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A B S T R A C T

Background. Post-myocardial infarction (MI) patients have a
doubled rate of kidney function decline compared with the gen-
eral population. We investigated the extent to which high intake
of total, animal and plant protein are risk factors for accelerated
kidney function decline in older stable post-MI patients.
Methods. We analysed 2255 post-MI patients (aged 60–
80 years, 80% men) of the Alpha Omega Cohort. Dietary data
were collected with a biomarker-validated 203-item food

frequency questionnaire. At baseline and 41 months, we esti-
mated glomerular filtration rate based on the Chronic Kidney
Disease Epidemiology Collaboration equations for serum cysta-
tin C [estimated glomerular filtration rate (eGFRcysC)] alone
and both creatinine and cystatin C (eGFRcr–cysC).
Results. Mean [standard deviation (SD)] baseline eGFRcysC and
eGFRcr–cysC were 82 (20) and 79 (19) mL/min/1.73 m2. Of all
patients, 16% were current smokers and 19% had diabetes.
Mean (SD) total protein intake was 71 (19) g/day, of which two-
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thirds was animal and one-third plant protein. After multivari-
able adjustment, including age, sex, total energy intake, smok-
ing, diabetes, systolic blood pressure, renin–angiotensin system
blocking drugs and fat intake, each incremental total daily pro-
tein intake of 0.1 g/kg ideal body weight was associated with an
additional annual eGFRcysC decline of �0.12 (95% confidence
interval �0.19 to �0.04) mL/min/1.73 m2, and was similar for
animal and plant protein. Patients with a daily total protein in-
take of�1.20 compared with <0.80 g/kg ideal body weight had
a 2-fold faster annual eGFRcysC decline of �1.60 versus
�0.84 mL/min/1.73 m2. Taking eGFRcr–cysC as outcome showed
similar results. Strong linear associations were confirmed by re-
stricted cubic spline analyses.
Conclusion. A higher protein intake was significantly associ-
ated with a more rapid kidney function decline in post-MI
patients.

Keywords: diet, kidney function decline, myocardial infarc-
tion, protein intake

I N T R O D U C T I O N

In the European population of �45 years, the prevalence of
chronic kidney disease (CKD), defined as estimated glomerular
filtration rate (eGFR) <60 mL/min/1.73 m2, is high at 11% [1].
CKD is an independent risk factor for cardiovascular morbidity
and mortality [2, 3]. Post-myocardial infarction (MI) patients,
compared with the general population, have a doubled rate of
annual kidney function decline of about 2.0 mL/min/1.73 m2,
and are thus at risk for CKD [4]. Classic cardiovascular risk fac-
tors, such as diabetes, smoking and hypertension, can only ex-
plain part of the accelerated kidney function decline.
Identification of novel modifiable risk factors is important for
targeted prevention of kidney function decline and may im-
prove life expectancy in post-MI patients.

Experimental animal studies showed that long-term high
levels of protein may cause glomerular hyperfiltration and pro-
inflammatory gene expression, both well-known risk factors for
CKD progression [5, 6]. In humans, several studies have shown
that a high-protein diet may exacerbate proteinuria, an inde-
pendent risk factor of accelerated kidney function decline, al-
though this was not confirmed by others [7–9]. Consequently,
current Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines recommend to limit daily total protein intake to
<1.30 g/kg body weight in adults at risk for CKD, and advise
to restrict protein intake to 0.60–0.80 g/kg/day in patients
with diabetes or eGFR <30 mL/min/1.73 m2 [10, 11]. The
Modification of Diet in Renal Disease intervention study sug-
gested that dietary protein restriction may slow down kidney
function decline in patients with an eGFR between 25 and
55 mL/min/1.73 m2 [12]. From a preventive perspective, it is of
interest to know whether protein restriction in patients with
normal or mildly impaired kidney function retards kidney func-
tion decline. Moreover, recommendations are lacking regarding
relative animal or plant protein restriction.

The aim of this study was to determine whether total protein
and its components, animal and plant protein, are risk factors

for accelerated kidney function decline in older, stable post-MI
patients with normal or mildly impaired kidney function.

M A T E R I A L S A N D M E T H O D S

Participants

The Alpha Omega Cohort is a prospective study of 4837
Dutch patients aged 60–80 years with a clinically diagnosed MI
up to 10 years before study entry, on standard cardiovascular
drug treatment according to the latest international guidelines
[13, 14]. Major exclusion criteria were severe heart failure, unin-
tended weight loss of �5 kg the previous year and diagnosis of
cancer with a life expectancy <1 year. During the first
41 months of follow-up, patients took part in an experimental
study of low-dose omega-3 fatty acids (Alpha Omega Trial), as
described elsewhere [15]. For this study, we included patients
with available blood samples at baseline and after 41 months of
follow-up. Owing to financial constraints, a second blood sam-
ple was taken only from patients who were enrolled in the trial
up to August 2005 (n¼ 2918). From these 2918 patients, we ex-
cluded those who died during follow-up (n¼ 233) and who had
missing blood samples or refused further participation
(n¼ 259). In addition, patients were excluded with missing die-
tary data (n¼ 171) or implausible high or low energy intake
(<800 or >8000 kcal/day for men, <600 or >6000 kcal/day for
women; n¼ 7), yielding 2248 patients for the present analysis
(Supplementary data, Figure S1). The Alpha Omega Cohort
study was registered at ClinicalTrials.gov no. NCT03192410.
This study was conducted in accordance with the Helsinki
Declaration and was approved by a central Medical Ethics
Committee in the Netherlands. Written informed consent was
obtained from all patients. Reporting of this study was per-
formed in accordance with the STrengthening the Reporting of
OBservational studies in Epidemiology (STROBE) guidelines
for cohort studies [16].

