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Review

Hydroxychloroquine in rheumatic autoimmune
disorders and beyond
Eliise Laura Nirk, Fulvio Reggiori & Mario Mauthe*

Abstract

Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and,
to a lesser extent, chloroquine (CQ) are currently being used to
treat several diseases. Due to its cost-effectiveness, safety and effi-
cacy, HCQ is especially used in rheumatic autoimmune disorders
(RADs), such as systemic lupus erythematosus, primary Sjögren’s
syndrome and rheumatoid arthritis. Despite this widespread use in
the clinic, HCQ molecular modes of action are still not completely
understood. By influencing several cellular pathways through dif-
ferent mechanisms, CQ and HCQ inhibit multiple endolysosomal
functions, including autophagy, as well as endosomal Toll-like
receptor activation and calcium signalling. These effects alter
several aspects of the immune system with the synergistic conse-
quence of reducing pro-inflammatory cytokine production and
release, one of the most marked symptoms of RADs. Here, we
review the current knowledge on the molecular modes of action of
these drugs and the circumstances under which they trigger side
effects. This is of particular importance as the therapeutic use of
HCQ is expanding beyond the treatment of malaria and RADs.
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Introduction

Antimalarial drugs have a long history, starting around 400 years ago

when quinine, a substance in the bark of the cinchona tree, was first

used to fight Plasmodium falciparum infections (Woodward & Doer-

ing, 1945; Haładyj et al, 2018). CQ was the first potent and mass-

producible drug against malaria and was synthesized as an analogue

of quinine (Shanks, 2016). Despite its remarkable antimalarial effi-

ciency, CQ was deemed too toxic due to its side effects such as

gastrointestinal and skin complications, retinopathy, cardiotoxicity or

myopathy (Kalia & Dutz, 2007; Haładyj et al, 2018). The discovery of

HCQ mitigated this issue, and HCQ is now regularly used in clinics

under the brand name Plaquenil (Furst, 1996; Aviña-Zubieta et al,

1998; Al-Bari, 2014; Haładyj et al, 2018). Already during the Second

World War, the positive effects of these two antimalarial drugs on

RADs were observed. Soldiers taking CQ and HCQ as prophylaxis

reported improvement of rashes and inflammatory arthritis. Today,

CQ and particularly HCQ are commonly used to treat rheumatic and

dermatological diseases, and are further being tested in clinical trials

as potential drug candidates for COVID-19, several types of cancer,

diabetes type I and II, multiple sclerosis, recurrent miscarriages and

myocardial infarction (Al-Bari, 2014; clinicaltrials.gov).

RADs, such as systemic lupus erythematosus (SLE) (Ruiz-Iras-

torza et al, 2010; Willis et al, 2012; Wu et al, 2017), rheumatoid

arthritis (RA) (Khraishi & Singh, 1996) and primary Sjögren’s

syndrome (pSS) (Oxholm et al, 1998; Rihl et al, 2009; Kumar &

Clark, 2012; Demarchi et al, 2017), are caused by a malfunctioning

immune system that targets healthy tissues (Smith & Germolec,

1999) such as joints (Kumar & Clark, 2012). CQs and HCQs thera-

peutic role in RADs is linked to its anti-inflammatory and

immunomodulatory effects (Plantone & Koudriavtseva, 2018).

These effects are achieved through the modulation of the autoim-

mune response by (i) impairing functions of the endolysosomal

system through its lysosomotropic effects (Ziegler & Unanue, 1982;

Kaufmann & Krise, 2007; Yoon et al, 2010), (ii) decreasing the levels

of circulating pro-inflammatory cytokines (Sperber et al, 1993; Van

Den Borne et al, 1997), (iii) inhibiting T-cell proliferation (Landewe

et al, 1995; Costedoat-Chalumeau et al, 2014), (iv) blocking Toll-

like receptors (TLRs) (Kyburz et al, 2006) and (v) autophagy inhibi-

tion (An et al, 2017c). However, numerous questions remain

regarding both the mechanism of action of CQ and HCQ in RADs

and the side effects caused by this compound.

In this review, we report on HCQ and CQ modes of action at the

molecular and cellular levels in the context of RADs. Additionally,

we discuss the relevance of these drugs in the treatment of cancer

and infectious diseases. Finally, we summarize the side effects

reported in patients taking HCQ for RADs and discuss how some of

those can be explained by the current knowledge on CQ and HCQ.

CQ and HCQ: modes of action

So far, CQ and HCQ have been reported to inhibit four sets of cellu-

lar functions: (i) endolysosomal activities, including autophagy; (ii)

cytokine signalling, including endosomal Toll-like receptor (TLRs);

(iii) NADPH oxidase (NOX) signalling; and (iv) calcium (Ca2+)
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mobilization from the endoplasmic reticulum (ER). They might

further modulate other cellular and organismal processes, e.g. Golgi

trafficking (Mauthe et al, 2018), but the underlying mechanisms

remain to be identified.

Inhibition of lysosomal activity and autophagy
CQ and HCQ are weak bases that easily cross cell membranes and

accumulate in acidic subcellular compartments such as lysosomes

and endosomes, where they remain trapped in a protonated state

(Ohkuma & Poole, 1978). This leads to a pH increase in lysosomes

from 4 to 6, causing inhibition of acidic proteases and other

enzymes within the endolysosomal compartments (Fig 1A)

(Ohkuma & Poole, 1978; Poole & Ohkuma, 1981; Ziegler & Unanue,

1982; Haładyj et al, 2018). As a result, antigen processing and

subsequent presentation by MHC-II complex on the cell surface of

both macrophages and lymphoid dendritic cells are impaired (Gui-

dos et al, 1984; Chesnut & Grey, 1985; Fox, 1993), dampening the

adaptive immune response (Fig 2) (Fox, 1993). CQ and HCQ also

increase pH levels within the Golgi stacks. This causes functional

alterations of this organelle that possibly contribute to the cellular

effects of these two drugs, e.g. by impairing transforming growth

factor beta (TGF-b) activity (Perkett et al, 2006; Rivinoja et al, 2009;

Mauthe et al, 2018).

The ability to block lysosomal degradation also makes CQ and

HCQ potent macroautophagy inhibitors (Fig 1A). Macroautophagy,

hereafter called autophagy, is a conserved intracellular degradation

pathway that is required to maintain cellular homeostasis by recy-

cling damaged or unwanted cytoplasmic proteins, complexes and

organelles (Eskelinen & Saftig, 2009). Autophagy plays a role in

many physiological processes, and its misregulation is linked to

pathologies such as cancer, neurodegeneration and inflammatory

diseases (Mizushima et al, 2008; Levine et al, 2011; Dikic & Elazar,

2018; Levine & Kroemer, 2019). During autophagy, cytoplasmic

cargoes are sequestered by double-membrane vesicles called

autophagosomes, which fuse with lysosomes to generate autolyso-

somes (Eskelinen & Saftig, 2009). Fusion with lysosomes and activ-

ity of the lysosomal enzymes are required to break down the

autophagosomal cargoes and recycle the resulting metabolites.

