
 

 

 University of Groningen

Bayesian Gaussian distributional regression models for more efficient norm estimation
Voncken, Lieke; Kneib, Thomas; Albers, Casper J; Umlauf, Nikolaus; Timmerman, Marieke E

Published in:
British Journal of Mathematical and Statistical Psychology

DOI:
10.1111/bmsp.12206

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Voncken, L., Kneib, T., Albers, C. J., Umlauf, N., & Timmerman, M. E. (2021). Bayesian Gaussian
distributional regression models for more efficient norm estimation. British Journal of Mathematical and
Statistical Psychology, 74(1), 99-117. https://doi.org/10.1111/bmsp.12206

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1111/bmsp.12206
https://research.rug.nl/en/publications/34579c69-8d31-45b4-8596-f7d6cf016bd1
https://doi.org/10.1111/bmsp.12206


British Journal of Mathematical and Statistical Psychology (2020), 74, 99–117

© 2020 The Authors. British Journal of Mathematical and Statistical Psychology published

by John Wiley & Sons Ltd on behalf of British Psychological Society

www.wileyonlinelibrary.com

Bayesian Gaussian distributional regression
models for more efficient norm estimation

Lieke Voncken1,2* , Thomas Kneib3 , Casper J. Albers1 ,
Nikolaus Umlauf 4 and Marieke E. Timmerman1

1Department of Psychometrics & Statistics, Faculty of Behavioural and Social Sciences,

University of Groningen, The Netherlands
2Department of Methodology and Statistics, Tilburg School of Social and Behavioral

Sciences, Tilburg University, The Netherlands
3Department of Statistics and Econometrics, Faculty of Business and Economics,
Georg-August-Universität Göttingen, Germany

4Department of Statistics, Faculty of Economics and Statistics, Universität Innsbruck,
Austria

A test score on a psychological test is usually expressed as a normed score, representing

its position relative to test scores in a reference population. These typically depend on

predictor(s) such as age. The test score distribution conditional on predictors is

estimated using regression, which may need large normative samples to estimate the

relationships between the predictor(s) and the distribution characteristics properly. In

this study, we examine to what extent this burden can be alleviated by using prior

information in the estimation of new norms with Bayesian Gaussian distributional

regression. In a simulation study, we investigate to what extent this norm estimation is

more efficient and how robust it is to prior model deviations. We varied the prior type,

prior misspecification and sample size. In our simulated conditions, using a fixed effects

prior resulted inmore efficient norm estimation than aweakly informative prior as long as

the prior misspecification was not age dependent. With the proposed method and

reasonable prior information, the same norm precision can be achieved with a smaller

normative sample, at least in empirical problems similar to our simulated conditions. This

may help test developers to achieve cost-efficient high-quality norms. The method is

illustrated using empirical normative data from the IDS-2 intelligence test.

1. Introduction

Psychological tests are widely used to assess individuals in clinical and educational

contexts. Such tests are designed to measure, for instance, an individual’s developmental

level, intelligence or ability level. The scores on these tests are usually interpreted relative

to the scores of the reference population, while the reference population may depend on

individual characteristic(s). For example, the reference population for intelligence tests is
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typically the general population in the same country and of the same age as the testee

involved, and for neuropsychological tests the healthy population in the same country, of

the same age, gender and educational level as the testee. A normed score is a transformed

version of a raw score. Normed scores can be expressed in various ways, such as
percentiles, (normalized) z-scores or IQ scores (Mellenbergh, 2011, pp. 351–357).
Transformation rules are estimated during the test construction phase, based on test

scores from a normative sample. This sample represents the reference population,

possibly conditional upon relevant individual characteristic(s).

When norms depend on individual characteristic(s), such as age, this implies that one

has multiple reference populations. For age-dependent norms, the number of reference

populations is (strictly speaking) infinite, as there is one for each specific age within the

age range of the test. Traditionally, such norms were derived from the empirical raw test
score distributions within subgroups of (combinations of) the relevant individual

characteristic(s), such as age groups (e.g., in the Wechsler Intelligence Scale for

Children–III (WISC-III); Wechsler, 1991). It was (implicitly) assumed that the test score

distributions are equal for all ages within a subgroup, and that this distribution changes as

a step function of continuous variable(s) involved. This assumption is typically unrealistic,

and then it makes sense to assume that the relationship between continuous variable(s)

and the test distribution is smooth (Van Breukelen & Vlaeyen, 2005; Zachary & Gorsuch,

1985). Such a smooth function could be approximated better by making the subgroups
smaller. Yet, this would increase the sampling variability in the estimated norms, as fewer

observations per subgroup would be available to estimate the raw test score distribution.

These issues are circumvented in continuous norming (Zachary & Gorsuch, 1985), in

which the test score distribution is estimated as a continuous function of the predictor(s)

in a regression model. Continuous norming is more efficient than traditional norming

(Oosterhuis, van der Ark, & Sijtsma, 2016), because all observations in the normative

sample are used jointly to estimate the raw test score distribution, rather than only the

observations within a subgroup.
There are threemain continuous norming approaches: inferential norming (Wechsler,

2008; Zachary & Gorsuch, 1985; Zhu & Chen, 2011), nonparametric norming (Lenhard,

Lenhard, & Gary, 2019; Lenhard, Lenhard, Suggate, & Segerer, 2018; Tellegen & Laros,

2014) and moments regression-based norming (Oosterhuis, 2017; Van Breukelen &

Vlaeyen, 2005; Voncken, Timmerman, Spikman, & Huitema, 2018). In inferential

norming, moments of the raw test score distributions are computed for subgroups of the

normative sample, and these moments are regressed on subgroup-level predictor(s). The

advantage of this continuous norming approach is that it does not require strong
assumptions on the shape of the conditional test score distribution. The disadvantage is

that themoments are estimated for each subgroup, which could reduce the precision and

efficiency of the estimates, and could result in biased estimates – as they depend on the

exact subgroups used.