Data collection

Patients were interviewed and physically examined by
trained research nurses at baseline and after 41 months.
Information on demographic variables, lifestyle habits and
medical history was collected by self-administered question-
naires as previously described [17]. High blood pressure was de-
fined according to the latest European Society of Cardiology
guideline: a systolic blood pressure �140 mmHg or diastolic
blood pressure �90 mmHg [18]. Diabetes mellitus was consid-
ered present in case of a self-reported physician diagnosis, use
of glucose-lowering drugs and/or hyperglycaemia (serum glu-
cose �7.0 mmol/L for patients who had fasted �4 h or
�11.1 mmol/L for non-fasting patients). Body mass index
(BMI) was calculated as weight (kg) divided by the squared
height (m) and obesity was defined as BMI �30 kg/m2 [19].
Physical activity was assessed by the Physical Activity Scale for
the Elderly, a validated self-reported questionnaire for persons
aged �65 years [20]. Medication was coded according to the
Anatomical Therapeutic Chemical Classification System.
Standardized blood handling procedures and determination of
lipid and glucose levels were described in detail elsewhere [17].
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Dietary data

We collected dietary data using a 203-item food frequency
questionnaire (FFQ), specifically developed for the Alpha
Omega Trial [15]. The FFQ is an extended and adapted version
of a reproducible and biomarker-validated FFQ [21, 22].
Patients reported their habitual food intake during the previous
month, including information on frequency, amount, type and
preparation methods of food. Questionnaires were checked by
trained dieticians, and patients were contacted by telephone in
case of missing or unclear information. The 2006 Dutch Food
Composition Database was used to convert food consumption
into intake of energy, protein and other nutrients [23]. Dietary
protein intake was collected at baseline, and we did not consider
changes of intake during follow-up. Previous studies showed
that the dietary pattern remained stable, especially at older age,
over a timespan up to 7 years [24]. We divided total protein in-
take into animal and plant protein. Animal protein was subdi-
vided into protein from meat or dairy (Supplementary data,
Table S1). Protein intake was expressed per 0.1 g/kg ideal body
weight per day, per 5 g/day and as percentage of total daily en-
ergy intake (per 2 en%). Ideal body weight was calculated by
multiplying an ideal BMI of 22.5 kg/m2 with a person’s actual
height (m) squared. We used ideal body weight instead of actual
body weight, since normalizing protein intake to actual body
weight would result in erroneously high protein requirements
in overweight and obese patients [25, 26]. Total energy intake
was based on energy from protein, carbohydrate and fat, but ex-
cluded alcohol.

Kidney function assessment

At baseline and 41 months follow-up, serum cystatin C
(cysC) and serum creatinine (cr) were measured from stored
blood samples in a central laboratory from 1 September to 15
November 2011, as previously described in detail [27]. Briefly,
serum cysC was measured by a particle-enhanced immunone-
phelometric assay (N Latex Cystatin C, Dimension Vista 1500
Analyzer; Siemens). We used calibrators and assays of the same
lot code, which was stable (no downward drift). CysC was cali-
brated directly using the standard supplied by the manufac-
turer, traceable to the International Federation of Clinical
Chemistry Working Group for Standardization of Serum
Cystatin C [28]. Serum cr was measured by the modified kinetic
Jaffé method (Dimension Vista 1500 Analyzer; Siemens). We
calibrated directly to the standard supplied by the manufacturer
from the National Institute of Standards and Technology
Standard Reference Material, and postcalibration correction
factor was applied [29]. We estimated GFR based on cystatin C
(eGFRcysC) and combined creatinine–cystatin C (eGFRcr–cysC)
at baseline and after 41 months, using the Chronic Kidney
Disease Epidemiology Collaboration equations from 2012, tak-
ing into account age, sex and race [30]. The KDIGO 2012 and
NICE 2014 guidelines recommend to use eGFRcysC or
eGFRcr–cysC as a confirmatory test [10, 31]. From each individ-
ual, eGFR decline or change was calculated by subtracting the
eGFR at baseline from the eGFR after 41 months. Assuming a
linear decline over time, we then estimated the annual kidney
function decline. In the main analyses, we use eGFRcysC as

outcome; results for eGFRcr–cysC are reported in Supplementary
data, Tables S4 and S5.

Data analysis

Baseline characteristics were presented as mean with stan-
dard deviation (SD), median with interquartile range or num-
ber (percentage), for all patients, and according to four groups
of daily protein intake (<0.80, 0.80 to <1.00, 1.00 to <1.20 and
�1.20 g/kg ideal body weight). In Supplementary data, Tables
S2 and S3, we presented baseline and dietary characteristics
according to quartiles of absolute daily protein intake (g/day).
The number of missing values was low: height (n¼ 3), blood
pressure (n¼ 3), physical activity (n¼ 9), level of education
(n¼ 11), cr (n¼ 76). We used multiple imputation for the
main analyses to avoid bias and maintain power, using five
imputations, and including all relevant baseline variables and
the outcome in the model.

