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Figure 5.10: Receiver operating characteristic curves for one class vs All (multi-class
problem). Top-left panel shows CBSD vs All and CMD vs All in the original feature
space (400 - 900nm. Top-right panel shows CBSD vs All and CMD vs All with re-
duced features (peak selection). The bottom panel shows Healthy vs All both in the
original space and reduced features (peak selection). The solid lines refer to AUC in
original feature space (400 - 900nm) while the dashed lines refer to AUC with peak
selection between 500 - 600nm.

One aspect of our future work is to build a low-cost smartphone add-on spec-
trometer. This work provides a feature band of spectra that is most relevant for
diagnosing these serious diseases. One possible way of building the spectrometer is
by use of specific diodes (an additional cost of $5 ´ 8) that are sensitive at those par-
ticular relevant feature wavelengths and building a light emitting, absorption and
measurement system around that.

Based on:

G. Owomugisha, E. Nuwamanya, J. A. Quinn, M. Biehl, E. Mwebaze – “Early Detection of Plant Diseases
Using Spectral Data, ’Proceedings of the 3rd International Conference on Applications of Intelligent
Systems’, Las Palmas de Gran Canaria, Spain, Publisher: Association for Computing Machinery, 2020.

Chapter 6

Early detection of plant diseases using
spectral data

Abstract

Early detection of crop disease is an essential step in food security. Usually, the detection
becomes possible in a stage where disease symptoms are already visible on the aerial part
of the plant. However, once the disease has manifested in different parts of the plant,
little can be done to salvage the situation. Here, we suggest that the use of visible and
near infrared spectral information facilitates disease detection in cassava crops before
symptoms can be seen by the human eye. To test this hypothesis, we grow cassava plants
in a screen house where they are inoculated with disease viruses. We monitor the plants
over time collecting both spectra and plant tissue for wet chemistry analysis. Our results
demonstrate that suitably trained classifiers are indeed able to detect cassava diseases.
Specifically, we consider Generalized Matrix Relevance Learning Vector Quantization
(GMLVQ) applied to original spectra and, alternatively, in combination with dimension
reduction by Principal Component Analysis (PCA). We show that successful detection
is possible shortly after the infection can be confirmed by wet lab chemistry, several weeks
before symptoms manifest on the plants.
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6.1 Introduction

Early detection of disease in crops is of paramount importance for food security,
particularly in Sub-Saharan Africa. In this paper we focus on a key food security
crop: cassava (Manihot escuenta). This crop is grown predominantly by small-
holder farmers because it can easily be grown even when environmental conditions
are tough and also because it requires few inputs. However, productivity has been
limited by several other factors, susceptibility to pests and diseases being the most
severe one.

In this chapter, we focus on developing methods for diagnosing cassava diseases
before they are visibly symptomatic on the plant. We build on the previous studies
e.g. (Mwebaze and Biehl 2016, Nuwamanya et al. 2014) and the previous chapters
that showed the superiority of spectral data over raw image data when used for
detection of diseases in cassava. The uniqueness in the current work is the ability
to identify cassava brown streak disease (CBSD) at a much earlier stage in the life-
cyle of an inoculated cassava plant, before disease symptoms become visible to the
human eye. Different sets of plants were grown in a screen house and a portion of
them inoculated and monitored regularly over time. At each monitoring epoch, wet
chemistry was applied to determine the state of health of the plants. This work is
guided by our hypothesis that crop diseases cause several metabolic changes in the
metabolism of the leaf which can be detected at an early stage using a spectrometer.
Unlike in the previous experimental work (chapters 4 and 5), where we considered
visibly diseased mature plants aged 6 - 9 months and grown in open fields, this work
is based on a controlled experiment in a screen house environment. The controlled
setup rules out the influence of other diseases, pests or severe weather conditions
while at the same time providing us with time series data that allows us to deter-
mine how soon we can diagnose disease in a non symptomatic plant.