Impairment of both autophagosome–lysosome fusion and lysosomal

degradative activity blocks autophagy (Klionsky et al, 2016).

Although CQ and HCQ decrease the acidity of lysosomes (Seglen

et al, 1979; Poole & Ohkuma, 1981; Mizushima et al, 2010), the

Glossary

Antigen-presenting cells (APC)
Cells that process proteins derived from pathogens or from dying/
dead cells, into peptides that get presented on their surface, thereby
activating T cells and initiating an immune response.
Autophagy
An intracellular process that delivers unwanted cytoplasmic material
into lysosome for degradation.
B cells
A type of lymphocytes (white blood cells) that plays a crucial role in
the adaptive immune response by producing antigen-specific
antibodies.
Calcium (Ca2+)
Is the most abundant mineral in the human body and is vital for a
multitude of cellular and physiological function. It is also an
important second messenger in numerous signal transduction
pathways.
Chloroquine (CQ)/hydroxychloroquine (HCQ)
Originally developed to fight malaria, these drugs are used to treat
rheumatic autoimmune diseases and are currently tested in clinical
trials as therapies for other conditions.
Cytokines
Small secreted proteins that mediate communication and modulate
interactions between cells, including immune cells.
Endosomes
Intracellular organelles that mainly function as a sorting and
recycling hub for endocytosed and biosynthetic components, on their
route to lysosomes.
Immune system
A network consisting of a variety of different cell types that defend
the body against infections and other potentially harmful anomalies,
and which, when misregulated, contributes or causes the
development of an inflammatory disease.
Lysosome
Intracellular organelles containing a large battery of digestive
enzymes that degrade extracellular and cytoplasmic material
delivered to their interior by endocytosis and autophagy, respectively.

NADPH oxidase
A membrane-bound multi-subunit enzymatic complex at either the
plasma or endosomal membrane, which participates in a variety of
cellular functions, ranging from cellular signalling and gene
expression to host defence mechanisms.
Primary Sjögren’s syndrome
An autoimmune disease that belongs to the group of rheumatic
autoimmune diseases, which affect saliva-producing glands leading to
symptoms such as dry mouth and dry eyes.
Retinopathy
Condition characterized by a damaged retina, which causes vision
impairment, and is a documented adverse effect that can occur when
taking HCQ and CQ.
Rheumatic autoimmune diseases
A group of conditions characterized by a dysregulated immune
system, which primarily affect the muscles, joints, connective tissue
and bones.
Systemic lupus erythematosus
An autoimmune disease that belongs to the group of rheumatic
autoimmune diseases, which is the most common form of lupus and
is associated with symptoms such as severe fatigue, joint pain and
joint swelling.
T cells
A type of lymphocytes (white blood cells) that is a key component of
the adaptive immune system and that orchestrates other cell types in
response to antigens.
Toll-like receptors (TLR)
Transmembrane proteins that recognize specific molecules at either
the plasma membrane or endosomes, and subsequently initiate
signalling pathways that are crucial for the innate immune response.
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primary inhibitory effect of these drugs on autophagy is blocking

the fusion of autophagosomes and lysosomes, which is at least in

part mediated by the dysregulation of the recruitment of specific

SNARE proteins onto autophagosomes (Mauthe et al, 2018). This

block results in an accumulation of autophagosomes in the cyto-

plasm (Mauthe et al, 2018), which can contribute to an enhanced

autophagosome-mediated signalling output (Martinez-Lopez et al,

2013; Barrow-McGee et al, 2016) and even compromise tumour cell

viability (Button et al, 2017). Although HCQ and CQ have been

extensively described as autophagy inhibitors, there is emerging

evidence that these drugs induce a non-canonical form of endocyto-

sis (Florey et al, 2015; Jacquin et al, 2017).

Inhibition of cytokine signalling
Activation of TLRs, especially in macrophages, monocytes and T

helper cells, but also in neutrophils and endothelial cells, induces

the production and secretion of pro-inflammatory cytokines, a hall-

mark of RADs (Beutler & Cerami, 1989; Feldmann & Maini, 2001;
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Figure 1. Molecular mechanisms of CQ and HCQ.

(A) CQ and HCQ are weak bases that accumulate inside acidic subcellular compartments, e.g. endosomes and lysosomes. They remain trapped in a protonated state, causing
an increase of pH and thereby inhibiting the functions of these cellular compartments. Impairment of the autophagosome–lysosome fusion leads to autophagy inhibition.
(B) CQ and HCQ alter endosomal TLR activation by increasing endosomal pH, by blocking the interaction between nucleic acids and endosomal TLRs (TRL3, TLR7 and TLR9) and
by preventing translocation of TLR8 to endosomes. HCQ also blocks the correct assembly of the NOX2 complex by preventing the translocation of the NOX2 subunit gp91phox
onto endosomes and consequently the formation of an active NOX2. (C) CQ and HCQ impair the release of Ca2+ from the ER, resulting in inhibition of Ca2+-dependent
signalling pathways. HCQ further inhibits the replenishing of intracellular Ca2+ stores from the extracellular space.
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Kim & Moudgil, 2017). Hence, inhibition of endosomal TLRs by

HCQ or CQ is a powerful therapy approach for these diseases (Lafy-

atis et al, 2006). TLR9, activated by DNA in immune cells, can thus

be inhibited by HCQ and CQ (Yi et al, 1998; Ahmad-Nejad et al,

2002). TLR7, activated by guanosine analogues, can also be inhib-

ited by CQ, but to a lesser extent than TLR9 (Lee et al, 2003), indi-

cating different inhibitory mechanisms. TLR3 is mainly activated by

poly(I-C), but also by debris originating from necrotic synovial fluid

cells in RA patients, and both modes of activation are hampered by

HCQ and CQ (Brentano et al, 2005; Jolly et al, 2014; Imaizumi et al,

2017). In general, inhibition of TLR3, TLR7 and TLR9 by HCQ and

CQ has been attributed to their ability to impair endosomal acidifi-

cation (Macfarlane & Manzel, 1998; Lafyatis et al, 2006; Schrezen-

meier & Dörner, 2020), as activation of endosomal TLRs and

subsequent downstream signalling only takes place within acidified

compartments (Fig 1B) (Blasius & Beutler, 2010).