Linear regression was used to study the association between
kidney function decline and baseline dietary intake of total pro-
tein, different types of protein (animal, plant) and protein sour-
ces (meat, dairy). All analyses were adjusted for the omega-3
fatty acid treatment groups of the Alpha Omega Trial (using
three dummies: placebo versus three active treatments) [15].
Further adjustments were made for the following confounders:
age, sex and total energy intake (Model 1). In Model 2, we addi-
tionally adjusted for alcohol consumption (g/day), cigarette
smoking (current, former, never), level of education (elementary,
low, moderate, high), physical activity (inactivity, low, moderate,
vigorous activity) and use of renin–angiotensin system (RAS)
blocking drugs. In Model 3, we additionally adjusted for daily in-
take of saturated fat, polyunsaturated fat, monounsaturated fat,
trans fat (g/day), dietary sodium, diabetes and systolic blood
pressure. In analyses for animal protein, we also adjusted for in-
take of plant protein and vice versa. Protein intake from meat
was also adjusted for non-meat sources, and protein intake from
dairy for non-dairy sources. In Model 3, total caloric intake and
all energy-providing macronutrients, except carbohydrate, were
included. Therefore, in Model 3, each increase in protein intake
can be interpreted as a theoretical replacement of carbohydrate.
In the analyses taking kidney function decline as outcome, we
did not adjust for baseline eGFR since this may lead to biased
and inflated estimates [32]. To explore the presence of effect
modification, analyses were repeated after stratification for age
(<70 versus�70 years), sex, CKD (eGFR <60 or �60 mL/min/
1.73 m2), use of RAS blocking drugs, diabetes, high blood pres-
sure (�140/90 mmHg) or high BMI (<27 versus �27 kg/m2).
Finally, we modelled the association between total protein intake
and annual eGFRcysC decline in a more flexible way, using re-
stricted cubic splines with 95% confidence intervals (CIs). The
knots were chosen at the 5, 35, 65 and 95th percentile of protein
intake according to general guidelines [33].

Sensitivity analyses

First, we repeated the main analyses taking as outcome
eGFR after 41 months adjusted for baseline eGFR. Secondly, we
repeated the main analyses using as exposure daily protein in-
take per 0.1 g/kg actual body weight adjusted for BMI. Thirdly,
we additionally adjusted for several micronutrients representing
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a healthy diet such as dietary fibre, potassium and vitamin C.
Fourthly, analyses were repeated including dietary carbohy-
drate instead of fat intake in the substitution model. An increase
in protein intake can then be interpreted as a theoretical re-
placement of fat. Fifthly, analyses were repeated using only
complete cases. Sixthly, analyses were repeated after excluding
patients with baseline eGFRcysC <30 mL/min/1.73 m2 (n¼ 20).
Finally, since blood samples were drawn after fasting or non-
fasting, we additionally adjusted for fasting status (<4, 4 to
<8 or�8 h). Non-fasting status may have an effect on serum cr
levels through dietary meat intake, but not on cysC level. We
considered two-sided P< 0.05 statistically significant. All analy-
ses were performed using SPSS 23.0 (IBM Corp., Armonk, NY,
USA), STATA Statistical Software version 14.1 (Statacorp,
College Station, TX, USA) and GraphPad Prism version 7
(GraphPad Software, La Jolla, CA, USA).

R E S U L T S

Baseline characteristics of all patients and per category of daily
protein intake (g/kg ideal body weight) are presented in
Table 1. The mean age of all patients was 69 years and 80%
were men. Mean eGFRcysC was 82 mL/min/1.73 m2 for all
patients, and for patients with a daily total protein intake of
<0.80 or �1.20 g/kg ideal body weight, it was 77 and 85 mL/
min/1.73 m2, respectively. Mean total protein intake was 71 g/
day, providing 16% of the total energy intake, of which about
two-thirds was animal and one-thirds plant protein (Table 2).
The mean intake of animal protein from meat was 4 en% and
from dairy it was 4 en%. For each incremental category of daily
protein intake per g/kg ideal body weight, mean intake of total
energy and intake of all micronutrients and macronutrients in-
creased (Table 2). Protein intake was highly correlated with to-
tal energy intake (Pearson correlation 0.76). Supplementary
data, Tables S2 and S3 show the baseline characteristics and die-
tary intake according to categories of absolute daily protein in-
take per g/day. Patients with a higher absolute intake of protein
were more likely men, had higher height and weight and had a
higher intake if energy. Of all patients, 54% used RAS blocking
drugs; in patients with an eGFRcysC �90 or <60 mL/min/
1.73 m2, it was 62 and 50%, respectively. About 50% of all
patients persistently used RAS blocking drugs during
41 months of follow-up. Daily protein intake was similar in
patients with or without RAS blocking drugs.