Presently, CBSD is one of the most severe disease in cassava and it is transmitted
from garden to garden by vectors called white flies (Njoroge et al. 2017, Thresh et al.
1994). The disease can also be transmitted through infected plant cuttings. The
disease symptoms consist of a characteristic yellow or necrotic vein banding which
may enlarge and coalesce to form comparatively large yellow patches of the leaf.
Tuberous root symptoms consist of dark-brown necrotic areas within the tuber and
reduction in root size. However, leaf and/or stem symptoms can occur without the
development of tuber symptoms (Hillocks et al. 1996).

Most current methods of diagnosis rely on visual inspection of the plants by agri-
cultural experts. However, the process is tedious and there is frequently a significant
degree of disagreement between the experts’ assessment. Thus, the introduction of
efficient, reproducible computational diagnoses has been aimed at in recent years,
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including our study (Owomugisha and Mwebaze 2016) where diagnosis was done
using plant image data taken with a smartphone. The limiting factor of such systems
is that disease symptoms have to be visible in the photographic image. Once symp-
toms have manifested, the root of the plant is already affected and can no longer be
used as food particularly for CBSD disease.

The sections that follow describe the experimental setup we followed to detect
CBSD under a controlled environment. Specifically, section 6.2 presents studied
done in relation to molecular and biological characterization of CBSD disease, we
also bring out some studies that have been done in the area of disease diagnosis
using spectrometry as we also focus on the use on near infra-red light. In section
6.3.1, we present the experimental setup including the data collection protocol that
was used. Section 6.4 presents results of the experiment which are in two parts; wet
chemistry lab and machine learning models. Finally, we discuss the results and a
conclusion in section 6.5.

6.2 Related work

There has been a lot of work on automating the detection of disease in crops from
images. Most of these rely on the visible symptoms of the disease being present and
manifest on the leaves or stem of the plant. A smaller number of studies has investi-
gated detection of disease before its symptomatic on the plant. The gold standard is
the use of wet lab chemistry to determine the presence or absence of disease in the
plant material. This tends to be a destructive process.

These studies tend to be carried out in screen houses where conditions are well
controlled. Healthy crops in the screen house are generally inoculated with disease
and measurements are taken over time. For cassava previous studies have mainly
relied on non-vector transmission of disease to the plants (Rwegasira and MER 2015,
Wagaba et al. 2013, Maruthi et al. 2014). In this method virulent isolates of disease
are grafted on to healthy plants. Vector based methods in cassava include using
diseased whiteflies to infect the cassava. While this tends to be the natural means
of transmission, it is hard to replicated in a screen house. We employed non-vector
methods in our study.

Once the crops in a screen house are infected, then comes the task of determining
the state of health of the plant. A common non-destructive method of doing this is
spectroscopy. Several studies have been carried out using spectroscopy to agricul-
ture including some previous work (Owomugisha et al. 2018). Spectroscopy tech-
niques are broadly categorize as follows: fluorescence spectroscopy, multispectral
or hyperspectral imaging, infrared spectroscopy, visible/multiband spectroscopy
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among others (Sindhuja et al. 2010).
A lot of work in this area has been done using the Miniature Leaf Spectrometer

CI-710 (CID- Bio-Science) (CID Bio-Science Inc 2010) as the collection instrument. It
is portable and non-destructive of the material being measured. Most of this work
tends to be be focused on determining the chlorophyll levels of the plant (Oliwa et al.
2016, Oliveira et al. 2017). In this study we used this miniature leaf spectrometer for
data collection.

6.3 Materials and methods

6.3.1 Experimental design and data collection

The experiment was conducted in a controlled screen house environment. This
setup rules out the influence of other diseases, pests or severe weather conditions.
Cassava stems of variety Narocass 1 and NASE 14 were acquired from different
fields and first tested to confirm that they were from healthy plants. All planting
materials were thoroughly cleaned, which included the sterilization of the soil to
ensure that no gaps led to disease transmission.

Initially, twenty seven (27) healthy cassava stems were planted. At week four (4)
of growth, plants were split into two (2) separated groups. The first one (10 plants)
was reserved as a healthy control class (HC) and no disease inoculation was applied
to the group. The second group of plants (17 plants) was infected with the cassava
brown streak disease(CBSD) virus. CBSD virus was transmitted to these plants us-
ing a non-vector technique also known as grafting inoculation rated amongst the
most efficient ways of inoculation (Rwegasira and MER 2015, Wagaba et al. 2013).