Beside endosomal acidification, Kuznik and colleagues discov-

ered a second mechanism by which CQ impairs TLR signalling.

They showed that CQ could inhibit endosomal TLR signalling after

stimulation with nucleic acids at concentration too low to influence

the endosomal pH. Under those conditions, CQ blocks endosomal

TLR activation by directly interacting with TLR ligands, such as

nucleic acids, which changes the nucleic acid secondary structure

and prevents their binding to endosomal TLRs (Macfarlane &

Manzel, 1998; Ku�znik et al, 2011). This notion is further supported

by the observation that HCQ specifically blocks activation of

dendritic cells and macrophages by DNA but not by LPS, although

LPS also stimulates these cells via a signalling cascade emanating

from endosomes (Häcker et al, 1998).

A third mechanism that interferes with inflammatory cytokine

production is the ability to disrupt GMP-AMP synthase (cGAS)

signalling (An et al, 2015, 2018). cGAS is a crucial component of

the cGAS–stimulator of interferon gamma (IFN) genes (STING)

signalling cascade that is required for the IFN type I response in

immune cells (Sun et al, 2013), making it an important player in

activation of pro-inflammatory response in autoimmune diseases

(Gao et al, 2015; Kato et al, 2018). cGAS is also upregulated in a

portion of SLE patients (An et al, 2017a,b), and interestingly, HCQ

and CQ can inhibit cGAS binding to its ligands, e.g. DNA, in vitro

and in a T-cell line (An et al, 2015). Importantly, inhibition of cGAS

activation results in reduced IFNb expression (An et al, 2015)

(Fig 1C).

Inhibition of NADPH oxidase
NOX is a protein complex involved in numerous pro-inflammatory

signalling cascades, such as tumour necrosis factor alpha (TNFa)-
and interleukin (IL)-1b-induced cascades. Activation of endosomal

NOX, which leads to the generation of reactive oxygen species

(ROS), requires the endocytic internalization and delivery to endo-

somes of cell surface ligand–receptor complexes (Müller-Calleja
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Figure 2. Effects of HCQ on the immune system.

At the cellular level, HCQ inhibits antigen presentation, B- and T-cell activation and NOX signalling. In addition, it rebalances Treg/Th17 cell ratio. These multifaceted effects on
different immune cells result in a decreased production and release of pro-inflammatory cytokines.
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et al, 2017). HCQ blocks the NOX-mediated signalling cascades trig-

gered by TNFa and IL-1b in monocytes by blocking translocation of

gp91phox, the catalytic subunit of NOX, from the cytosol onto endo-

somal membranes without changing the endosomal pH (Müller-

Calleja et al, 2017). This inhibition prevents the correct assembly

and activation of NOX, hindering the downstream cellular events

and the production of the pro-inflammatory cytokines TNFa and IL-

8. HCQ also prevents the redistribution of TLR8 from the ER to

endosomes, which is necessary to mediate the inflammatory

response (Müller-Calleja et al, 2017) (Fig 1B).

Inhibition of Ca2+ signalling
Ca2+ mobilization from both the ER and extracellular space into the

cytoplasm and subsequent Ca2+-dependent signalling is an impor-

tant mechanism to activate cells of the immune system, such as T

and B cells (Feske, 2007). High cytoplasmic levels of Ca2+ act as a

second messenger for the activation of signalling pathways and tran-

scription factors that regulate the expression and secretion of cytoki-

nes and other immune regulatory factors (Izquierdo et al, 2014).

Ca2+ release from the ER can be impaired by HCQ (Goldman et al,

2000; Xu et al, 2015; Wu et al, 2017), leading to the inhibition of

intracellular signals. In particular, T-cell and B-cell receptor-

mediated intracellular Ca2+ mobilization from both intracellular

stores and the extracellular milieu is inhibited by HCQ in a dose-

dependent manner (Goldman et al, 2000). This impairment of Ca2+

mobilization is at least partially caused by the reduction of the Ca2+

stored intracellularly and the inability to replenish these intracellular

stores with extracellular Ca2+ (Goldman et al, 2000). This further

enhances its negative impact on the Ca2+-dependent signalling path-

ways (Fig 1C) (Feske, 2007). The precise mechanism of HCQ-induced

reduction of internal Ca2+ mobilization remains unknown. However,

it has been shown that HCQ does not reduce the availability of inosi-

tol 1,4,5-trisphosphate, but rather the binding to its intracellular

receptors that promotes Ca2+ release (Misra et al, 1997).

The impact of CQ and HCQ on the immune system
in autoimmunity

Autoimmunity is characterized by an overreaction of the immune

system (Smith & Germolec, 1999), which is linked to both innate and

adaptive immunity (Mescher, 2016). The innate immune system is

responsible for the initial recognition of pathogens, which is mostly

carried out by antigen-presenting cells (APCs), e.g. dendritic cells,

and eventually triggers the activation of the adaptive immune system

(Mescher, 2016). In particular, when APCs get directly activated

through exposure to pathogen-associated molecular patterns, they

initiate both cell- and antibody-mediated immune responses, which

are mediated by the T and B cells, respectively (Christmas, 2010).

The cell-mediated response is executed by T cells that get activated

by APCs through antigen presentation at their surface via MHC mole-

cules. In contrast, B cells are activated through T helper (Th) cells

and cytokines that are secreted by APCs (Mescher, 2016). Activated B

cells produce and secrete additional pro-inflammatory cytokines and

antibodies to further stimulate the immune reaction (Mescher, 2016).

HCQ and CQ negatively regulate many aspects of these innate

and adaptive immune responses by reducing inflammation, and ulti-

mately the severity of autoimmune diseases (Fig 2).

Inhibition of pro-inflammatory cytokine secretion
Through the inhibition of endosomal TLR signalling, HCQ and CQ

treatment decreases the levels of pro-inflammatory cytokines

produced by peripheral mononuclear cells in the blood, including

IFNc (Van Den Borne et al, 1997), TNFa (Picot et al, 1991; Van Den

Borne et al, 1997; Jang et al, 2006), IL-1 (Picot et al, 1991; Sperber

et al, 1993; Jang et al, 2006), IL-6 (Sperber et al, 1993; Van Den

Borne et al, 1997; Jang et al, 2006) and IL-2 (Landewe et al, 1995).