Protein intake and annual kidney function decline

For all patients, the mean (95% CI) annual change in
eGFRcysC and eGFRcr–cysC was �1.30 (�1.43 to �1.17) and
�1.71 (�1.87 to �1.56) mL/min/1.73 m2, respectively. Total
protein intake was inversely associated with annual kidney
function decline. The fully adjusted model showed that the an-
nual change in eGFRcysC was doubled in patients with a daily
total protein intake >1.20 compared with <0.80 g/kg ideal
body weight: �1.60 (�1.92 to �1.28) compared with �0.84
(�1.21 to�0.46) mL/min/1.73 m2 (Table 3). Comparable asso-
ciations were observed for eGFRcr–cysC (Supplementary data,
Table S4). Restricted cubic spline analysis confirmed a strong
linear association between protein intake and annual kidney

function decline (Figure 1). We also found an inverse associa-
tion between the intake of animal protein and both eGFRcysC or
eGFRcr–cysC, and a similar but non-significant association for
plant protein (Table 4 and Supplementary data, Table S5).
Compared with animal protein from meat, higher dairy protein
intake was associated with a slower kidney function decline
(Table 4). Each extra 0.1 g/kg ideal body weight daily intake of
animal protein from meat or dairy was associated with an addi-
tional eGFRcysC decline of �0.14 (�0.25 to �0.03) and �0.06
(�0.16 to 0.04) mL/min.1.73 m2, respectively (Table 4). Taking
eGFRcr–cysC as outcome, the associations with protein from
dairy and meat were comparable (Supplementary data, Table
S5). Results remained similar when daily protein intake was
expressed per 5 g/day or per 2 en%. Subgroup analyses showed
a 3-fold stronger association between protein intake and eGFR
decline in patients with versus without diabetes (Figure 2). We
found no evidence for effect modification with regard to kidney
function decline between protein intake and other pre-defined
factors (Figure 2). Finally, with increasing protein intake, we
observed no difference in annual eGFRcysC decline between
patients persistently using RAS blocking drugs and non-users.

Sensitivity analyses

Taking eGFR as outcome after 41 months of follow-up ad-
justed for baseline eGFR (data not shown), or daily protein in-
take per 0.1 g/kg actual body weight adjusted for BMI, yielded
similar results (Supplementary data, Table S6). Additional ad-
justment for dietary fibre, potassium and vitamin C yielded
slightly stronger effect estimates. Results remained similar
when replacing protein in the model by fat instead of carbohy-
drates. Type of fat, saturated or unsaturated, did not affect the
results. Additional adjustment for fasting status did not change
our results. Finally, results remained essentially unchanged ana-
lysing complete cases only, or excluding patients with baseline
eGFR<30 mL/min/1.73 m2.

D I S C U S S I O N

This is the first and the largest cohort of older state-of-the-art
drug-treated post-MI patients showing that high-protein intake
is associated with accelerated kidney function decline. Patients
with a daily total protein intake of �1.20 compared with
<0.80 g/kg ideal body weight had a two-fold greater rate of an-
nual kidney function decline of �1.60 versus �0.84 mL/min/
1.73 m2. Each extra daily protein intake of 0.1 g/kg ideal body
weight was associated with an additional kidney function de-
cline of �0.12 mL/min/1.73 m2/year. The associations of total,
animal or plant protein with kidney function decline were
comparable.

Our findings are in line with the current KDIGO guidelines
recommending to limit daily total protein intake to <1.30 g/kg
body weight in adults at risk for CKD, and to restrict protein in-
take to 0.60–0.80 g/kg/day in patients with diabetes or eGFR
<30 mL/min/1.73 m2 [10]. Current guidelines make no recom-
mendations with regard to animal and plant protein intake.
However, for low-protein diets, it is recommended that about
half consists of ‘high biologic value’ animal protein, such as
dairy or meat, to ensure a sufficient daily intake of essential

Dietary protein and kidney function decline 109

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/article-abstract/35/1/106/5320337 by R

ijksuniversiteit G
roningen user on 23 July 2020

https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfz015#supplementary-data


amino acids [11, 34]. For healthy individuals, the recommended
dietary allowance for protein is 0.80 g/kg/day. To prevent pro-
tein wasting, >10% of daily energy intake should be derived
from protein [35]. We showed that post-MI patients with a
daily protein intake of <0.80 g/kg ideal body weight, which on
average represents about 14% of the total energy intake, had the
lowest annual eGFRcysC decline of �0.84 mL/min/1.73 m2. The
mean (95% CI) annual eGFR decline of �1.3 (�1.4 to �1.2)
mL/min/1.73 m2 in our study is lower than the �2.2 (�5.0 to
�0.9) mL/min/1.73 m2 in post-MI patients reported in the
Prevention of Renal and Vascular End-stage Disease
(PREVEND) study [4]. The lower rate of kidney function de-
cline in our study can be explained by more stringent guidelines
on secondary prevention of cardiovascular disease during the
Alpha Omega Trial (2002–09) than the PREVEND study
(1997–2005), and the more precise estimate of the kidney func-
tion decline given the smaller 95% CI of our study, as we

previously discussed in more detail [36]. In our cohort of post-
MI patients, the total energy intake differs substantially between
the lowest and highest category of protein intake. This is
explained by the high correlation between protein intake and
energy intake (Pearson correlation 0.76), and a similar trend
was shown in 11 952 individuals of the Atherosclerosis Risk in
Communities (ARIC) study [37]. The low absolute intake of to-
tal energy in the lowest category of protein intake (1346 kcal/
day) is most likely explained by measurement error owing to
underreporting since this could lead to protein–energy wasting
[38, 39]. Therefore, it is important to adjust in the model for en-
ergy intake to reduce the influence of measurement error and
control for extraneous variation [40].