Guided by agricultural and bio-chemical experts from the Uganda National Crop
Resources Research Institute (NaCRRI), the process of data collection targeted two
(2) sets of data which were essential in this study. The first set of data was col-
lected using the leaf spectrometer (CID Bio-Science Inc 2010), another set of data
was provided by the bio-chemical experts using wet chemistry lab results based on
real-time RT-PCR of CBSD virus. In addition, a visual assessment of the plant status
was provided by the agricultural experts. Data was collected for a period of fifteen
(15) consecutive weeks inclusive of the first week before plant disease inoculation.
For each week, three lower leaves on each plant were identified and tagged. Spectral
data and tissue samples were collected on all the three leaves. In total, the number of
samples collected per week per class were 30 and 51 data points for HC and CBSD,
respectively. Tissue samples were used for the lab tests. This process was repeated
for the entire 15 weeks of the experiment. Figure 6.1 shows the data collection with
the leaf spectrometer.
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Figure 6.1: Sample cassava crops grown in the screen house setting.

6.3.2 Confirmation of CBSD transmission

Usually, when a plant is infected with a certain virus, its DNA begins to alter and a
specific type of protein molecules are produced and introduced to the plant by the
pathogen during infection. The confirmation of a successful transmission of the tar-
get viruses can be determined in two ways ( molecular-based disease detection and
PCR-based disease detection techniques). These methods have been investigated on
previously including the study in (Sindhuja et al. 2010). In this section, we discuss
the protocols we acquired to confirm the presence of CBSD in our study.

Ribonucleic acid (RNA) extraction

RNA is nucleic acid molecule similar to DNA but containing ribose rather than de-
oxyribose (Strazewski 2014, Coleman 2005). RNA was extracted using the protocol
explained in (Monger et al. 2001) with a few modifications. Cassava leaves were
ground to powder with liquid nitrogen in a sterile mortar using a sterile pestle. 2
mL of grinding buffer was added (2% CTAB, 2% polyvinylpolypyrrolidone, 100 mm
Tris pH 8.0, 20 mm EDTA, 1.4 M NaCl and 20 mm DDT added fresh). The suspen-
sion (800 ul) was transferred to a 2 mL micrfuge tube and then incubated at 65 ˝C
for 30 min.

After incubation, equal volume (800 ul) of chloroform: Iso amyl alcohol (24:1)
was added and mixed by inverting the tube. The phases were separated by mi-
crofuge at 13,000 rpm for 10 min. The upper aqueous layer was transferred to a
new sterile 1.5 mL eppendorf tube and chloroform extraction repeated. Ethanol
precipitation of the nucleic acids was performed with 0.5 volumes of 5M NaCl and
2 volumes of ice cold ethanol at -200 ˝ C for 30 min. The nucleic acid was collected
by microfuge. The nucleic acid was collected by microfuge at 10,000 rpm for 10 min
and resuspended in 0.5 - 1.0 mL of 2 M LiCl. The nucleic acid was left in the LiCl
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overnight at 40˝C. The RNA was pelleted in a microfuge at 13,000 rpm for 30 min at
40 ˝C. The LiCl was removed, the pellet washed with 70% ethanol, dried and resus-
pended in 60 ul of RNase-free water. The RNA concentration was measured using
a nanodrop spectrophotomer 2000 and 5 ul of RNA of each sample was run on 1%
agarose and viewed under UV to check whether it was degraded or not using the
SYNGEN gel documentation system.