The reduction of TLR signalling-mediated activation of immune cells

by both drugs consequently decreases the aberrant immune

response and diminishes inflammation symptoms observed in rheu-

matic patients (da Silva et al, 2013). In addition to directly inhibit-

ing endosomal TLR signalling, CQ and HCQ can interfere with the

intracellular signals that lead to both the release of phorbol ester-

induced arachidonic acid and the block of pro-inflammatory cytoki-

nes secretion (e.g. TNFa and IL-1) in mouse macrophages (Bon-

deson & Sundler, 1998). In particular, activation of phospholipase

A2 by phorbol esters, but not by Ca2+, is inhibited by HCQ and CQ,

which blocks the synthesis of arachidonic acid. Furthermore, these

compounds negatively impact the generation of zymosan-induced

formation of inositol phosphates, a product of phospholipase C

activity (Matsuzawa & Hostetler, 1980), suggesting that they have

an inhibitory effect on this enzyme as well (Bondeson & Sundler,

1998). HCQ also inhibits Ca2+-activated K+ channels in macro-

phages, and consequently K+ efflux, which could result in impaired

inflammasome activation and pro-inflammatory cytokine release

(Eugenia Schroeder et al, 2017).

High levels of pro-inflammatory cytokines are a central charac-

teristic of the RA pathogenesis (McInnes & Schett, 2007; Blasius &

Beutler, 2010; Pollard et al, 2013; Schinnerling et al, 2017; Musk-

ardin & Niewold, 2018). In particular, stimulatory cytokines (i.e. IL-

1, IL-6, IL-12, IL-15, IL-17, IL-23 and type I and II IFN for T cells,

and B-cell activating factor (BAFF) for B cells) activate T and B cells,

which in turn produce pro-inflammatory cytokines and autoantibod-

ies, respectively. Pro-inflammatory cytokines contribute to RA

pathogenesis by promoting autoimmunity, maintaining chronic

inflammatory synovitis and stimulating the destruction of joint

tissues. They also play a role in the maturation and activation of

osteoclasts, the cells responsible for breaking down bone tissue

(McInnes & Schett, 2007).

Excessive production of BAFF, a cytokine essential for B-cell

physiology, alters the immune tolerance by contributing to the

maturation and survival of self-reactive B cells, the major source for

autoantibodies contributing to joint inflammation (Mahdy et al,

2014). Reduction of the high BAFF levels in the serum from RA

patients by HCQ (Mahdy et al, 2014) improves symptoms of RADs,

both in animal models and in clinical trials (Sun et al, 2008).

Cytokines like BAFF, TNFa, IFNa and IFNc are also major

contributors to SLE severity, by promoting B-cell survival and

autoantibody production, and contributing to organ inflammation

(Rönnblom & Elkon, 2010). Thus, the modulation of their levels

represents a potential therapeutic avenue (Rönnblom & Elkon,

2010). This is supported by a cohort study showing that treatment

of SLE patients with HCQ results in a decrease of type I IFN levels

and concomitant reduction of disease severity (Willis et al, 2012).

HCQ can also directly affect the production of autoantibodies by B

cells through TLR9 inhibition. Particularly, HCQ interferes with the

differentiation of memory B cells into antibody-producing

ª 2020 The Authors EMBO Molecular Medicine e12476 | 2020 5 of 17

Eliise Laura Nirk et al EMBO Molecular Medicine



plasmablasts, a subset of B cells, by inhibiting TLR9 activation

(Torigoe et al, 2018).

Although the pathogenesis of pSS is not fully understood yet,

activation of exocrine gland epithelium cells is thought to lead to

the release of pro-inflammatory cytokines such as IFNa and IFNb
(both type I IFN), IL-7 and BAFF, and chemokines (Retamozo

et al, 2018). These factors stimulate further activation of APCs,

but also of T and B cells, which promotes inflammation and

autoimmunity (Retamozo et al, 2018). Only a few studies investi-

gated HCQ administration in pSS patients. Nonetheless, pSS

patients treated with HCQ have a significant lower BAFF levels in

the serum, and an improvement in saliva production (Mumcu

et al, 2013), indicating that this drug might be a promising ther-

apy for pSS as well.

Inhibition of B- and T-cell activation through Ca2+ signalling
Through T-cell receptors (TCRs) on their surface, T cells recognize

antigens that are presented by APCs and get activated (Goldman

et al, 2000). This results in both their proliferation and the release of

various cytokines, including IL-6 and TNFa (Sperber et al, 1993).

One important step in the signalling cascade downstream of TCRs is

the increase of intracellular Ca2+ levels, which is released from inter-

nal Ca2+ storages such as the ER. As previously mentioned, HCQ can

impair the release of Ca2+ from the ER, which consequently inhibits

T-cell activation (Goldman et al, 2000; Xu et al, 2015; Schmidt et al,

2017). HCQ also negatively influences the expression and activity of

CD154 on T cells, which is needed for B-cell activation (Wu et al,

2017; Dewitte et al, 2020). CD154 expression is controlled by the

nuclear factor of activated T cells (NFAT), a transcription factor that

relies on Ca2+ release from the ER (Wu et al, 2017). By impairing

this event, HCQ inhibits NFAT nuclear translocation, resulting in

decreased gene expression of CD154 (Wu et al, 2017). Altogether,

these studies show that blocking Ca2+ release from the ER by HCQ

leads to a multilevel inhibition of T- and B-cell activation, thereby

hindering the immune response (Fig 2).

Modulation of Th17 and Treg populations
Alterations in autophagic activity play an important role in the

pathophysiology of T- and B-cell-mediated autoimmunity (Weindel

et al, 2015; van Loosdregt et al, 2016; Alessandri et al, 2017;