Only few studies, mostly population-based, investigated the
association between total protein intake and kidney function
decline. The Singapore Chinese Health Study showed in
middle-aged individuals a 20% greater risk of end-stage renal

Table 1. Baseline characteristics of 2248 post-myocardial patients in the Alpha Omega Cohort and according to four categories of total daily protein
intake

Baseline characteristics Total daily protein intake (g/kg ideal body weight)a

All patients,
n¼ 2248

<0.80,
n¼ 393

0.80 to <1.00,
n¼ 598

1.00 to <1.20,
n¼ 641

�1.20,
n¼ 613

Age, years 69 6 5 69 6 6 69 6 5 69 6 5 69 6 5
Men, n (%) 1789 (80) 302 (77) 496 (83) 512 (80) 479 (78)
Serum cystatin C, mg/L 0.97 6 0.24 1.02 6 0.29 0.99 6 0.26 0.95 6 0.22 0.93 6 0.21
Serum creatinine,b mg/dL 1.02 6 0.33 1.05 6 0.37 1.04 6 0.35 1.01 6 0.30 0.98 6 0.31
eGFRcysC, mL/min/1.73 m2 82 6 20 77 6 20 80 6 20 83 6 19 85 6 18
eGFRcr–cysC, mL/min/1.73 m2 79 6 19 75 6 19 77 6 19 79 6 19 82 6 18
Ethnicity, white, n (%) 2222 (99) 387 (99) 590 (99) 637 (99) 606 (99)
Time since MI, years 4.0 (1.9–6.4) 4.0 (2.1–6.8) 4.0 (2.0–6.8) 4.0 (2.0–6.2) 3.9 (1.7–6.2)
High educational level,c n (%) 275 (12) 34 (9) 79 (13) 90 (14) 71 (12)
Current smoker, n (%) 352 (16) 77 (20) 109 (18) 82 (13) 84 (14)
Alcohol intake, g/day 8 (2–18) 5 (0.4–14) 9 (2–22) 8 (2–18) 8 (2–18)
Physically active,d n (%) 510 (23) 84 (21) 136 (23) 137 (21) 152 (25)
Height, cm 172 6 8 173 6 9 173 6 8 173 6 8 171 6 8
Weight, kg 82 6 12 83 6 13 83 6 12 83 6 13 81 6 13
BMI, kg/m2 27.6 6 3.6 27.6 6 3.6 27.4 6 3.5 27.7 6 3.6 27.8 6 3.7
�30 kg/m2, n (%) 506 (23) 81 (21) 125 (21) 149 (23) 151 (25)

High blood pressure,e n (%) 1275 (57) 225 (57) 344 (58) 367 (57) 338 (55)
Systolic BP, mmHg 144 6 21 144 6 22 144 6 21 145 6 22 142 6 20
Diastolic BP, mmHg 82 6 11 82 6 11 82 6 11 82 6 11 81 6 10
BP-lowering drugs,f n (%) 1954 (87) 354 (90) 522 (87) 539 (84) 537 (88)

RAS blocking drugsg 1222 (54) 205 (52) 335 (56) 333 (52) 349 (57)
Plasma glucose,h mg/dL 6.0 6 1.9 6.0 6 1.8 6.0 6 1.9 6.0 6 1.8 6.1 6 2.1
Diabetes,i n (%) 405 (18) 72 (18) 109 (18) 108 (17) 115 (19)

Glucose-lowering drugs,f n (%) 289 (13) 56 (14) 72 (12) 79 (12) 81 (13)
Serum LDL,j mg/dL 2.7 6 0.8 2.7 6 0.9 2.7 6 0.8 2.7 6 0.8 2.7 6 0.7

Lipid-modifying drugs,f n (%) 1944 (87) 345 (88) 509 (85) 561 (88) 528 (86)
Anti-thrombotic drugs,f n (%) 2201 (98) 383 (98) 582 (97) 628 (98) 606 (99)

Data are reported as number of patients (%), mean 6 SD or median (interquartile range).
aFrom three patients with missing height, no intake in g/kg ideal body weight could be calculated, hence numbers from the four categories do not add up to 2248.
bTo convert the values for creatinine to micromole per litre multiply by 88.40.
cHigher vocational education or university.
dDefined as �3 metabolic equivalent of tasks for �30 min/day during �5 days/week.
eDefined as systolic blood pressure �140 mmHg and/or diastolic blood pressure �90 mmHg.
fBlood pressure-lowering drugs Anatomical Therapeutic Chemical Classification System (ATC) codes C02, C03, C07, C08 and C09. Glucose-lowering drugs ATC codes A10, A10A,
A10B and A10X. Lipid-modifying drugs ATC codes C10, C10AA. Antithrombotic drugs ATC code B01.
gDefined as ATC code C09, RAS inhibitors.
hNon-fasting; to convert the values for glucose to milligram per decilitre, divide by 0.05551.
iSelf-reported diagnosis by a physician, use of glucose-lowering drugs or hyperglycaemia.
jNon-fasting; to convert the values for LDL-cholesterol to milligram per decilitre, divide by 0.02586.
BP, blood pressure; LDL, low-density lipoprotein.
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disease for the highest three compared with the lowest quartile
of total protein intake, over a mean follow-up of 15 years [41].
Unfortunately, information on baseline eGFR was not available
in this cohort. Others found in middle-aged women (eGFR 55–
80 mL/min/1.73 m2) that each incremental 10 g of daily total
protein intake was associated with an additional eGFR decline
of �1.69 mL/min/1.73 m2 after 11 years of follow-up [42]. In
contrast, total protein intake was not associated with CKD risk
in the Doetinchem study, a Dutch community-based cohort, as
well as in two US community-based cohorts [37, 43, 44].
Compared with Alpha Omega Cohort, participants in these
three aforementioned cohorts were about 20 years younger, had
a normal creatinine-based eGFR and had fewer comorbidities.