Real-Time Polymerase Chain Reaction (RT-PCR)

The reactions were prepared in a 96 well plate and analyzed with RT-PCR to detect
the two viruses CBSV and UCBSV. As a control, a COX assay was also carried out.
COX is a widely used housekeeping gene for normalizing cycle threshold (Ct) val-
ues. The COX assay was performed to see if there was cDNA in the samples. Three
master mixes were made (CBSV, UCBSV and COX) with the final concentration of
10 ul 2x Sso advanced Universal SYBR green super mix, 1 ul of 10 pmol/ul forward
primer, 1 ul of 10 pmol/ul reverse primer, 6 ul of nuclease free water and 2 ul of
cDNA per reaction. The Real-Time amplification program was set; initial denatu-
ration 95 ˝C for 30 min followed by 40 cycles of Denaturation at 95 ˝C for 10 sec
and annealing at 56 ˝C for 30 sec. cDNA from CBSV- and UCBSV- infected plants
were used as positive controls. A negative control with all the reagents and sterile
distilled water instead of cDNA was used.

6.3.3 Data pre-processing and feature extraction

The process of data collection generated two (2) sets of data which were essential for
analysis; spectral and RT-PCR data. RT-PCR data was analyzed by the bio-chemists
and together with visual symptom scoring, we consider this data as the ground
truth information in our experiment. In this section we discuss the pre-processing
and feature extraction techniques we applied for spectral data used in the machine
learning models. We follow the same pre-processing approach defined in chapter 4.
A typical spectrogram is representing the two classes; healthy and CBSD see Figure
6.2. The intensities corresponding to the smallest and largest wavelengths are af-
fected by significant noise. By truncating the spectrogram, we selected a wavelength
range of 400 - 900 nm for subsequent analysis. This truncation provided a range of
500 nm, corresponding to 2500 equally spaced feature dimensions, which was still
quite high. The spectrogram had many perturbations from small noise added to
each wavelength. Consequently, the next pre-processing step aimed at smoothing
the data over a small window of wavelengths. Average filtering was applied on all
the data and a window size of 15 nm was used.
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Figure 6.2: Spectral data in original form. Mean spectra of healthy samples and
diseased samples are shown, respectively.

6.3.4 Dimensionality reduction

Spectral data of the type considered here are nominally high-dimensional. As a con-
sequence, the naive application of machine learning techniques will result in clas-
sifiers with a very large number of adjustable parameters, which causes problems
ranging from computationally expensive training to a potentially increased risk of
over-fitting.

In this study, we employed standard PCA for the purpose of dimension reduc-
tion. PCA is a well known and widely used technique for correlation analysis and
dimensional reduction, e.g. (Vasan and Surendiran 2016). The technique identifies
a linear transformation of vectors such that the orthogonal projections are ordered
according to the variation in the data.

Original vectors x̂ P RN̂ are mapped to the coefficient space via

x “ Ψ x̂ P RN where the matrix Ψ P RN̂ˆN (6.1)

is obtained from a given set of P N̂ -dim. vectors and comprises N ď P orthogonal
principal components.

In our analysis of N̂ -dimensional spectra, the vectors x P RN with N ă N̂ serve
as lower-dimensional representatives of the data. Classifiers are trained in the N -
dimensional coefficient space as described in the following sections. In previous,
similar studies we have demonstrated that the consideration of N “ 30 coefficients
is sufficient and yields near optimal results (chapter 5). For comparison, we consider
also systems which operate in the original N̂ -dimensional feature space.
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6.3.5 Prototype-based disease classification

In this section, we describe the specific prototype-based model in use (Biehl et al.
2016). Generalized Matrix Relevance Learning Vector Quantization (GMLVQ) (Biehl
et al. 2016, Schneider et al. 2007, Schneider et al. 2009a) has displayed superior per-
formance in related classification problems considered earlier. In the present study,
we also compare the performance of GMLVQ with that of standard techniques like
K-Nearest Neighbour (KNN) classification (Altman 1992), Linear Support Vector
Machine (SVM) (Gunn 1998) and Extremely Randomized Trees (Extra trees)) (Geurts
et al. 2006).

We consider dataset of the general form:

txµ, yµuPµ“1 (6.2)

where xµ P RN represents a feature vector and the label yµ P 1, 2, ...C specifies its
class membership. These data are generally standardized by performing a z-score
operation.