Mocholi et al, 2018; Zhang et al, 2019). In this context, autophagy

is required to maintain cellular homeostasis in T cells (An et al,

2017c) and autophagy deficiency impairs MHC class II presentation

and contributes to the generation of autoreactive T cells by thymic

epithelial cells (Levine et al, 2011). Moreover, plasma cells require

autophagy to sustain immunoglobulin production and B-cell devel-

opment (Wu & Adamopoulos, 2017). An imbalance within the T-cell

populations, more specifically an increase in the number of Th17

cells and a decrease in that of Treg cells, has been linked to patho-

genesis of autoimmune diseases (Yang et al, 2011a; Jadidi-Niaragh

& Mirshafiey, 2012; Álvarez-Rodrı́guez et al, 2019), including SLE

(An et al, 2017c; Álvarez-Rodrı́guez et al, 2019). This imbalance

leads to an increased secretion of pro-inflammatory cytokines such

as IL-17 and IL-6, and a reduction of the levels of circulating factors

like TGF-b, which suppresses inflammation and autoimmunity (An

et al, 2017c; Geng et al, 2020). This latter effect can be dampened

with HCQ and CQ, as those drugs rebalance the Th17/Treg ratio (An

et al, 2017c; Yang et al, 2018; Álvarez-Rodrı́guez et al, 2019; Park

et al, 2019; Geng et al, 2020). Mechanistically, this could be caused

by an alteration of autophagy, as an induction of this process is

observed in SLE patients (An et al, 2017c). Thus, An and colleagues

thought to suppress hyperactivated autophagy by administrating

HCQ to lupus MLR/pr mice, an animal model for SLE. In addition to

lowering autophagic activity in this model, HCQ rebalanced Th17

and Treg cell numbers, which led to a decrease in pro-inflammatory

cytokine levels (Fig 2) and a concomitant augmentation of anti-

inflammatory cytokines, resulting in the suppression of the autoim-

mune response (An et al, 2017c). Moreover, CQ positively regulates

Treg differentiation by stimulating transcriptional activity of Nurr1

and FOXP3, while simultaneously suppressing Th17 differentiation

and gene expression (Álvarez-Rodrı́guez et al, 2019; Park et al,

2019). More evidence that Th17 cells play a central role in RA and

SLE pathogenesis comes from the detection of IL-6, IL-17 and IL-22

in synovial fluids from patients suffering from those diseases (Lub-

berts et al, 2005; da Silva et al, 2013). High levels of these cytokines

correlate with synovial inflammation, T-cell activation and the

osteoclast activity upregulation causing bone erosion (da Silva et al,

2013). Administration of HCQ reduces Th17 cell activation and

consequently production of IL-6, IL-17 and IL-22 (da Silva et al,

2013; Yang et al, 2018).

Impact of NOX inhibition on the immune system
NOX inhibition by HCQ impairs the production of pro-inflammatory

cytokines and the correct distribution of TLR8, thereby dampening

the immune response (Müller-Calleja et al, 2017). This inhibition

also positively affects nitric oxide (NO) bioavailability (Gómez-

Guzmán et al, 2014). NO is involved in a multitude of physiologic

functions, including the regulation of blood vessel tone and vasodi-

lation, and is rapidly inactivated by ROS (Nagy et al, 2010). In SLE

patients, NO bioavailability is severely lowered by high ROS levels,

particularly O2�, resulting in endothelial dysfunction (Griendling &

Alexander, 1997; Landmesser & Harrison, 2001; Gómez-Guzmán

et al, 2014). By blocking NOX, the major producer of O2� in the

vascular wall, HCQ treatment reduces ROS levels and helps to

prevent endothelial dysfunction in a mouse model for SLE (Gómez-

Guzmán et al, 2014). In agreement with this concept, NOX inhibi-

tion by HCQ reduces thrombus formation, which is a well-known

clinical manifestation in SLE, in a venous thrombus mouse model

(Müller-Calleja et al, 2017; Miranda et al, 2019) (Fig 2).

Thus, at the cellular level, HCQ and CQ inhibit antigen presenta-

tion, NOX signalling, B- and T-cell activation, and rebalance Treg/

Th17 cell ratio. These multifaceted effects on different immune cells

synergistically result in a decreased production and release of pro-

inflammatory cytokines, a common hallmark of RADs (Fig 2).

Clinical impact of HCQ on RADs

HCQ is administered orally in tablet form as hydroxychloroquine

sulphate (Pastick et al, 2020). It is absorbed in the gastrointestinal

tract (Mclachlan et al, 1994) before being widely distributed

throughout the body to muscles, liver, spleen, lungs, kidneys, pitu-

itary and adrenal glands, and tissues that contain melanin (Haładyj

et al, 2018). Daily dosage of HCQ ranges from 200 to 600 mg for

RADs, from 200 to 400 mg for dermatological disorders (Ben-Zvi

et al, 2012), from 200 to 1,200 mg in cancers (Chude & Amaravadi,
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2017) and from 200 to 800 mg for various infectious diseases. Its

half-life in the body ranges between 40 and 50 days (Mclachlan

et al, 1994), and 30–40% of HCQ is protein-bound (Furst, 1996),

resulting in 60–70% unbound, pharmacologically active drug (Rang

et al, 2016). The majority of HCQ is excreted through the kidneys,

while the rest is metabolized by the liver or excreted through faeces

(Furst et al, 1999; Haładyj et al, 2018). Contraindications for taking

HCQ are a history of retinopathy or visual field changes, hypersensi-

tivity to 4-aminoquinoline compounds and long-term therapies in

children (https://www.fda.gov/). HCQ is, however, considered safe

during pregnancy (Kaplan et al, 2016; Haładyj et al, 2018).

HCQ ameliorates classical RAD symptoms, such as skin problems

and joint pain, predominantly by decreasing the inflammation reac-

tion in patients (Fig 3). In SLE, HCQ is given to patients as either a

single or a combinatorial therapy together with steroids and

immunosuppressive drugs, to improve patients’ life expectancy by

reducing lupus flares and accrual of organ damage (Ponticelli &

Moroni, 2017). Case studies have revealed that HCQ treatment

reduces SLE symptoms and improves long-term survival of patients,

while individuals not treated with HCQ have an increased risk of

severe SLE exacerbations (James et al, 2007; Ruiz-Irastorza et al,

2010; Willis et al, 2012).

Similarly, HCQ treatment produces significant clinical improve-

ment and functional capacity in RA patients (Smolen et al, 2014;

Haładyj et al, 2018). In RA, prevention of cartilage degradation,

which causes joint destruction, is an important aspect of the thera-

peutic approach (Kumar & Clark, 2012). Cartilage degradation is

mostly caused by pro-inflammatory cytokines, such as IL-1, IL-17

and TNFa, and their production can be repressed by HCQ treatment

(Picot et al, 1991; Sperber et al, 1993; Van Den Borne et al, 1997;

Jang et al, 2006; McInnes & Schett, 2007; da Silva et al, 2013). In

vitro experiments have also established that CQ inhibits proteogly-

can turnover (Fulkerson et al, 1979; Ackerman et al, 1981; Schug &

Kalbhen, 1995; Rainsford et al, 2015), and early autoradiographic

studies following tritium-labelled HCQ have revealed that this drug

accumulates in the cartilage of mice (Cecchi & Porzio, 1964). These

findings and its water-soluble properties led to the proposition that

HCQ accumulates in the cartilage by binding acidic proteoglycans

and protecting them from degradation by proteolytic enzymes

(Rainsford et al, 2015). Although an early study pointed out that CQ

and HCQ can indeed inhibit cartilage breakdown, slowing down the

disease progression and preventing further joint damage in RA

patients (Julkunen et al, 1976), more recent investigations could not

confirm a positive effects on joint damage (Sanders, 2000; Smolen

et al, 2014; Haładyj et al, 2018).