We observed in this study that the magnitude of the associa-
tions did not differ for animal and plant protein with regards to
kidney function decline in older post-MI patients. The
population-based Doetinchem study found no association for ei-
ther animal or plant protein intake with kidney function decline

[44]. The Atherosclerosis Risk in Communities (ARIC) study, a
US cohort of middle-aged individuals without cardiovascular dis-
ease and normal kidney function, found no association between
the intake of animal protein and kidney function. However, they
showed a 24% lower risk of CKD in individuals in the highest
compared with the lowest quintile of plant protein intake [37].

We found a twice as low association of dairy compared
with meat protein intake with kidney function decline in elderly
post-MI patients. In contrast, the ARIC study showed that
individuals in the highest compared with the lowest quintile of
low-fat dairy intake had a 20% lower CKD risk [37]. In the
Doetinchem study, individuals in the highest compared with
the lowest tertile of total dairy intake had a 0.2 mL/min/1.73 m2

slower annual kidney function decline [44]. In contrast to this
study, the ARIC and Doetinchem studies did not analyse the
effect of protein from dairy, but from dairy foods as a whole.

Several mechanisms may explain the association of protein
intake with accelerated kidney function decline. A high-protein

Table 2. Dietary intake of macronutrients and micronutrients of 2248 post-MI patients of the Alpha Omega Cohort and according to four categories of
daily total protein intake

Dietary intake Total daily protein intake (g/kg ideal body weight)a

Units All patients,
n¼ 2248

<0.80,
n¼ 393

0.80 to <1.00,
n¼ 598

1.00 to <1.20,
n¼ 641

�1.20,
n¼ 613

Total energyb kcal/day 1827 6 497 1346 6 316 1659 6 364 1874 6 359 2250 6 469
Total protein g/day 71 6 19 46 6 8 61 6 6 73 6 8 92 6 14

en% 16 6 3 14 6 3 15 6 3 16 6 3 17 6 3
Animal protein g/day 43 6 15 25 6 8 36 6 7 45 6 8 60 6 12

en% 10 6 3 8 6 3 9 6 3 10 6 3 11 6 3
From meat g/day 17 6 9 9 6 7 15 6 7 18 6 7 22 6 8

en% 4 6 2 3 6 2 4 6 2 4 6 2 4 6 2
From dairy g/day 18 6 10 10 6 5 14 6 7 18 6 8 27 6 12

en% 4 6 2 3 6 2 3 6 2 4 6 2 5 6 2
Plant protein g/day 27 6 8 21 6 5 25 6 6 28 6 6 33 6 8

en% 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1
Total carbohydrate g/day 223 6 68 173 6 49 204 6 57 228 6 58 268 6 68

en% 49 67 51 6 8 49 6 7 48 6 7 48 6 6
Total fat g/day 73 6 27 52 6 20 66 6 23 75 6 22 90 6 27

en% 35 6 7 35 6 8 36 6 7 36 6 7 36 6 6
Fiber g/day 22 6 7 17 6 5 20 6 5 22 6 6 26 6 7
Sodiumc mg/day 2217 6 661 1541 6 371 1950 6 403 2276 6 463 2849 6 602
Potassium mg/day 3259 6 851 2438 6 570 2936 6 576 3344 6 613 4007 6 791
Vitamin C mg/day 97 6 54 75 6 41 87 6 51 103 6 58 116 6 53

aFrom three patients with missing height, no intake in g/kg ideal body weight could be calculated, hence numbers from the four categories do not add up to 2248. Animal protein from
meat and dairy do not add up to total animal protein because total animal protein from also includes protein from eggs and fish.
bExcluding calories from alcohol.
cOnly from foods, to convert to intake of salt (sodium chloride) multiply by 2.5.

Table 3. Annual eGFR change, based on serum cysC, according to daily total protein intake in 2248 post-MI patients of the Alpha Omega Cohort

Model Total daily protein intake (g/kg ideal body weight)

<0.80, n¼ 393 0.80 to <1.00, n¼ 599 1.00 to <1.20, n¼ 643 �1.20, n¼ 613 P trend

Annual eGFRcysC change (mL/min/1.73 m2) (95% CI)
Crude �1.17 (�1.48 to �0.85) �1.28 (�1.54 to �1.03) �1.44 (�1.68 to �1.19) �1.26 (�1.51 to �1.01) 0.5
Model 1 �0.79 (�1.15 to �0.44) �1.12 (�1.38 to �0.86) �1.47 (�1.71 to �1.23) �1.63 (�1.93 to �1.34) <0.001
Model 2 �0.79 (�1.14 to �0.43) �1.10 (�1.36 to �0.84) �1.50 (�1.74 to �1.26) �1.62 (�1.91 to �1.33) <0.001
Model 3 �0.84 (�1.21 to �0.46) �1.10 (�1.37 to �0.84) �1.48 (�1.72 to �1.24) �1.60 (�1.92 to �1.28) 0.003