Learning Vector Quantization (LVQ) is a family of prototype-based supervised
classification algorithms first introduced in 1986 (Kohonen 1986). The prototypes of
an LVQ system are defined as a set W “ twj , cpwjquMj“1 of M vectors wj P RN which
carry labels cpwjq P t1, 2, ...Cu. The system can be set up with one or several proto-
type vectors per class. The vectors wj are defined in the feature space of observed
data and ideally serve as typical representatives of their classes. Together with a
given distance measure dpw, xq, they parametrize the classification scheme: To pre-
dict the class of an arbitrary data point x P RN , its distance from all prototypes in
the system is computed and x is assigned to the class cpwLq of the nearest prototype
with dpx,wLq ď dpx,wjq for all j.

An important extension of the basic concept is relevance learning (Biehl et al.
2016), in which an adaptive distance dΛpx,wjq is used, where Λ denotes a set of
adjustable parameters which are optimized together with the prototypes in a data-
driven training process. Specifically, the GMLVQ algorithm proposed in (Schneider
et al. 2007) employs a matrix Λ P RNˆN of coefficients which defines the distance
measure

dΛpx,wq “ px ´ wqJΛ px ´ wq “
N
ÿ

i,j“1

pxi ´ wiqΛijpxj ´ wjq. (6.3)

A parameterization of the form Λ “ ΩJΩ guarantees that dΛpx,wq ě 0 with unre-
stricted matrices Ω P RNˆN . In order to avoid numerical degeneracies, a normaliza-
tion constraint of the following form is imposed:

řN
i“1 Λii “

řN
i,j“1 Ω

2
ij “ 1.
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In GMLVQ, the training process is guided by the optimization of a cost function
of the form suggested in (Sato and Yamada 1995):

EpW,Ωq “
p

ÿ

µ“1

Φ

ˆ

dΛJ pxµq ´ dΛKpxµq
dΛJ pxµq ` dΛKpxµq

˙

. (6.4)

In the sum over all available training examples, dΛJ denotes the distance from the
closest correct prototype with cpwJq “ yµ and dΛK is the distance from the closest
incorrect prototype with cpwJq ‰ yµ, respectively. The modulation function Φ is
frequently chosen to be a sigmoidal function (Sato and Yamada 1995). Here, we
resort to the identy function Φpzq “ z as a simple choice.

Compared to many other classifiers, the prototype-based approach in combina-
tion with relevance learning offers several advantages, among them its intuitive in-
terpetability and the ability to infer feature relevances from the training data (Biehl
et al. 2016). The elements Λij of the relevance matrix in Eq. (6.3) quantify the contri-
bution of pairs of features to the distance measure. In particular, diagonal elements
Λii “

ř

j Ω
2
ij summarize the importance of an individual feature in the classification

task, see (Biehl et al. 2016) for a detailed discussion and illustrative examples.
If the vectors x P RN result from a linear transformation of the form Eq. (6.1),

it is still possible to obtain the relevance matrix in terms of the original data, e.g.
high-dim. spectra x̂ P RN̂ , after training in the N -dim. space. Note that with x “ Ψ x̂

and prototypes w “ Ψŵ we have

dΛpx,wq “ px ´ wqJΛ px ´ wq “ px̂ ´ ŵqJΨJ ΛΨ px̂ ´ ŵq.

Hence, the matrix Λ̂ “ ΨJΛΨ can be constructed after training in coefficient space,
which represents the relevances in the original, high-dim. feature space. In partic-
ular, its diagonal elements Λii can be interpreted as the relevance of original fea-
tures, e.g. particular wavelengths in the spectra. Similarly, low-dim. prototypes can
be transformed back to their high-dim. counterparts ŵ P RN̂ , see (Owomugisha
et al. 2018) for details.

As illustrated in Figure 6.3, the interpretation of the relevance matrix can facil-
itate the selection of favorable features which ultimately helps to improve perfor-
mance and to reduce the computational costs of the actual classification.