The therapeutic benefits of HCQ administration on pSS classical

symptoms, e.g. sicca symptoms, remain controversial; some studies

documented beneficial effects (Tishler et al, 1999; Rihl et al, 2009;

Yavuz et al, 2011; Mumcu et al, 2013), while others reported none

(Gottenberg et al, 2014; Yoon et al, 2016; Wang et al, 2017). HCQ

treatment, however, ameliorates extraglandular symptoms (Fox et al,

1996; Demarchi et al, 2017), and according to the Sjögren’s

Syndrome Foundation’s clinical practice guidelines (https://www.sjo

grens.org/), disease-modifying anti-rheumatic drugs are recom-

mended to treat musculoskeletal pain, with HCQ being the

therapeutic approach of choice (Carsons et al, 2015). HCQ also

reduces immunological alterations of pSS, such as decreased levels of

immunoglobulins, erythrocyte sedimentation rate, serology and IL-6

production (Tishler et al, 1999; Yavuz et al, 2011; Mumcu et al,

2013). Furthermore, in a retrospective analysis, HCQ administra-

tion to pSS patients significantly improved saliva production (Rihl

et al, 2009). This improvement was more pronounced in patients

who were positive for autoantibodies against anti-a-fodrin, an

intracellular filamentous cytoskeleton protein. While the cause for

this difference remains unknown, a possible explanation is that

HCQ could improve saliva production by decreasing elevated

levels of cholinesterase, an enzyme that counteracts saliva produc-

tion (Dawson et al, 2005).

HCQ and CQ in non-rheumatologic diseases

Anti-viral effects
The anti-viral function of HCQ and CQ has mainly been linked to

their ability to increase the pH of the endosomal system and the

trans-Golgi network (TGN) (Savarino et al, 2003). Thus, these drugs

are able to inhibit cell entry of numerous viruses, as a low endoso-

mal pH is required for the fusion of endocytosed virions with the

limiting membrane of endosomes. In this context, CQ and HCQ

decrease replication of viruses such as dengue virus (DENV2),

chikungunya virus, hepatitis A and C virus, influenza A virus, Zika

virus, severe acute respiratory syndrome coronavirus (SARS-CoV)

and Borna disease virus in cellular models (Bishop, 1998; Gonzalez-

Dunia et al, 1998; Keyaerts et al, 2004; Vincent et al, 2005; Blan-

chard et al, 2006; De Clercq, 2006; Eng et al, 2006; Di Trani et al,

2007; Sourisseau et al, 2007; Khan et al, 2010; Ashfaq et al, 2011;

Boonyasuppayakorn et al, 2014; Farias et al, 2015; Delvecchio et al,

2016; Shiryaev et al, 2017). For some viral structural proteins, a

maturation step involving post-translational modification and/or

processing in the TGN is crucial for their function and ultimately for

the assembly of infectious viral particles, e.g. glycosylation of HIV

gp120 (Tsai et al, 1990; Savarino et al, 2004) or cleavage of the

DENV2 prM protein (Randolph et al, 1990). Glycosylation in the

TGN is also required for the correct assembly of ACE2, the entry

receptor for SARS-CoV (Vincent et al, 2005). Thus, HCQ and CQ

contribute to inhibit viral infections by neutralizing the pH of intra-

cellular organelles, interfering with important processes required for

viral life cycle.

Although HCQ and CQ have shown beneficial therapeutic effects

in animal models for DENV2, hepatitis C virus, avian influenza A

virus, Zika virus and SARS-CoV infections, clinical trials have so far

failed to conclusively prove their anti-viral potential in humans

(Rodrigo et al, 2020; Fragkou et al, 2020; McKee et al, 2020). This

might be due to the fact that drug concentrations required to de-

acidify intracellular compartments cannot easily be reached in

humans (Al-Bari, 2017). Therefore, neither HCQ nor CQ is currently

recommended as anti-viral drugs (Rodrigo et al, 2020). During the

SARS-CoV-2 pandemic in 2020, the need to find an effective medica-

tion has brought major attention to HCQ and CQ due to their ability

to both inhibit viral infections and dampen the massive cytokine

response that is observed in SARS-CoV-2-infected patients (Badgujar

et al, 2020; Ibáñez et al, 2020; Moore & June, 2020). The effective-

ness of HCQ and CQ against SARS-CoV-2, however, has so far not

been proven in humans, and the results at the time that this review

was completed were still controversial (Boulware et al, 2020;

Fragkou et al, 2020).
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Anti-cancer therapy
CQ and HCQ are being increasingly used in clinical trials to treat

cancer (https://clinicaltrials.gov/). Because high doses are required

to achieve anti-tumoural effects in monotherapies, they are often

used in combination with radiotherapy and/or other chemothera-

peutical drugs (Plantone & Koudriavtseva, 2018). We briefly discuss

here possible mechanisms of action for HCQ and CQ in cancer. For

a more detailed discussion on this topic, more specific reviews are

available (Manic et al, 2014; Pascolo, 2016; Levy et al, 2017; Shi

et al, 2017; Verbaanderd et al, 2017).

Elevated autophagic activity is crucial for tumour cell survival

and growth as it supplies the high demand of nutrients within a

developed tumour (Amaravadi et al, 2016). This is especially rele-

vant for autophagy-dependent cancers that rely on this pathway

when faced with metabolic stress. Consequently, HCQ or CQ treat-

ment has been successful in regressing the growth of some of those

cancers in preclinical studies (e.g. with RAS pathway mutations

(Guo et al, 2011; Lock et al, 2011), such as specific pancreatic

cancers (Mancias & Kimmelman, 2011; Yang et al, 2011b; Sousa

et al, 2016), or BRAF-driven tumours (Levy et al, 2014; Strohecker

et al, 2013; Xie et al, 2015). The effectiveness of HCQ and CQ in

cancer therapy is, however, controversial. In animal models, HCQ

dosages are often 50 mg/kg/day or higher, which is too high to be

administered in humans (Pascolo, 2016), and with lower dosages,

autophagy is not sufficiently inhibited to achieve tumour regression

(Pascolo, 2016). Moreover, some cancer cells (e.g. derived from

breast tumours or melanomas or KRAS-driven cancer cell lines) have

shown CQ-mediated cell growth inhibition that was independent of

autophagy (Maycotte et al, 2012; Maes et al, 2014; Eng et al, 2016).