In nonparametric norming, the relationship of the raw test scores with the normed

scores and age is modelled using regression involving Taylor polynomials. The advantage

of this approach is that it does not require any assumptions about the shape of the

conditional score distribution. The disadvantages are that the resulting percentile curves
can intersect, which is impossible from a theoretical point of view, and that it requires

discretizing the continuous predictor variable to estimate the normed scores, just as in

inferential norming. Thus, the results may be biased.

Inmoments regression-based norming,moments of interest are regressed onpredictor

(s) for individual raw test score data, rather than for subgroup data. Van Breukelen and
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Vlaeyen (2005) and Oosterhuis (2017) used a standard regression model to estimate the

mean of the raw test score distribution conditional on the predictor(s). This approach

does not require discretization of the predictor variable(s) at all, and is guaranteed to yield

non-intersecting percentile curves. However, using a standard regression model assumes
normality of the conditional raw test score distributions, with a constant variance. This is

often an unrealistic assumption, as the assumptions of normality and homoscedasticity are

rarely fulfilled in psychometric tests (e.g., Lenhard et al., 2019). For instance, a floor effect

expresses itself in skewness of the test score distribution. That is why we use a more

flexiblemoments regression-basednorming approach – via distributional regression – that
allows for modelling heteroscedasticity and non-normality. In this approach, the

distributional characteristics are estimated as functions of the predictor(s). For example,

themean, standard deviation and skewness of the test score can vary conditional on age. A
frequentist distributional regression framework (i.e., generalized additive models for

location, scale and shape (GAMLSS); Rigby & Stasinopoulos, 2005) has successfully been

applied to estimate normed scores for different types of psychological tests (e.g.,

developmental tests, intelligence tests and neuropsychological tests; Bayley, 2006; Grob

&Hagmann-vonArx, 2018; Rommelse et al., 2018; Voncken, Albers,&Timmerman, 2019;

Voncken et al., 2018). The normed scores of these tests are estimated conditional on age,

and sometimes (i.e., in neuropsychological tests) also conditional on the additional

predictors sex and/or education level.
The flexibility of distributional regression allows for precise distribution estimation.

Yet, this flexibility can result in complexmodels that require a large sample to estimate the

parameters with sufficient expected precision. As it is very time-consuming and

expensive – and not always possible in practice – to collect a large normative sample,

we aim to make norm estimation more efficient by incorporating prior information in the

estimation of new norms. To do this, we apply Bayesian distributional regression in the

context of continuous norming. Although this approach can be applied to many different

models, we focus on Gaussian distributional regression models in this paper as a proof of
concept.

Using a Bayesian approach in norming has two main advantages. First, it allows us to

take into account prior information in the norming process. In the norming context, a

reasonable informative prior can be derived from normative sample data of the same test

in a different country, or from older norms. The latter are often available as norms can

become outdated (Wasserman & Bracken, 2013) and renorming is warranted. Second, it

allows us to estimate and collect normative data in an iterative way. This implies that one

can stop sampling when the desired level of norm precision is achieved.
The remainder of this paper is structured as follows. First, we will briefly discuss

Bayesian distributional regression and how this can be used to include prior norm

information in a new norming model. Second, we will assess in a simulation study how

much efficiency is gained and how robust Bayesian distributional regression is with

respect to priormisspecification. Third,wewill illustrate the procedure of including prior

norm informationwith empirical normative data from an intelligence test. Finally, wewill

discuss the results and implications.

2. Bayesian Gaussian distributional regression

In Gaussian distributional regression models, the explanatory variables are related to the

mean and standard deviation of the distribution as follows:
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yijxi ∼D hμðθμðxiÞÞ¼ ηiμ,hσðθσðxiÞÞ¼ ηiσ
� �

,

whereD denotes the parametric distribution for the response variable yi for observation i

(i = 1, ⋯, N), with distributional parameters θk (k = µ, σ) for the mean and standard

deviation, respectively, that are related to the covariate observations for observation i, xi.

This can be generalized to other (i.e., non-Gaussian) distributions by using additional, and
possibly different, distributional parameters θk. The distributional parameters θkðxiÞ are
linked to the additive predictors ηik using link functions hkð�Þ, which ensure that only

admissible values for the distributional parameters can be observed (e.g., non-negative

variances).

The kth additive predictor is given by

ηik ¼ f 1kðxi;β1kÞþ⋯þ f Jkkðxi;βJkkÞ,

where the functions f jkð�Þ, j¼ 1,⋯,Jk, relate to the regression effect as characterized

by regression parameters βjk. Smooth nonlinear relationships between the distribu-
tional parameters and predictor(s) can be modelled using polynomials or splines. The

disadvantage of polynomials is that values of observed scores conditional on a certain

predictor value might have a large and undesirable influence on the predicted score at

a very different value of the predictor (Magee, 1998). Splines do not have this

problem, because they operate more locally than polynomials. In this paper, we

therefore use splines. Specifically, we use so-called P-splines, which are penalized B-

splines (Eilers & Marx, 1996, 2010). The advantage of P-splines, unlike for example

(non-penalized) B-splines, is that they are numerically stable, easy to implement, and
allow for varying the degree of smoothing with only a single parameter (Eilers &

Marx, 1996).

