locally and centrally, decreases quickly at first and

ecomes constant at some point. The on-hand stock at the depot

s high enough to meet all shipment requests on average. Clearly,

he average number of rented items must be exactly λ/ p ≈ 3.33. All

n all, standard insights about inventory pooling also seem to hold

n our rental system. 
. Conclusion 

This paper studies a library system with a low-cost depot that

an be used for storage, shipments, and cross docking. We pro-

ide theoretical results for the structure of the optimal policy in

ettings with one and two library locations. In both cases, optimal

olicies can be characterized by a series of state-dependent thresh-

lds in the number of rented items. For one location the thresholds

re based on a trade-off between holding and transportation costs,

hile for two locations there is a richer trade-off also involving

ross-docking handling costs. Based on these structural results, we

evelop an effective heuristic for the multi-location case. 

The results from this paper provide several managerial insights

egarding the use of depots in library systems. The cross-docking

ption at the depot is shown to better than delayed shipments un-

er low stock levels, but delayed shipments are almost as effective

nder high stock levels or when locations are visited often by a

ehicle from the depot. The value of storing stock at the depot is

ighest for low demand rates and relatively high stock levels. For

arious types of settings it can thus be worthwhile to employ a

epot. 

Theoretical insights from the optimal policy structure, for

xample the single-location problem, can be used in practice for

ividing items between a front and back area of a library location,

r for deciding which items to remove from locations in order to

ake room for new items. We also identified in which cases it

an be important to consider information about rental durations

ather than only the total number of rented items. This is most

mportant when there is a small difference between backordering
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and transportation costs and rental times are long. However, in

most cases it is sufficient to base decisions on the total number of

rented items, leading to formulations that are easier to solve and

heuristics that are easier to understand. 

Several interesting model extensions can be considered in fu-

ture research. An important assumption in the model is that rented

items are returned to their original location. The model can be

extended to the situation where items return to other locations,

for example in car rentals, by introducing routing probabilities for

each returning item. Shipment costs can be generalized, for exam-

ple, to a fixed cost plus a variable cost per item shipped. While

such non-linear costs are trivial to implement in the MDP, the last

item approach from our analysis will no longer work and a differ-

ent approach must be used. For settings with seasonal demand, it

is interesting to consider non-stationary demand. A possible way

to solve this is by applying a rolling-horizon approach, using fore-

casts of the parameters of the demand distribution for each period

in a finite horizon. Another extension is introducing reservations,

meaning that customers wait for a return at their location rather

than having items shipped from the depot. Finally, it is interesting

to study a multi-item setting, where a fraction of customers substi-

tutes to another product on a local stock-out instead of asking for

a shipment from the depot. A starting point could be to extend our

single-location problem analysis to two items. All in all, we believe

there are ample future research opportunities. 
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Appendix A. Description of the practical context 

In this appendix, we present the main underlying assumptions

of our setting, explain their rationale, and provide examples from

practice. We study a network of cooperating libraries. There is a

central depot that is used for centralized storage of books, and all

transportation of books is routed via this depot. 

A.1. Libraries work together and share an inventory 

Libraries in the Netherlands are by law required to participate

in the national system of interlibrary loans. This implies that books

from all libraries must be accessible to members of all other li-

braries. National and provincial coordination enable preservation

of books with low demand (the long-tail collection) in one or

a few locations (Lammers, 2020) . Similar cooperative constructs

for libraries exist in numerous places, and have been around for

decades (Bartlett, 2014) . Many university libraries are organized as

cooperative systems, for example at Linkoping University in Swe-

den consisting of 5 libraries (Burman & Brage, 2016) . Also pub-

lic libraries are organized as such, for example, the library system

of the Brooklyn Public Library and the New York Public Library

(Quandt, 2017) . 

A.2. Libraries ship substantial amounts of books to other libraries 

every day 

The following statistics for the public libraries in the Nether-

lands are presented in Lammers (2020) for the year 2018. A total

of 66.5 million books are borrowed from libraries. Requests for lo-

cally unavailable books can be fulfilled from other libraries in the

same province, which occurred for 1.39 million books. Books that

are not available from any library in the province, are obtained
rom public libraries elsewhere in the country or from university

ibraries, which occurred 40,209 times. Similarly, the Brooklyn and

ew York public libraries move 7.4 million books annually (Quandt,

017) , and the San Francisco Public Library 1.76 million (Apte &

ason, 2006) . 