Various cancer cells express high levels of TLR9, e.g. breast and

prostate cancer cells (Merrell et al, 2006; Verbaanderd et al, 2017),

which is linked to cancer invasiveness in vitro and associated with

poor prognosis (Väisänen et al, 2013; Verbaanderd et al, 2017).

TLR9-mediated NF-jB signalling is required for cancer cell migra-

tion and proliferation in gastric cancer cell models, which is inhib-

ited by CQ (Zhang et al, 2015). The exact molecular mechanism of

TLR9 signalling inhibition in cancer cells remains unknown.

Another mechanism by which HCQ affects cancer growth is by

modulating the immune system. Tumour-associated macrophages

(TAMs), which are phenotypically described as M2 macrophages,

play a role in promoting tumour growth and immune escape,

angiogenesis and metastasis (Mantovani et al, 2017; Li et al,

2018). In contrast, tumour killing macrophages (M1 macrophages)

have an opposite effect and are activated by cytokines such as

IFNc, which are released from T cells (De Palma & Lewis, 2013;

Ostuni et al, 2015). Interestingly, in a melanoma-bearing mouse

model, intraperitoneal injection of 75 mg/kg CQ effectively inhib-

ited melanoma growth in a T-cell-dependent manner, and

prolonged animal survival (Chen et al, 2018). Mechanistically, CQ

can switch TAMs into M1 macrophages by raising lysosomal pH,

and thereby mobilizing lysosomal Ca2+ through upregulation of

the lysosomal Ca2+ channel MUCOLIPIN1. The release of lysoso-

mal Ca2+ then activates the p38 and NF-jB pathways, but also the

transcription factor EB, resulting in an enhanced anti-tumour T-cell

response (Chen et al, 2018). By stimulating the T-cell-mediated

immune response and simultaneously decreasing immune inhibi-

tory cells, including TAMs and Tregs, and cytokines such as TGF-b
and IL-10, CQ treatment reduced breast cancer growth and

prolonged mice survival in a breast xenograft model (Zhang et al,

2017). Another important aspect of anti-cancer immunity is the

activation of immune cells by sensing danger signals (e.g.

HMGB1). Danger signals are subsequently recognized by receptors,

such as TLR4 on dendritic cells (Apetoh et al, 2007). One function

of TLR4 is to preserve engulfed tumour antigens from enhanced

degradation, and thereby favour antigen presentation. The loss of
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Figure 3. Beneficial and side effects caused by HCQ in RAD patients.

In RADs, HCQ treatment predominantly alleviates the symptoms (purple boxes)
by inhibiting the production and release of pro-inflammatory cytokines. As a
consequence, HCQ diminishes skin conditions. There are also indications that
HCQ both decreases cartilage degradation and consequently reduces joint and
muscle pain, and helps to restore saliva production. Usage of HCQ can cause side
effects (orange boxes); the most common are gastrointestinal disturbances, skin
discoloration, cutaneous eruptions and elevated muscle enzymes, whereas
retinopathy, cardiac myopathy and myotoxicity are rare, but severe.
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antigen presentation capacity in TLR4-deficient dendritic cells can

be restored by CQ, possibly by raising lysosomal pH, which

contributed to tumour size reduction in a tlr4�/� thymoma mouse

model (Apetoh et al, 2007). Along these lines, CQ reduced breast

cancer growth in mice after irradiation by enhancing apoptotic and

immunogenic tumour cell death (Ratikan et al, 2013). The

enhanced immune response was attributed to a decreased degrada-

tion of tumour antigens in dendritic cells, resulting in an increased

antigen presentation (Ratikan et al, 2013).

HCQ and CQ can also inhibit CXCL12/CXCR4 signalling, which is

involved in chemotaxis and adhesion of tumour cells and of growth

factors secretion that are key for cancer progression (Sun et al,

2010; Kim et al, 2012; Verbaanderd et al, 2017). Moreover, HCQ

and CQ interfere with the activation of growth-promoting pathways

in cancer stem cells, thereby suppressing the regrowth of tumours

(Li et al, 2008; Balic et al, 2014; Choi et al, 2014).

Multiple reports further describe the mechanisms by which CQ

triggers cell death in tumour cells. CQ induces apoptosis of cancer

cells by either stimulating the mitochondrial apoptotic pathway (Du

Jiang et al, 2010) or activating the p53-dependent transcription of

pro-apoptotic genes (Zhou et al, 2002; Loehberg et al, 2007, 2012;

Maclean et al, 2008; Kim et al, 2010; Bieging et al, 2014). Addition-

ally, several studies have suggested that CQ intercalates into DNA

and disturbs chromatin topology (O’Brien et al, 1966; Sternglanz

et al, 1969; Field et al, 1978; Yin et al, 2003), which could lead to

an impairment in DNA repair mechanisms, and in turn cause DNA

damage and enhance cell death (Michael & Williams, 1974; Liang

et al, 2016; Weyerhäuser et al, 2018).

Besides directly targeting tumour cells, CQ also affects tumour

angiogenesis by altering endothelial cell functionality. CQ adminis-

tration leads to NOTCH1 accumulation in endothelial cell endo-

somes, stimulating the downstream signalling that leads to tumour

vessel normalization, and resulting in reduced tumour invasion

and metastasis (Maes et al, 2014). Therefore, CQ also improves

the delivery and efficacy of other chemotherapeutics (Maes et al,

2014).

HCQ and CQ thus show potential in inhibiting tumour growth

and modulating tumour immune response through various mecha-

nisms. It is, however, important to reiterate that the doses used to

achieve relevant effects in cancer therapies are often substantially

higher than the doses used to treat RADs. Moreover, when treating

cancer or viral infections, one has to keep in mind that HCQ and CQ

also have immune suppressive functions that could negatively influ-

ence its beneficial effect for the patients.

Side effects of HCQ in RADs

Side effects of HCQ treatment are rare, but nonetheless exist, and

can be very serious, especially during prolonged administration

(Haładyj et al, 2018). In Table EV1, we provide a comprehensive

overview of the known side effects caused by HCQ in RADs and

their prevalence. Overall, the most common side effects in RAD

patients taking HCQ or CQ are gastrointestinal disturbances, skin

discolorations, cutaneous eruptions and elevated muscle enzymes.

Although rare, retinopathy, neuromuscular and cardiac toxicities

(Fig 3) are the most serious and life-threatening side effects poten-

tially triggered by HCQ (Plantone & Koudriavtseva, 2018).