In Bayesian Gaussian distributional regression, prior information is embedded in the

prior pjkð�Þ of the jkth model term. The posterior is proportional to the likelihood times

the prior. For computational simplicity, the log-posterior

logπðβ,τ;y,X,αÞ/ ‘ðβ;y,XÞþ ∑
K

k¼1

∑
Jk

j¼1

logpjkðβjk;τjk,αjkÞ
h i

is used, where τjk are the smoothing variances that regulate the importance of the prior

relative to the likelihood, αjk are the fixed prior specifications, and ‘ β;y,Xð Þ is the log-

likelihood function. The prior for the jkth model term is given by

pjkðβjk;τjk,αjkÞ/ dβjkðβjkjτjk;αβjkÞ�dτjkðτjkjαβjkÞ,

where dβjkð�Þ and dτjkð�Þ refer to prior densities for βjk and τjk, respectively. Further, each
basis function l (l¼ 1,⋯,L) used in the P-splines has its own smoothing variance, denoted

by τljk. A commonly used prior density for τljk is the inverse gamma distribution (Umlauf,

Klein, & Zeileis, 2018), given by

dτljkðτljkÞ/ τ�ðaþ1Þ
jk expð�b=τjkÞ,

where a>0 and b>0 are the hyperparameters.
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A commonly used prior density for βjk is the density of a multivariate normal

distribution (Umlauf et al., 2018),N mjk,PjkðτjkÞ�1
� �

, wheremjk is the prior expectation

and PjkðτjkÞ is the prior precision matrix, which is equal to the inverse prior covariance

matrix Σ�1
jk .

In this paper, we will use the default inverse gamma density for τjk, and we will

consider three different Gaussian priors for βjk: one weakly informative prior and two

types of more strongly informative prior.

The weakly informative prior is based on a zero-mean prior with precision

matrix ~PjkðτjkÞ¼ τ�2
jk Kjk, where Kjk is the P-spline penalty matrix. This P-spline

penalty matrix defines the difference penalties on the coefficients of adjacent B-
splines (Eilers & Marx, 1996). A larger value of the smoothing parameter penalizes

differences in coefficients more, yielding more smoothness in the estimated

function. Imposing a smoothness penalty helps to prevent overfitting. The weakly

informative prior expresses the smoothness assumption between the predictor(s)

and the response variable, which makes the prior weakly informative. Thus, the

weakly informative prior follows the Nð0,τ2jkK�1
jk Þ distribution. The models with

weakly informative priors will be based on Markov chain Monte Carlo (MCMC)
simulations.

The twomore strongly informative priors (or informative priors for short) are based on

a prior with mean mjk and precision matrix P̂jkðτjkÞ based on the posterior mean (i.e.,

spline coefficients) andposterior precisionmatrix, respectively, of earlier data. Estimating

these priors involves two stages: the analysis on the earlier data with the weakly

informative prior as described before; and the analysis on new data with an informative

prior based on the posterior of the first stage, using iteratively weighted least squares

proposals (see Umlauf et al., 2018).
The first type of informative prior thatwewill use is a ‘posteriormode’ prior, defined as

N mjk,τ2jkP̂jkðτjkÞ�1
� �

. We resort to maximizing the log-posterior (an alternative way of

estimating βjk and τjk; Umlauf et al., 2018) because MCMC sampling is not possible when

the posterior mean and posterior precision of the first stage as prior mean and prior

precision are combinedwith additional constraints (i.e., the P-spline penaltymatrix of the

second stage).

The second type of informative prior that we will use is a ‘fixed effects’ prior,

defined as N mjk, P̂jkðτjkÞ�1� �
, in which only the posterior mean and precision matrix

from the first stage are used, without additional constraints. In this way, MCMC

sampling is possible. We believe it makes sense theoretically to leave the additional

constraints out because the first stage is already penalized and the smoothness of the

function is already included in P̂jkðτjkÞ. Also, by using the precision matrix from the

first stage, it is prevented that the algorithm is only optimized in the direction of the

second-stage data.

3. Simulation study

The simulation study was performed in R (version 3.5.0; R Core Team, 2019). For the

Bayesian distributional regression we used version 1.0-2 of the bamlss package (Umlauf

et al., 2018; Umlauf, Klein, Zeileis, & Simon, 2019). The R code and Data can be found on

the Open Science Framework via https://osf.io/cjx3v/.
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3.1. Research problem

In this simulation study we focus on efficiency and robustness. With regard to efficiency,

wewill investigate to what extent normed scores can be estimated more efficiently when

including prior information. With regard to robustness, we will examine how robust the
norm estimates are to prior misspecification; by ‘prior misspecification’ we mean a

mismatch between the normative population distribution and the prior information. In

addition, we will examine how the accuracy and precision of normed scores (i.e.,

percentiles) are influenced by four factors.

The first factor is the prior type and the second factor is the prior misspecification. For

these factors, we expect the norm accuracy and precision to be better by using

informative priors over weakly informative priors, with smaller and possibly opposite

effects with larger prior misspecification. The third factor is the size of the normative
sample on which the prior is based, denoted by Nprior. We only expect an effect for this

factor when using informative priors, that is, that the norm estimations improve as Nprior

increases, with deteriorating effects for larger prior misspecifications. The fourth factor is

the size of the normative sample forwhich the norms are estimated, denoted byNnorm.We

expect the norm estimation to be better as Nnorm increases, and we expect the positive

effect of including prior information to be relatively larger for small Nnorm. The second

factor relates to robustness, and the third and fourth factors relate to efficiency.