6.3.6 Training and validation

The training and validation strategy corresponded to Leave-One-Out cross-validation,
where all data of a particular plant were disregarded in the corresponding training
process.
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Figure 6.3: Feature relevance as quantified by diagonal elements of Λ, cf. Eq. (2)
(left), feature representation in the coefficient space with PCA (right). In chapter
5, we explain the feature selection process where spectral bands 500 - 600 nm were
found to be more relevant

Data for two classes: healthy (HC) and CBSD was grouped by unique plant la-
bels in order to avoid training and testing on data from the same plant. During
training, the partitioning was based on plant groups and the validation scheme was
based on Shuffle-Group(s)-Out cross-validation. Shuffle-split is an alternative to k-
fold cross-validation that allows a finer control on the number of iterations and the
proportion of samples on each side of the train / test split. Combined as Shuffle-
Group(s)-Out cross-validation ensures that the same group is not represented in
both testing and training sets. In our case, the groups were the plant ID since we ob-
tained data from the same plant for consecutive weeks. The technique makes it pos-
sible to detect this kind of over-fitting situations. Both PCA and z-score transforma-
tions were computed from training data only and then applied to test / validation
data. We employed the standard Scikit-learn (Pedregosa et al. 2011) implementa-
tion of this cross-validation scheme for the algorithms that were implemented using
Scikit-learn. In a similar way, this validation strategy was implemented for LVQ
in MATLAB(R2016a) for the open source GMLVQ toolbox (Biehl 2017) that we em-
ployed for the GMLVQ algorithm. GMLVQ experiments were done with one pro-
totype per class and batch gradient distance with adaptive step size control. If not
specified otherwise, we used default parameters as suggested in the documentation
of the toolbox (Biehl 2017).

6.4 Results

The main objective of this study was to explore the potential use of spectral data for
the early detection of disease before symptoms become visible. Our analysis con-
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siders data from healthy plants as well as plants with a virus transmitted to them.
We monitor changes, with emphasis on the time before visual symptoms occur. Our
analysis combines i) the use of machine learning techniques to detect viral load us-
ing spectral data and ii) results provided by the bio-chemical tests carried out on
the leaf samples to evaluate our model. Table 6.1 shows the results of the experi-
ment presenting different algorithms. For all further investigations, we have used
GMLVQ due to its superior performance in this classification task.

Table 6.1: Accuracy in original feature space vs. dimensional reduction obtained on
average over validation. (a) using original data full spectra between 400 - 900 nm
and (b) using original data between 500 - 600 nm. In the coefficient space we use 30
dimensions for all algorithms.

Classifier Original
space (a)

PCA (a) 500-600
nm (b)

PCA (b)

KNN 0.695 0.707 0.711 0.735

Extra Trees 0.748 0.731 0.766 0.708

LinearSVM 0.812 0.638 0.780 0.641

GMLVQ 0.848 0.929 0.831 0.995

Figure 6.4 (top-left) shows results from the chemistry tests carried out on the leaf
samples. The graph shows the onset of detection of disease in the plants in week
11 using wet chemistry in the lab. The top-right and the bottom panels of Fig. 6.4
display predictions of the GMLVQ algorithm over the same time span in terms of a
continuous score 0 ď S ď 1. We compare the use of original spectra (top-right) and
the combination of PCA with GMLVQ in 30-dimensional coefficient space (bottom).

The GMLVQ score can be interpreted as a proxy for the likelihood of disease,
which is computed as:

Spxq “ 1

2

„

1 ` dpx,w1q ´ dpx,w2q
dpx,w1q ` dpx,w2q



. (6.5)

A value S “ 0 indicates that the feature vector x is very likely from class 1, i.e.
healthy, while a large value close to S “ 1 means the plant was classified as diseased,
class 2, with high certainty.

For the GMLVQ system based on original spectra we observe that a clear signal
of the disease is present in week 14, well before plants become symptomatic (visu-
ally) in week 20.