.3. Libraries face significant inventory holding costs 

May and Black (2010) note three roles of libraries that require

pace: provider of books and information, provider of access to

echnology and provider of a social space where members of the

ublic are welcome. Taking only the first role into account, clas-

ic inventory costs are likely to be moderate. A large cost compo-

ent in the Netherlands arises from the prescribed annual replace-

ent rate of 10% (Lammers, 2020) . However, the other two roles

dd considerably to the inventory costs in the form of opportu-

ity costs. Space used for storing books cannot be used for other

ctivities. For example, a library from Denmark transferred large

mounts of books to a shared storage facility to make room for

eople and activities (Petersen & Kooistra, 2020) . Assigning value

o space allows for taking these current developments in the roles

f libraries into account. In contrast, storage in depots is typically

ignificantly cheaper. There are many factors that potentially con-

ribute to this, for example, depots can be located where space is

heaper, theft rates (e.g., Cromwell, Alexander, & Dotson, 2008) are

ower in areas not open to the public, and storage density (e.g.,

oysen, Briskorn, & Emde, 2017) is higher in warehouses than in

ibraries. 

.4. There exists a (central) depot to store books 

Already in 1890 the Victorian statesman W.E. Gladstone pro-

osed to shelve books according to their ‘sociability’, moving less

ociable items to mobile shelving or other maximum-density stor-

ge areas (Scarre, 2017) . Depots for book storage continue to ex-

st in various forms. For example, many countries, including Fin-

and, Norway, Estonia and France, have a national repository from

hich books can be borrowed (Vattulainen, 2004) . In the Nether-

ands, approximately 30 so-called Plus-libraries, take on a leading

ole at the national level and provide central storage for certain

ategories of books (Lammers, 2020) . At the local level, libraries in

he Netherlands are often organized with a central library and a

umber of small branch libraries, where the central library func-

ions as a depot with which branch libraries exchange books. Uni-

ersity libraries have a long history in using this approach, among

thers for the efficiency gains attained by central depots (Walsh,

969) . 

.5. The depot must be used if a book is shipped from one library to 

nother 

This configuration is often referred to as a hub-and-spoke net-

ork. Apte and Mason (2006) describe this system for the San

rancisco Public Library. The books are placed without sorting in

ins at the originating branch library. Subsequently the books are

rought to the main library, where they are sorted and placed in

eparate bins per destination. Finally, bins are delivered to the ap-

ropriate destinations. The New York Public Library does not per-

orm the sorting at the main library, but has a dedicated facility

or this purpose, which has an automated sortation system with a

apacity of 12,0 0 0 books per hour (Quandt, 2017) . In the Nether-

ands, this is organized per province (Lammers, 2020) ; a commer-

ial parcel carrier connect the provincial depots for the 3% of ship-

ents that occur between provinces. 
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.6. Costs for shipping books increase linearly with the number of 

ooks shipped 

Since books are small and can be transported in bulk in bins,

he transportation costs are quite low. For example, at the San

rancisco Public Library total transport costs divided by the num-

er of transported books provided a cost estimate of 12.8 cents

er book (Apte & Mason, 2006) . On the other hand, per item han-

ling and processing costs inside the library are substantial. From

n analysis at our own university library (De Boer, 2017) , we found

hat fulfilling a request from another library takes 395 seconds on

verage, of which 150 seconds is for retrieving the book from stor-

ge. The remaining 245 seconds is for administrative processing,

hich is time consuming since it involves three separate IT sys-

ems. At an hourly wage of 25 euro, this amounts to a cost per

ook of 1.04 euro for retrieval and 1.70 euro for administration. Li-

raries in the same region often use the same IT system, which re-

uces administrative time. However, IT systems are often outdated

nd not user-friendly. Barton, Eighmy, Chao, Munson, and Varnum

2016) describe: “Staff processing of requests remains labor inten-

ive. The ability to automatically route requests remains underde-

eloped and stunted.”

.7. Return times are more or less independent of rental times 

Libraries indicate a deadline for returning a book, however,

oans can easily be renewed for free via the librarys website. Fur-

hermore, if a book is returned late, often no fines are imposed.

ore than a third of libraries in the Netherlands do not charge

nes, and this number is steadily increasing (Deckers, 2019) . A

imilar situation is observed in the United States (ULC, 2020) .

oreover, the American Library Association asks libraries to recon-

ider their practice of imposing fines for late returns (ALA, 2019) ,

ince fines discourage library usage especially for those who could

ost benefit from it. These facts result in a situation in which re-

urn times of books correlate only weakly with the return deadline,

s is also visible from practical data (see Section 3.1) . Furthermore,

e provide numerical results (see Section 7.7) showing that even

f such correlation exists, the assumption is not restrictive. 