Model 1: adjusted for age, sex and total energy intake.
Model 2: Model 1 plus additional adjustment for education, alcohol, smoking, physical activity, RAS blocking drugs.
Model 3: Model 2 plus additional adjustment for intake of fat (mono- and poly-unsaturated fat, saturated fat and trans fat), dietary sodium, diabetes and systolic blood pressure.
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diet dilates the glomerular afferent arteriole, resulting in hyper-
filtration and subsequent glomerular damage owing to inflam-
mation and fibrosis [45]. In contrast, a low-protein diet lowers
the intraglomerular pressure, a beneficial effect that is enhanced
if combined with RAS blockers that dilate the efferent arteriole
[46, 47]. We observed comparable associations of animal and
plant protein intake regarding the rate of kidney function de-
cline. The strongest kidney function decline was observed for
meat and plant protein, whereas for dairy protein the decline
was only half compared with meat and plant protein. However,
the latter association was not significant. More research is
needed to determine whether or not dairy protein is superior to
meat and plant protein with regard to slowing down kidney
function decline. Subgroup analyses showed a 3-fold stronger

association between protein intake and eGFR decline in patients
with when compared with patients without diabetes. Diabetes
increases the risk of glomerular hyperfiltration and proteinuria,
possibly leading to higher susceptibility to the detrimental
effects of a high-protein diet in these patients [48]. Our results
suggest that a low-protein diet may be especially beneficial for
patients with diabetes to slow down kidney function decline.
However, confidence intervals were broad, and results should
be interpreted with caution.

This study has several limitations. First, the observational
study design prevents causal inference. Secondly, despite exten-
sive adjustments, we cannot rule out residual confounding.
Protein is not consumed in isolation but as part of a dietary pat-
tern, composed of numerous nutrients and bio-actives of which

Table 4. Annual change in eGFR (mL/min/1.73 m2), based on serum cysC, per unit increment daily intake of total, animal- or plant-based protein in 2248
post-MI patients of the Alpha Omega Cohort

Model Total protein Animal protein Plant protein

Total From meat From dairy

Annual eGFR change, per 0.1 g/kg ideal body weight (95% CI)
Crude �0.01 (�0.05 to 0.04) �0.03 (�0.09 to 0.03) �0.09 (�0.19 to 0.02) 0.02 (�0.06 to 0.10) 0.08 (�0.03 to 0.20)
Model 1 �0.12 (�0.18 to �0.05)** �0.12 (�0.19 to �0.05)** �0.15 (�0.25 to �0.05)* �0.05 (�0.14 to 0.05) �0.04 (�0.20 to 0.13)
Model 2 �0.12 (�0.18 to �0.05)** �0.11 (�0.18 to �0.04)* �0.13 (�0.23 to �0.03)* �0.05 (�0.14 to 0.04) �0.06 (�0.23 to 0.10)
Model 3 �0.12 (�0.19 to �0.04)* �0.12 (�0.19 to �0.04)* �0.14 (�0.25 to �0.03)* �0.06 (�0.16 to 0.04) �0.12 (�0.32 to 0.07)

Annual eGFR change, per 5 g (95% CI)
Crude �0.01 (�0.04 to 0.03) �0.02 (�0.07 to 0.02) �0.07 (�0.14 to 0.01) 0.01 (�0.05 to 0.07) 0.06 (�0.03 to 0.15)
Model 1 �0.09 (�0.15 to �0.04)* �0.09 (�0.14 to �0.04)* �0.11 (�0.19 to �0.03)* �0.03 (�0.10 to 0.04) 0.01 (�0.12 to 0.14)
Model 2 �0.09 (�0.15 to �0.04)* �0.08 (�0.14 to �0.03)* �0.10 (�0.18 to �0.02)* �0.04 (�0.11 to 0.04) �0.02 (�0.15 to 0.12)
Model 3 �0.09 (�0.16 to �0.02)* �0.09 (�0.16 to �0.02)* �0.11 (�0.20 to �0.02)* �0.05 (�0.13 to 0.03) �0.10 (�0.29 to 0.09)

Annual eGFR change, per 2 en% (95% CI)
Crude �0.17 (�0.26 to �0.08)** �0.16 (�0.25 to �0.07)** �0.20 (�0.33 to �0.06) �0.04 (�0.17 to 0.09) �0.04 (�0.27 to 0.19)
Model 1 �0.19 (�0.29 to �0.10)** �0.18 (�0.28 to �0.09)** �0.21 (�0.34 to �0.07)* �0.07 (�0.20 to 0.06) 0.04 (�0.21 to 0.28)
Model 2 �0.19 (�0.29 to �0.09)** �0.18 (�0.27 to �0.08)** �0.19 (�0.32 to �0.05)* �0.08 (�0.21 to 0.05) �0.01 (�0.26 to 0.24)
Model 3 �0.20 (�0.31 to �0.08)** �0.20 (�0.31 to �0.08)* �0.22 (�0.37 to �0.07)* �0.11 (�0.27 to 0.04) �0.20 (�0.55 to 0.14)

Model 1: adjusted for age, sex and total energy intake.
Model 2: Model 1 plus additional adjustment for education, alcohol, smoking, physical activity, RAS blocking drugs.
Model 3: Model 2 plus additional adjustment for intake of fat (mono- and poly-unsaturated fat, saturated fat and trans fat), dietary sodium, diabetes, and systolic blood pressure; ani-
mal protein was also adjusted for plant protein and vice versa.
en%, percentage of total energy intake. *P< 0.05; **P< 0.001.