In the plot (bottom panel), we show that the use of PCA enhances the perfor-
mance further and facilitates the detection of the disease as early as week 12.
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ing spectral data and ii) results provided by the bio-chemical tests carried out on
the leaf samples to evaluate our model. Table 6.1 shows the results of the experi-
ment presenting different algorithms. For all further investigations, we have used
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and (b) using original data between 500 - 600 nm. In the coefficient space we use 30
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Figure 6.4 (top-left) shows results from the chemistry tests carried out on the leaf
samples. The graph shows the onset of detection of disease in the plants in week
11 using wet chemistry in the lab. The top-right and the bottom panels of Fig. 6.4
display predictions of the GMLVQ algorithm over the same time span in terms of a
continuous score 0 ď S ď 1. We compare the use of original spectra (top-right) and
the combination of PCA with GMLVQ in 30-dimensional coefficient space (bottom).

The GMLVQ score can be interpreted as a proxy for the likelihood of disease,
which is computed as:
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A value S “ 0 indicates that the feature vector x is very likely from class 1, i.e.
healthy, while a large value close to S “ 1 means the plant was classified as diseased,
class 2, with high certainty.

For the GMLVQ system based on original spectra we observe that a clear signal
of the disease is present in week 14, well before plants become symptomatic (visu-
ally) in week 20.

In the plot (bottom panel), we show that the use of PCA enhances the perfor-
mance further and facilitates the detection of the disease as early as week 12.
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Figure 6.4: The top-left graph illustrates the ground truth in terms of virus load based
on RT-PCR analysis. The top-right and the bottom panels display GMLVQ scores S,
Eq. (6.5), for individual plants (top-right) and on average over classes (bottom). The
top-right panel corresponds to the original space with wavelengths 500-600 nm. The
bottom graph shows results of combining GMLVQ with PCA with 30 coefficients.

Figures 6.5 and 6.6 demonstrate further results of the training process. We see
a class specific and total error rates both for the spectral data in original space and
under reduced feature space in Figure 6.5. The sensitivity and specificity of our
training model is also observed with the receiver operating characteristic curves.

6.5 Discussion and Outlook

We have presented an early disease diagnosis approach to detect cassava CBSD dis-
ease before symptoms can be seen by the human eye. Our experimental results
show that use spectral data and GMLVQ classification tool show that the presence
of the disease can be detected from leaf spectra several weeks before the appearance
of visual symptoms.

The experiments were carried out using the most relevant spectral bands, 500 –
600 nm, which had been identified in our previous studies. Classification based on
a reduced number of features, as obtained by PCA, not only simplified the classifier,
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Figure 6.4: The top-left graph illustrates the ground truth in terms of virus load based
on RT-PCR analysis. The top-right and the bottom panels display GMLVQ scores S,
Eq. (6.5), for individual plants (top-right) and on average over classes (bottom). The
top-right panel corresponds to the original space with wavelengths 500-600 nm. The
bottom graph shows results of combining GMLVQ with PCA with 30 coefficients.

Figures 6.5 and 6.6 demonstrate further results of the training process. We see
a class specific and total error rates both for the spectral data in original space and
under reduced feature space in Figure 6.5. The sensitivity and specificity of our
training model is also observed with the receiver operating characteristic curves.

6.5 Discussion and Outlook

We have presented an early disease diagnosis approach to detect cassava CBSD dis-
ease before symptoms can be seen by the human eye. Our experimental results
show that use spectral data and GMLVQ classification tool show that the presence
of the disease can be detected from leaf spectra several weeks before the appearance
of visual symptoms.

The experiments were carried out using the most relevant spectral bands, 500 –
600 nm, which had been identified in our previous studies. Classification based on
a reduced number of features, as obtained by PCA, not only simplified the classifier,
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Figure 6.5: Class-wise training error in original space (left) and PCA (right)
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Figure 6.6: Receiver operating characteristic curves for Healthy vs CBSD with GM-
LVQ algorithm in the original space of the spectrum and in the coefficients with
PCA

but also made it possible to detect the virus even earlier than by use of original
spectra.

Future work should focus on transferring the method from the controlled screen
house environment to the field. The ultimate goal is a practical, robust method
which requires only low-cost hardware and little computational power. The reliable
detection of CBSD and other viral diseases in cassava, before symptoms become
visible, would be highly desirable. An early detection of the disease would facilitate
treatment and protection measures several weeks before the current practice and
could contribute significantly to higher yield and greater food security.
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