3.2. Design

Two types of normative sampleswere generated in this simulation study:Yprior andYnorm.

The norming model estimated for Yprior was used as basis for the informative prior. The

normed scores were estimated for Ynorm. To ensure that the simulation study is realistic,

we based our population models on empirical normative data. The population model of

Yprior, denoted by Mprior, was a model estimated on German normative data from the

composite ‘IQ Screening’ scale of the Intelligence and Developmental Scales 2 (IDS-2;
Grob&Hagmann-von Arx, 2018). The IDS-2 is a test for children and adolescents between

5 and 21 years of age, with norms dependent on age. Model Mprior is the estimated

Gaussian model on the empirical normative data, where the predictor age is related to

distributional parameters µ (mean) and σ (standard deviation) using P-splines. The

‘observed’ predictor values were taken as N equally spread values ranging from 5 to 21.

The relationships of age with the mean (µ) and standard deviation (σ) of the Gaussian

distribution in Mprior are illustrated in Figure 1a.

The population model of Ynorm, denoted by Mnorm, was similar to Mprior, with the
degree of similarity between the two population models depending on the level of prior

misspecification. The prior misspecification is defined as the difference between Mnorm

andMprior. The levels of priormisspecificationwere inspired by the difference in norming

models as estimated on the German and Dutch (Grob, Hagmann-von Arx, Ruiter,

Timmerman, & Visser, 2018) normative data for the IDS-2.

Four factorswere systematically varied in a complete factorial design,with the number

of levels between brackets:

1. prior type (3) – weakly informative, informative fixed effects, informative posterior

mode;

2. prior misspecification (5) – zero, in µ, in σ, in µ and σ, age dependent in µ;
3. Nprior (3) – 500, 1,000, 2,000;

4. Nnorm (3) – 250, 500, 1,000.
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MCMC sampling was used for the models with the weakly informative prior and

informative fixed effects prior. Samples were generated from two sequential Markov

chains with 2,000 iterations each, of which 500 were for burn-in.

The sample sizesNprior are in the typical range ofwhat is being used in practice, and the

range of values for Nnorm was chosen to be somewhat smaller than those for Nprior to be
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Figure 1. (a) Relationship between µ and σ, and age in Mprior. Shaded centile bands for Mprior with

centile curves and conditional PDFs of the five Mnorm models: (b) Mzero
norm, (c) M

μ
norm, (d) M

σ
norm, (e)

Mμ&σ
norm, (f) M

μage
norm. The centile curves indicate percentiles 0.4, 2, 10, 25, 50, 75, 90, 98, and 99.6. The

grey percentile bands in all panels indicate for Mprior the range between the 0.4th and 99.6th

percentiles of the test score distribution, conditional on age.
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able to check for efficiency. New samples Yprior were generated for each level of Nprior,

with R¼ 1,000 replications each, which resulted in 3 (Nprior) � 1,000 (R) = 3,000

generated data sets. New samplesYnorm were generated for each level ofNprior,Nnorm and

prior misspecification, also with 1,000 replications each, which resulted in 3 (Nprior) � 3
(Nnorm) � 5 (prior misspecification) × 1,000 (R) = 45,000 generated data sets.

To be able to use the spline coefficients as prior information, the number of knots of

the P-splines was held constant at 24 across all models. Eilers and Marx (2010)

recommended using equally spaced knots. The number of knots must be high enough to

fit features in the data, but after this minimum number has been reached, additional knots

have little effect on the fit (Ruppert, 2002). The optimal number of knots and their

location were determined for Mprior. Using the corrected Akaike information criterion

(AICc), it was determined that using 24 knots was optimal. The number of knots and the
knot locationswere taken equal for both distributional parameters (µ and σ),whichmeans

that both distributional parameters have J functions relating the regression parameters βjk
and the predictor.

The different levels of prior misspecification are illustrated in Figure 1. The grey

shading in Figure 1b–f indicates forMprior the range between the extremepercentiles (i.e.,

0.4th and 99.6th), conditional on age. Also shown are centile curves and conditional PDFs

in the same percentile range, with centile curves, conditional on age.

The centile curves and conditional PDFs in Figure 1b–f correspond to Mnorm. If the
prior is misspecified, it can be misspecified in many ways. We look at Gaussian priors

with a shift in µ and/or σ. The difference between the centile curves and grey shading

illustrates the five different levels of prior misspecification in the simulation study:

zero misspecification (b), a misspecification in µ (c), in σ (d), in µ and σ (e), and an

age-dependent misspecification in µ (f). The corresponding population models are

denoted by Mzero
norm, M

μ
norm, M

σ
norm, M

μ&σ
norm, and M

μage
norm, respectively. The differences in

distributional parameters (i.e., µ and σ) between the population models can be found

in Table S1.

3.2.1. Outcome measures

The convergence of theMarkov chainswas investigatedwith the potential scale reduction

factor (R̂; Gelman & Rubin, 1992) for each parameter. R̂ is the factor by which the scale of

the distribution for the estimated parameter might be reduced by running the chains

longer. The closer R̂ is to 1, the smaller the potential scale reduction. Using the rule of

thumb proposed by Gelman et al. (2014), we assumed sufficient convergence whenever
R̂ < 1.1.