.8. Customers are willing to wait an infinite amount of time for a 

ook 

Customers may renege in practice if the waiting is too long,

owever, the probability of this event occurring is small and there-

ore of little consequence for the outcomes of the model. First, cus-

omers are unlikely to renege as their willingness to wait is high,

ostly because there is typically no viable alternative to obtain the

ook for free. In a survey, the acceptable waiting time was found

o be twelve days (Ruigrok, 2017) . Second, the probability that the

equested book is available in the network is high. In the Nether-

ands, there are 24.3 million library books that are borrowed 66.5

illion times (Lammers, 2020) , so books on average are out-of-

tock only three times per year. Finally, requested books typically

emain available for pickup by the customer for two weeks. During

his time, the book is unavailable for other customers, making the

ffect of a reneging customer on system performance proportion-

te to a loan. 

.9. No preemptive supply of books is permitted, even if a library 

uns empty 

Books are not shipped to a location, unless there is a request

and no stock) at that location. We explain this by contradiction.

uppose there is no current request for a book at a location, but

evertheless we transport it there. Then two situations may occur.
a) The first request in the system does not occur at the location

here the book was shipped to. Then unnecessary transport costs

ill have been made, as the book will need to be returned without

aving been used. (b) The first request in the system does occur

t the location where the book was shipped to. Then no savings

ave been achieved in transport costs, but inventory costs could

ave been lowered by shipping the book at a later time. Hence,

he only reason for moving a book in advance, would be to provide

ustomers with an interesting portfolio of books to browse in the

ibrary, which is not the focus of this paper. 

ppendix B. Proofs 

.1. Proof of Lemma 1 

roof. (i) It is easy to see that the transition probabilities in

q. (13) are stochastically monotone in y , that is, E[ y t+1 | y t ] ≤
[ y t+1 | y ′ t ] for y t ≤ y ′ t (Altman & Stidham, 1995) . Now consider

quivalent sample paths starting from state y and y + 1 . In equiva-

ent sample paths, the demands in each period are the same, as are

he returns of the common y rented items, while the extra rented

tem in state y + 1 returns according to a Geometric( p ) distribu-

ion. Let τ ( x , y ) be the time until item m = x + y is demanded,

efined in Eq. (15) . For every equivalent sample path, it is evi-

ent that τ (m − y, y ) ≥ τ (m − y − 1 , y + 1) . The holding cost bene-

t from a take-back, i.e., (h − h 0 ) τ (m − y, y ) , is thus non-increasing

n y , while the transportation cost 2 c is constant. Since the transi-

ion probabilities are stochastically monotone in y and the bene-

t from a take-back is non-increasing in y , it follows that αm 

y is

onotonic non-increasing in y . 

(ii) For the first part, assume αm 

y = 1 is the optimal take-back

ecision for state y with m items. Now consider the action αm +1 
y +1 

n state y + 1 for the problem with m + 1 items. Both these states

ave on-hand stock x = m − y . Similar to (i), for each equivalent

ample path we have τ (m − y, y + 1) ≥ τ (m − y, y ) . For the same x ,

he benefit from a take-back is non-decreasing in y , hence αm 

y = 1

mplies αm +1 
y +1 

= 1 . By induction, the claim follows. 

For the second part, assume that αm 

y = 0 . Now suppose αm −1 
y −1 

=
 . The first part implies that αm 

y = 1 , leading to a contradiction.

ence, if αm 

y = 0 , then αy −k 

y −k 
= 0 for all k ∈ 0 , . . . , y . 

(iii) For the first part suppose αm 

y = 1 for some y and m . Then

y (ii), αm 

y = 1 implies that αm +1 
y +1 

= 1 . By (i), αm +1 
y +1 

= 1 implies
m +1 
y = 1 . Hence, if αm 

y = 1 then αm +1 
y = 1 . By induction αk 

y = 1 for

ll k > m . The second part can be proven analogously. �

.2. Proof of Proposition 1 

roof. (i) Immediate from Lemma 1 (iii). 

(ii) Lemma 1 (ii) implies x ∗(y ) ≥ x ∗(y + 1) . We still need to

rove x ∗(y ) ≤ x ∗(y + 1) + 1 . To that end, suppose that y + 1 and

hreshold x ∗(y + 1) are given. Then it is optimal to take back on-

and item x ∗(y + 1) + 1 , or, equivalently, αm 

y +1 
= 1 in the MDP for

ast on-hand item m = x ∗(y + 1) + y + 2 . By Lemma 1 (i), then also
m 

y = 1 , so the on-hand stock after take-backs for y is at most

 − y − 1 = x ∗(y + 1) + 1 . Hence, x ∗(y ) ≤ x ∗(y + 1) + 1 . �

.3. Proof of Proposition 2 

roof. (i) Suppose the threshold x ∗(0) = m is given. In the thresh-

ld, we require a m 

0 
= 0 and a m +1 

0 
= 1 . By Lemma 1 (i), we have

 

m 

y = 0 for all y . The expected cost of a m 

0 
= 0 is therefore hE [ τ ( m ,
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0)], while the expected cost of a m 

0 
= 1 is h 0 E[ τ (m, 0)] + 2 c. So in

the threshold state we need to have 

(h − h 0 ) E[ τ (x ∗(0) , 0)] ≤ 2 c < (h − h 0 ) E[ τ (x ∗(0) + 1 , 0)] . 