Retinopathy
Prolonged administration of HCQ or CQ can cause retinopathy and

loss of retinal function that, when ignored, can result in permanent

vision loss (Jorge et al, 2018). The primary site of toxicity in the

retina is the photoreceptor layer, with secondary degeneration

occurring later in retinal pigment epithelium (RPE) cells (De Sister-

nes et al, 2015; Yusuf et al, 2017). Some studies offer a potential

explanation for this severe side effect.

By inhibiting the lysosomal degradation capacity and possibly

endocytosis in RPE cells, HCQ and CQ are preventing the degrada-

tion of old and spent outer segments of photoreceptors in the RPE, a

process that is required to maintain its function and preserve vision

(Kevany & Palczewski, 2010; Yusuf et al, 2017). Furthermore, HCQ

entrapment in the RPE might lead to an accumulation of lipofuscin,

which is associated with photoreceptor function impairment and

consequent vision loss (Kevany & Palczewski, 2010; Yusuf et al,

2017). It has been speculated that, due to this entrapment, retinopa-

thy still continues in some cases after cessation of HCQ treatment

(Michaelides et al, 2011). Accumulation of CQ in the pigmented

ocular tissue, which comprises RPE cells, the iris, the choroid and

the ciliary body, and eventually in the retina, was also observed in

rhesus monkeys when CQ was administered for 52 months (Rosen-

thal et al, 1978). This caused an initial damage to the photorecep-

tors and the ganglion cells, followed by a disruption of both the RPE

and choroid, which ultimately led to visual impairments and

retinopathy (Rosenthal et al, 1978).

High levels of HCQ inhibit the function of the organic anion

transporting polypeptide 1A2 (OATP1A2), a plasma membrane

importer expressed in many tissues, including RPE cells (Xu et al,

2016). In particular, OATP1A2 transports all-trans-retinol (atROL), a

retinol precursor essential for the classic visual cycle (Chan et al,

2015), into RPE cells. By blocking this transporter, HCQ causes an

extracellular accumulation of atROL and disrupts the classic visual

cycle (Xu et al, 2016).

Cardiac side effects and myotoxicity
HCQ can cause acute and chronic cardiac adverse effects (Chatre

et al, 2018). Acute adverse effects are linked to a very high dose of

HCQ, which provokes a block of Na+ and Ca2+ channels. This inhi-

bition can lead to membrane-stabilization effects in cardiac muscle

cells, which in turn causes conduction disturbances with atrioven-

tricular block and QRS interval widening (White, 2007). Chronic

adverse effects are connected to long-term treatment with a high

cumulative dose of HCQ (Chatre et al, 2018). As described above,

HCQ treatment impairs the degradative activity of lysosomes, which

leads to an accumulation of material such as glycogen and phospho-

lipids in their interior (Chatre et al, 2018). In myocytes, this causes

a vascularization of the cytoplasm and myofibrillar disorganization,

which contributes to the development of cardiac myopathy and

myocardial fibrosis (Yogasundaram et al, 2014). This phenomenon

can also be seen in the Fabry and Danon lysosomal storage diseases,

which have similar phenotypes (Roos et al, 2002; D’souza et al,

2014; Chatre et al, 2018). Moreover, HCQ-mediated accumulation of

autophagosomes in muscles and peripheral nerves can lead to

myotoxicity or myotoxicity combined with peripheral nerve

dysfunction (Shukla et al, 2019). Notably, HCQ and CQ also have

proarrhythmic activity (Landmesser & Harrison, 2001; Khobragade

et al, 2013; Chansky & Werth, 2017; Naksuk et al, 2020), which is
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of particular importance because of the potential use of this drug to

treat COVID-19 patients. These patients are burdened by arrhythmic

events, and consequently, HCQ and CQ could worsen this pathologi-

cal feature. It is still under investigation whether this proarrhythmic

activity is caused by SARS-CoV-2 infection and whether HCQ and

CQ are influencing it (Lazzerini et al, 2020).

Conclusions

HCQ is nowadays widely used for the treatment of RADs and has

shown great success in improving the quality of life of many patients.

Over the years, research on the molecular and cellular mode of action

of HCQ (and CQ) revealed that this compound modulates molecular

processes and cellular responses in multiple ways. At least four mech-

anisms of action that, directly or indirectly, influence the immune

system by synergistically dampening pro-inflammatory responses,

have been described. Although lysosomal inhibition and autophagy

impairment are the most studied, HCQ also influences other impor-

tant immune regulatory pathways by inhibiting specific steps, such as

activation of endosomal TLR-, cGAS and NOX signalling and Ca2+

mobilization for the ER. The beneficial therapeutic effect of HCQ in

RADs probably lies in its multifaceted properties, which also makes it

a promising candidate in other medical fields, such as oncology (Ono-

rati et al, 2018) and microbiology (Savarino et al, 2003; Cortegiani

et al, 2020; Yao et al, 2020).

Generally, HCQ is considered a safe drug with low prevalence of

side effects. These side effects nevertheless exist and can impact the

life of a patient tremendously. Among them, the most severe, i.e.

retinopathy and cardiomyopathy, is linked to the induced lysosomal

activity inhibition. This suggests that the unwanted negative effects

of HCQ could be due to its lysosomotropic properties. In this context,

it has been reported that the effect of HCQ on endosomal and lysoso-

mal pH at therapeutic concentrations is negligible (Ku�znik et al,

2011) and that the pH changes observed in vitro might not reflect the

in vivo reality. Therefore, a higher dose of HCQ (or a higher cumula-

tive dose) could lead to a pH increase in the compartments of the

endolysosomal system and thus cause more side effects (Latasiewicz

et al, 2017; Jorge et al, 2018). The well-documented list of side effects

caused by HCQ during the treatment of RADs should be considered

when using HCQ to treat other pathologies such as cancer (Onorati

et al, 2018), neurodegenerative disorders (Hedya et al, 2019), meta-

bolic diseases (Pasquier, 2016) and microbial infections (Savarino

et al, 2003), especially since treatment of some pathologies requires

high HCQ doses (Leung et al, 2015).

While the search for a unifying mechanism of action for HCQ is

tempting, current knowledge shows that this small molecule has more

than a single target. As a result, future research should aim at identify-

ing potential additional cellular and organismal pathways specifically

modulated by HCQ. The mechanisms by which HCQ causes side

effects could also provide important information. Increasing our under-

standing of HCQ mode of action would improve patient outcome by

promoting therapeutic benefits while reducing side effects.

For more information
(i) https://www.rheumatology.org/

(ii) https://www.sjogrens.org/

(iii) https://www.arthritis.org/

(iv) https://www.lupus.org/

(v) https://clinicaltrials.gov

(vi) https://www.fda.gov/

Expanded View for this article is available online.
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