To express the estimated accuracy and precision, we consider the population and

model-implied conditional distributions. We express this difference as the root mean

square error (RMSE) –which captures both accuracy and precision – bymarginalizing out

both age and the test score. The smaller the RMSE value, the smaller the discrepancy

between the estimated and true percentiles over all ages and test scores. To marginalize

out age and test score, we numerically approximated the integral by evaluating the

estimated percentiles (θ̂) and the true percentiles (θ) at X = 1,000 equally spaced age
values x across the full age range [5, 21] andY = 1,000 test scores y corresponding to true

z scores in the range [−3,+3], conditional onX. Conditional test scores outside this range
(i.e., deviating more than 3 standard deviations from the mean score) are not reported in

practice (e.g., in the IDS-2) because the uncertainty in those scores is considered to be too

large and therefore not relevant in our outcome measure. Thus, the RMSE is calculated as
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

XY
∑
X

i¼1

∑
Y

j¼1

θ
xiyj

�θxiyj

� �2

:

s

4. Results

For the convergence of the Markov chains, we considered convergence to be

sufficient for those chains with R̂<1:1. Inspection of the 97.5th quantile of the R̂ for
all spline coefficients of all 1,000 replications across all conditions showed good

convergence, with almost all R̂ values below 1.1: for only 0.07% of all estimated

spline coefficients they were 1.1 or greater. Across all combinations of Nprior, Nnorm,

prior misspecification, and prior type separately, the proportion of R̂ greater than or

equal to 1.1 ranged from 0% to 0.197%. Keeping the other factors constant, R̂

increased as Nnorm decreased. Furthermore, R̂ was larger for the weakly informative

prior than for the fixed effects informative prior, given the other factors, which

indicates that model estimation with the latter was more efficient.
To obtain insight into the relative effects of the factors on the RMSE, a full-factorial

mixed effects analysis of variance (ANOVA) was performed. Nprior was a between

factor, Nnorm and the prior misspecification were within factors, and the prior type

was nested within the within factors. We included the main effects and all higher-

order interactions in the model, but we were specifically interested in the main

effects. Results are provided in Table S2. The ANOVA results indicate that the relative

effects of the prior misspecification and of the norm sample size (Nnorm) on the RMSE

is largest (ω2 = .206 and .149, respectively), and the relative effect of Nprior on the
RMSE is smallest (ω2 = .005).

4.1. Root mean square error

The mean RMSEs across 1,000 replications of all conditions are shown in Figure 2

and, with the standard deviations, in Table S3. The standard error of the mean RMSE

varies from 9.0 × 10−5 to 5.8 × 10−4 across all conditions. The results show that the

informative posterior mode prior is outperformed by the informative fixed effects
prior and/or the weakly informative prior within all conditions. That is why we focus

on the results of the informative fixed effects prior and weakly informative prior

only.

When there was no prior misspecification, the mean RMSE of the informative fixed

effects prior was consistently lower than the mean RMSE of the weakly informative

prior. Regardless of prior type, the mean RMSE decreased as Nnorm increased. For the

informative prior, the mean RMSE decreased as Nprior increased, while it did not

depend on Nprior for the weakly informative prior, as could be expected. Similar
patterns were found when there was an age-independent prior misspecification, in µ,
in σ, and in both µ and σ.

When there was an age-dependent prior misspecification in µ, denoted by μage, the
weakly informative prior outperformed the informative fixed effects prior, regardless of

Nprior andNnew. In contrast to the other levels of priormisspecification, themean RMSE of

the informative fixed effects prior increased asNprior increased. Therewas again no effect

ofNprior on themeanRMSE for theweakly informative prior. Similarly to the other levels of

prior misspecification, the mean RMSE decreased as Nnorm increased, regardless of prior
type.
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4.2. Interpretation of root mean square error

To give an idea of the interpretation of the size of the RMSE values, we show the difference

between true and estimated centile curves.

Figure 3 shows for one replicate how the estimated centiles curves (dashed lines)

deviate from the population centile curves (solid lines). Both conditions have M
μage
norm and

the fixed effects prior, but they differ in Nprior and Nnorm. Figure 3a denotes a replication

with a relatively low RMSE value of 0.022, with Nprior equal to 500 and Nnorm equal to
1,000. Figure 3b depicts a relatively high RMSE value of 0.041, with Nprior equal to 2,000

and Nnorm equal to 250. The difference in RMSE values can be clearly seen.

The overall deviation is quite small for the middle of the age range and largest for the

highest age values. The influence of the age-dependent misspecified prior is larger in

Figure 3b than in Figure 3a because Nprior is larger and Nnorm is smaller. The deviation in

Figure 3b resembles the difference in centile curves under Mprior and M
μage
norm as shown in

Figure 1f.

5. Application of Bayesian Gaussian norm estimation to the IDS-2

normative data

We illustrate the use of prior information in norm estimation with Gaussian models using

empirical normative data of the German and Dutch IDS-2 (Grob et al., 2018). The R code
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Figure 2. Plots with the mean RMSE across all combinations of prior type, prior misspecification,

Nprior, and Nnorm.

Figure 3. Centile curves for the population model (solid lines) and the estimated model (dashed

lines) for one replication of two conditions differing inNprior andNnorm: (a) condition 1, with RMSE

value of 0.022, has Nprior ¼ 500 and Nnorm ¼ 1,000; (b) condition 2, with RMSE value of 0.041, has

Nprior ¼ 2,000 andNnorm ¼ 250. Both conditions have an age-dependent prior misspecification in µ,
and the fixed effects prior. The centile curves represent percentiles 0.4, 2, 10, 25, 50, 75, 90, 98, and

99.6.
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for this procedure is available as Code S1. In this illustrationwe estimate the percentiles of

the composite ‘IQ Screening’ scale for the normative data from the Dutch IDS-2

(Nnorm ¼ 1,566), with prior information based on the normative data from the German
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IDS-2 (Nprior ¼ 1,652). We have no theoretical reasons (e.g., related to the education

system) to assume that the population models underlying the normed scores of this scale

substantially differ across the two countries.