As E [ τ ( x , y )] is increasing in x the result follows. 

(ii) Introduce a three state finite Markov chain for the last on-

hand item m = y + 1 . This chain starts in state y with 1 on-hand

item and y rented items. With probability P y,y = P (D − R (y ) = 0)

we remain in state y and pay h − h 0 . With probability P y,Y = P (D −
R (y ) < 0) we enter the set of states Y = { 0 , . . . , y − 1 } with bound-

ary condition V m (Y ) = 2 c (take back the item). With probability

P y,m 

= P (D − R (y ) > 0) we enter state m with boundary condition

 

m (m ) = 0 (the item is rented by a customer). The value V 

m ( y ) of

state y can be determined from 

 

m (y ) = h − h 0 + P y,Y V 

m (Y ) + P y,y V 

m (y ) + P y,m 

V 

m (m ) , 

resulting in 

 

m (y ) = 

h − h 0 + 2 cP (D − R (y ) < 0) 

1 − P (D − R (y ) = 0) 
. 

Whenever V 

m ( y ) ≥ 2 c , carrying out a take-back saves V m (y ) − 2 c ≥
0 . The take-back of the last on-hand item is therefore profitable

whenever 

P (D − R (y ) > 0) ≤ h − h 0 

2 c 
. 

As P (D − R (y ) > 0) is decreasing in y the result follows. �

Proof of Lemma 2 

Proof. (i) First observe that the transition probabilities of y 1 and

y 2 are monotone and independent of each other. Therefore, τ 2 is

constant in y 1 for fixed y 2 . Now, as in the proof of Lemma 1 (i),

consider an equivalent sample path for the stock process at loca-

tion 1 when starting at y 1 and y 1 + 1 . For every possible equiva-

lent sample path, we have τ1 (m − y 1 , y 1 ) ≥ τ1 (m − y 1 − 1 , y 1 + 1) .

Since τ 1 decreases in y 1 , the take-back cost 2 c 1 P ( τ 1 ≤ τ 2 ) increases

in y 1 , while the expected reduction in holding costs of a take-back

decreases in y 1 . Therefore, αm 

y 1 ,y 2 
is monotonic non-increasing in

y 1 . 

(ii) Analogous to (i), an equivalent sample path argument for

location 2 can be used to show that the expected cross-docking

handling costs increase in y 2 . �

B.4. Proof of Proposition 3 

Proof. (i) Using similar sample path arguments as in

Lemmas 1 and 2 , we can show that for fixed values of y 1 
and y 2 , αm 

y 1 ,y 2 
= 1 ⇒ αm +1 

y 1 ,y 2 
= 1 and αm 

y 1 ,y 2 
= 0 ⇒ αm −1 

y 1 ,y 2 
= 0 . By

induction the threshold result then follows. 

(ii) Analogous to Lemma 2 . 

(iii) For this consider the following sample path argument. Sup-

pose the on-hand stock at location 1 exceeds x ∗1 (y 1 ) , so that in the

SLP we would take back item m . For all sample paths with τ 1 ≤ τ 2 ,

the expected cost-savings for a take-back of item m are the same

as in the SLP. Now consider a sample path with τ 2 < τ 1 . Then

the cost-savings from carrying out a take-back are τ2 (h 1 − h 0 ) + d.

Since, with the presence of location 2, the take-back action leads

to at least the same cost-savings as in the SLP, we will hold no

more than x ∗1 (y 1 ) on-hand items at location 1. �

B.5. Proof of Lemma 3 

Proof. The first moments of demand for item m are given by

τ1 = τ1 (1 , 0) and τ2 = τ2 (1 , 0) . Clearly, τi , i = 1 , 2 , is Geom( p i ) dis-

tributed with p = P (D > 0) . Hence, min ( τ , τ ) is Geom (1 − (1 −
i i 1 2 
p 1 )(1 − p 2 )) distributed. We thus find 

[ min (τ1 , τ2 )] = 

1 

1 − (1 − p 1 )(1 − p 2 ) 
, 

nd 

 (τ1 ≤ τ2 ) = 

p 1 
1 − (1 − p 1 )(1 − p 2 ) 

. 

ubstituting the expressions into (19) (leaving out τA since it is ∞ )

nd removing the common denominator gives the result. �
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