FIGURE 1: Association (with 95% CI) between daily total protein intake (g/kg ideal body weight) and annual cysC-based (A) and cr–cysC-
based (B) eGFR. Modelled by restricted cubic splines with knots at the 5, 35, 65 and 95th percentile of protein intake. In these analyses, patients
with a daily protein intake �0.4 (n¼ 6) or >2.0 (n¼ 11) g/kg ideal body weight were excluded. The model was adjusted for age, sex, total en-
ergy intake, education, alcohol, smoking, physical activity, RAS blocking drugs, intake of fat (mono- and poly-unsaturated fat, saturated fat
and trans fat), dietary sodium, diabetes and systolic blood pressure.
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each may have its own effects on kidney function [49].
Therefore, it is difficult to attribute any observed effect solely to
the protein content or source. Thirdly, we estimated kidney
function decline using only one measurement at two time
points, which may reduce precision. If anything, then this may
have resulted in underestimation of the association between
protein intake and kidney function decline. Fourthly, we had no
information on proteinuria, an important risk factor for kidney
function decline. Fifthly, dietary data were obtained by FFQs,
which may under- or overestimate the absolute protein intake
[38]. The modified FFQ that we used was not validated; how-
ever, it was an extended version of a previously biomarker-
validated FFQ, including more detailed questions about food
consumption [21, 22]. Dietary protein intake was assessed at
baseline, and we did not take into account changes of intake
during follow-up. However, previous studies showed that the
dietary pattern remained stable, especially at older age, over a
timespan up to 7 years [24]. Sixthly, we had no information on
biomarkers like urinary urea nitrogen to validate protein intake
obtained from the FFQ. Furthermore, about 8% of patients died
during follow-up and were, therefore, not included in the analy-
ses. However, intake of protein and other macronutrients was
similar for patients included in the current analyses compared
with patients who died during follow-up (data not shown),
which makes selection bias unlikely. Finally, this cohort con-
sisted of post-MI patients, which may limit generalizability to
other populations.

Our prospective analysis has also several strengths. First, we
estimated kidney function based on two different endogenous
markers. Secondly, we measured cysC, which is currently the
most accurate marker for kidney function, and is not influenced
by glomerular hyperfiltration [10, 50, 51]. Moreover, cysC is, in
contrast to cr, not influenced by dietary meat intake and muscle
mass [52–55]. Thirdly, we used different measures of protein

intake: the absolute protein intake in g/day, intake expressed in
percentage of energy and the intake adjusted for ideal body
weight. Each approach led to similar conclusions. Finally, we
used substitution models since the association between kidney
function decline depends not only on the macronutrient of in-
terest, namely protein, but also on the replacement of other
macronutrients, such as carbohydrates or fat [56].

In conclusion, we found that a higher dietary intake of total
protein was associated with a more rapid loss of kidney function
in older post-MI patients. Despite the fact that our patients re-
ceived state-of-the-art drug treatment, we observed a beneficial
effect of a low-protein intake on kidney function.
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A B S T R A C T

Background. The progression trajectory of renal filtration func-
tion has not been well characterized in patients with early-onset
type 2 diabetes mellitus (T2DM) although albuminuria is often
reported in this population. We aim to study the risk of progres-
sive chronic kidney disease (CKD) in individuals with early-
onset T2DM.
Methods. In total, 1189 T2DM participants were followed for
3.9 (interquartile range 3.2–4.7) years. Progressive CKD was de-
fined as estimated glomerular filtration rate (eGFR) decline of
�5 mL/min/1.73 m2 per year. Early-onset T2DM was defined
as age at T2DM diagnosis between 18 and 30 years.
Results. Compared with later-onset counterparts (N¼ 1032),
participants with early-onset T2DM (N¼ 157) were more obese
and had poorer glycaemic control at baseline. In the follow-up,
24.2% and 15.6% experienced progressive CKD in early-onset

and later-onset participants, respectively (P¼ 0.007). Logistic
regression suggested that participants with early-onset T2DM
had 2.63-fold [95% confidence interval (CI) 1.46–4.75] higher
risk of progressive CKD after accounting for multiple tradi-
tional risk factors. Furthermore, the excess risk of progressive
CKD associated with early-onset T2DM mainly occurred in
participants with preserved renal function [eGFR�60 mL/min/
1.73 m2, odds ratio (OR) 2.85, 95% CI 1.50–5.42] and was more
pronounced in those with diabetes duration <10 years (OR
3.67, 95% CI 1.51–8.90).
Conclusions. Individuals with early-onset T2DM have a higher
risk of progressive CKD. The excess risk mainly exhibits in early
stage of CKD and cannot be solely attributed to traditional risk
factors and a longer diabetes duration.

Keywords: chronic kidney disease, diabetic kidney disease,
early-onset, renal progression, type 2 diabetes mellitus
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