Inspection of the relationship between the raw test scores and age for both samples
(Yprior and Ynorm), in Figure 4a,b respectively, reveals that this relationship looks similar

for both samples. The spread of the scores seems somewhat larger forYnorm than forYprior,

but this could be due to sampling fluctuations. Based on theoretically based expectations

and visual comparison, we presume that possible prior misspecification is of a minor

nature.

We compare the estimatedmodels based on theweakly informative prior and the fixed

effects informative prior.We refrain fromconsidering the posteriormodeprior, because it

consistently performedworse than the other two priors in our simulation study.We use a
Gaussian model with P-splines to model the relationship between the test score

distribution and age. Using the AICc as a criterion indicates the use of 24 equally spaced

knots. We first estimate the Gaussian model on Yprior and extract the posterior mean

(spline coefficients), posterior precision matrix and knot locations. The posterior mean

and posterior precision matrix are then used as prior mean and prior precision matrix in

estimating the model with the fixed effects prior on Ynorm, using the same knot locations.

Note that the age range inYnorm should not be outside the inner knot range based onYprior.

Because 23 observations of Ynorm had age values slightly outside this range of
4:984,21:016½ �, we forced them to be equal to the bounds of this range.

Figure 5 shows the centile curves (5th, 50th and 95th percentiles) corresponding to the

estimated prior model (dotted line), model with fixed effects prior (solid line), and model

with weakly informative prior (dashed line). The dots indicate the observations of Ynorm.

The results show that the centile curves of the threemodels overlap in the range 8–12 years

and are further apart outside this range. In general, conditional on a percentile, the centile

curvesof themodelwith thefixedeffects informativeprior lie between the centile curves of

the other two models. This makes sense, because this model is a combination of the prior
model and Ynorm, on which the model with the weakly informative prior is heavily based.

The centile curve of the 5th percentiles for themodel withweakly informative prior seems

to be heavily pulled towards the outliers around age 14.

Figure 6 shows the posterior mean and the 95% credible intervals of the posterior

distribution of the 5th, 50th and 95th percentiles as a function of age, based on 1,001

samples of the posterior distribution of µ and σ as a function of age, for themodel with the

fixed effects informative prior and the model with the weakly informative prior. This

shows that the percentile estimates have more precision when estimated with the fixed
effects informative prior than with the weakly informative prior. In addition, this figure

shows that the estimates of the extreme percentiles (i.e., 5th and 95th percentiles) are less

precise than the estimates of themedian, and the percentile estimates near the boundaries

of the predictor space are less precise than those in the middle of the predictor space.

6. Discussion

The results of the simulation study showed that for the simulated priormisspecification the

normed scores (i.e., percentiles) could be estimated more efficiently by using prior

information, as long as the priormisspecificationwas not age-dependent. The performance

underfixedeffects informativepriorswasbetter thanunder theposteriormode informative

priors, evenwhen therewas no priormisspecification. The use of proper prior information
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Figure 4. Scatter plots showing the relationship between the test scores and age for (a) Yprior and

(b)Ynorm,which are the empirical normative data of theGerman IDS-2 andDutch IDS-2, respectively.
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yielded a substantial gain in efficiency. For example, in the condition with no prior

misspecification and a prior sample size of 2,000, anNnorm of 250 resulted in about the same

mean RMSE as not using prior information with an Nnorm of 1,000.

As expected, Nprior only had an effect on the mean RMSE when using informative

priors, with better norm estimations for increasing Nprior. This effect did not seem to be

affected by the level of prior misspecification. Also, the norm estimation was better for
increasing Nnorm, and the added value of including prior information was larger for small

Nnorm.

The results were robust against relatively large priormisspecifications in themean and

standard deviation of the conditional score distribution, when these misspecifications

were age independent. Even with an age-dependent prior misspecification and small

Nnorm, the overall centile curves were retrieved quite well. We evaluated the discrepancy

between the true and estimated percentiles over a range of scores and age values, but the

prior misspecification is likely to vary locally. So, also for age-dependent prior
misspecification, the percentiles might be estimated well for some age and score ranges,

but worse for other ranges.

In practice, the level of prior misspecification is unknown. If there are theoretical

reasons to believe that in thepopulation the relationship between the (sub)test scores and

the predictor is different in another country, and/or if inspection of the normative sample

indicates a completely different relationship, we advise against using prior information.

We did not test for age-dependent prior misspecifications in σ, but we suspect that using

prior information deteriorates the norm estimation in that situation as well.
A practically useful approach seems to be to collect a relatively small normative sample

(e.g., N ¼ 250), and then check whether it might be reasonable to assume that the

normative sample and the prior sample have the same relationship between the

distributional parameters and predictor. Then, it is decided based on this whether prior
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Figure 5. Centile curves (5th, 50th and 95th percentiles) corresponding to the estimated prior

model (dotted line), model with fixed effects informative prior (solid line), and model with weakly

informative prior (dashed line). The dots indicate the observations of Ynorm.
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Figure 6. The posterior mean (dashed line) and 95% credible intervals (solid lines) of the posterior

distribution of the 5th, 50th and 95th percentiles as a function of age, based on 1,001 samples of the

posterior distribution of µ and σ as a function of age, for (a) the model with the fixed effects

informative prior, and (b) the model with the weakly informative prior.
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information can be used or whether it is necessary to continue sampling. Our

recommendation for future research is to develop diagnostics that help to determine to

what extent prior information can be used in the creation of new norms.

A limitation of this study is that we only used Gaussian models. In norming practice
(e.g., Grob et al., 2018; Voncken et al., 2018), we often deal with non-normality, which

requires more flexible models. The scatter plot of Yprior in Figure 4a suggests that the

conditional score distribution is negatively skewed, whichmight bemodelled better with

a skewnormal distribution. The proposedmethod is applicable to different and additional

distributional parameters (e.g., a skewness parameter) as well. This proof of concept

based on the Gaussian model shows that including prior information can make norm

estimation more efficient, so it is important for future research to investigate the

performance of this method for other distributions as well.
An additional suggestion for future research is to explore the use of monotonic P-

splines in combination with prior norm information. When the mean (or median) test

score is theoretically expected to increase with age, monotonic P-splines can be used to

force amonotonically increasing relationship between the location parameter (i.e., µ) and
age. In this way, theoretical expectations can be incorporated and the sampling variability

can be reduced further. While Bayesian monotonic P-splines are currently not yet

implemented in the bamlss R package, previous research has shown that they can be

successfully applied (Brezger & Steiner, 2008).
A general limitation of standard regression models is that they do not accommodate

measurement errors in the predictors (Carroll, Ruppert, Stefanski, & Crainiceanu, 2006).

Variables that are typically used as predictors in psychological test norming, such as age,

sex and education level, are relatively easy to measure, and are unlikely to be prone to

measurement errors due to ameasurement device.While it is theoretically possible to use

the exact values of continuous predictors, they have to be discretized (and rounded) in

practice,which introduces some discretization error. In our study, agewas rounded to six

decimal places. We expect the possible bias because of this internal rounding to be very
small (see, for example, Lang, Umlauf, Wechselberg, Harttgen, & Kneib, 2012).When the

measurement error is expected to be more severe (i.e., due to the measurement itself),

one could correct for this error by following the ideas developed in Pollice et al. (2019).

In conclusion, using prior information in norm estimation can be useful. In the

norming context we often have prior information available in the form of the previous

normative sample scores of the test or normative sample scores in a different country.

Whenwe have theoretical and empirical reasons to assume that the relationship between

the test score distribution and the predictor is similar in the population, the same norm
precision can be achieved with a much smaller normative sample. This helps test

developers to achieve cost-efficient high-quality norms.

Acknowledgements

This publicationmakes use of the German (Grob &Hagmann-von Arx, 2018) and Dutch (Grob

et al., 2018) normative data from the standardization and validation studies of the Intelligence

and Development Scales – 2 for children and adolescents aged 5–21 years. We wish to thank

Prof. A. Grob, dr. P. Hagmann-von Arx, Dr. S. Ruiter, andDr. L. Visser for allowing us to use this

normative data of the IDS-2. Lieke Voncken, Casper J. Albers and Marieke E. Timmerman

gratefully acknowledge financial support from the Dutch Research Council (NWO) within

research programme Graduate Programme 2013 with project number 022.005.003. Thomas

114 Lieke Voncken et al.



Kneib gratefully acknowledges financial support from theGermanResearch Foundation (DFG)

within research project KN 922/9-1.

Conflicts of interest

All authors declare no conflict of interest.

Author contributions

Lieke Voncken (Conceptualization; Formal analysis; Methodology; Writing – original

draft; Writing – review & editing) Thomas Kneib (Conceptualization; Methodology;

Software; Writing – review & editing) Casper J. Albers (Conceptualization; Methodology;

Supervision; Writing – review & editing) Nikolaus Umlauf (Methodology; Software;

Writing – review & editing) Marieke E. Timmerman (Conceptualization; Methodology;

Supervision; Writing – review & editing.

Data availability statement

The simulated data that support the findings of this study can be reproduced with the

simulation R code,which is openly available via theOpen Science Framework (OSF) at https://

osf.io/cjx3v/. The empirical normative data in the illustration were used under license for this

study. Example simulated data based on this empirical data are openly available via the same

OSF link.

References

Bayley, N. (2006). Bayley scales of infant and toddler development – Third edition. San Antonio,

TX: Harcourt Assessment.

Brezger, A., & Steiner, W. J. (2008). Monotonic regression based on Bayesian P-splines: An

application to estimating price response functions from store-level scanner data. Journal of

Business and Economic Statistics, 26(1), 90–104.
Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006). Measurement error in

nonlinear models. A modern perspective (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.
Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical

Science, 11(2), 89–102. https://doi.org/10.1214/ss/1038425655
Eilers, P. H. C., & Marx, B. D. (2010). Splines, knots, and penalties. Computational Statistics, 2,

637–653. https://doi.org/10.1002/wics.125

Gelman, A., Carlin, J. B., Stern, H. S., Dunson,D. B., Vehtari, A., &Rubin, D. B. (2014).Bayesian data

analysis (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.

Statistical Science, 7, 457–511. https://doi.org/10.1214/ss/1177011136
Grob, A., & Hagmann-von Arx, P. (2018). IDS-2: Intelligence and Development Scales – 2. Bern,

Switzerland: Hogrefe.

Grob, A.,Hagmann-vonArx, P., Ruiter, S., Timmerman,M. E.,&Visser, L. (2018). IDS-2: Intelligentie-

en Ontwikkelingsschalen voor kinderen en jongeren [IDS-2: Intelligence and Development

Scales for children and adolescents]. Amsterdam, The Netherlands: Hogrefe.

Lang, S., Umlauf, N., Wechselberg, P., Harttgen, K., & Kneib, T. (2012). Multilevel structured

additive regression. Statistics and Computing, 24, 223–238. https://doi.org/10.1007/s11222-
012-9366-0

More efficient norm estimation 115

https://osf.io/cjx3v/
https://osf.io/cjx3v/
https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1002/wics.125
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1007/s11222-012-9366-0
https://doi.org/10.1007/s11222-012-9366-0


Lenhard, A., Lenhard, W., & Gary, S. (2019). Continuous norming of psychometric tests: A

simulation study of parametric and semi-parametric approaches. PLoS One, 14, e0222279.

https://doi.org/10.1371/journal.pone.0222279

Lenhard, A., Lenhard, W., Suggate, S., & Segerer, R. (2018). A continuous solution to the norming

problem. Assessment, 25(1), 112–125. https://doi.org/10.1177/1073191116656437
Magee, L. (1998). Nonlocal behavior in polynomial regressions. American Statistician, 52(1),

20–22. https://doi.org/10.1080/00031305.1998.10480531
Mellenbergh, G. J. (2011). A conceptual introduction to psychometrics. Amsterdam, The

Netherlands: Boom.

Oosterhuis, H. E. M. (2017).Regression-based norming for psychological tests and questionnaires

(Doctoral dissertation). TilburgUniversity, Tilburg. Retrieved fromhttps://pure.uvt.nl/ws/porta

lfiles/portal/16257245/Oosterhuis_Regression_12_04_2017.pdf

Oosterhuis, H. E. M., van der Ark, L. A., & Sijtsma, K. (2016). Sample size requirements for traditional

and regression-based norms. Assessment, 23(2), 191–202. https://doi.org/10.1177/107319111
5580638

Pollice, A., Lasinio, G. J., Rossi, R., Amato, M., Kneib, T., & Lang, S. (2019). Bayesian measurement

error correction in structured additive distributional regression with an application to the

analysis of sensor data on soil-plant variability. Stochastic Environmental Research and Risk

Assessment, 33, 747–763. https://doi.org/10.1007/s00477-019-01667-1
R Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria: R

Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and

shape. Applied Statistics, 54, 507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x
Rommelse, N., Hartman, C., Brinkman, A., Slaats-Willemse, D., de Zeeuw, P., & Luman, M. (2018).

COTAPP: Cognitieve taak applicatie handleiding [COTAPP: Cognitive test application

manual]. Amsterdam, The Netherlands: Boom.

Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of Computational

and Graphical Statistics, 11, 735–757. https://doi.org/10.1198/106186002853
Tellegen, P. J., & Laros, J. A. (2014). SON-R 6–40: Snijders-Oomen non-verbal intelligence test: I.

Research report. Amsterdam, The Netherlands: Hogrefe.

Umlauf, N., Klein, N., & Zeileis, A. (2018). BAMLSS: Bayesian additive models for location, scale, and

shape (and beyond). Journal of Computational and Graphical Statistics, 27, 612–627.
https://doi.org/10.1080/10618600.2017.1407325

Umlauf, N., Klein, N., Zeileis, A., & Simon, T. (2019). bamlss: Bayesian additive models for

location, scale, and shape (and beyond) [Computer softwaremanual]. Retrieved from http://

www.bamlss.org/ (R package version 1.0-2).

Van Breukelen, G. J. P., & Vlaeyen, J. W. S. (2005). Norming clinical questionnaires with multiple

regression: The pain cognition list. Psychological Assessment, 17, 336–344. https://doi.org/10.
1037/1040-3590.17.3.336

Voncken, L., Albers, C. J., & Timmerman, M. E. (2019). Model selection in continuous test norming

with GAMLSS. Assessment, 26, 1329–1346. https://doi.org/10.1177/1073191117715113
Voncken, L., Timmerman, M. E., Spikman, J. M., & Huitema, R. (2018). Beschrijving van de nieuwe,

Nederlandse normering van de Ekman 60 Faces Test (EFT), onderdeel van de FEEST [Description

of the new,Dutch norming of the Ekman60 Faces Test (EFT), part of the FEEST].Tijdschrift voor

Neuropsychologie, 13(2), 143–151. Retrieved from https://www.tvnp.nl/inhoud/tijdschrift_a

rtikel/NP-13-2-6/Beschrijving-van-de-nieuwe-Nederlandse-normering-van-de-Ekman-60-Faces-

Test-EFT-onderdeel-van-de-FEEST

Wasserman, J. D.,&Bracken, B. (2013). Fundamental psychometric considerations in assessment. In

J. R. Graham & J. A. Naglieri (Eds.), Handbook of psychology: Assessment psychology (Vol. 10,

2nd ed., pp. 50–80). Hoboken, NJ: Wiley.

Wechsler, D. (1991).Manual for the Wechsler Intelligence Scale for children – Third edition. San

Antonio, TX: Psychological Corporation.

116 Lieke Voncken et al.

https://doi.org/10.1371/journal.pone.0222279
https://doi.org/10.1177/1073191116656437
https://doi.org/10.1080/00031305.1998.10480531
https://pure.uvt.nl/ws/portalfiles/portal/16257245/Oosterhuis_Regression_12_04_2017.pdf
https://pure.uvt.nl/ws/portalfiles/portal/16257245/Oosterhuis_Regression_12_04_2017.pdf
https://doi.org/10.1177/1073191115580638
https://doi.org/10.1177/1073191115580638
https://doi.org/10.1007/s00477-019-01667-1
https://www.R-project.org/
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1198/106186002853
https://doi.org/10.1080/10618600.2017.1407325
http://www.bamlss.org/
http://www.bamlss.org/
https://doi.org/10.1037/1040-3590.17.3.336
https://doi.org/10.1037/1040-3590.17.3.336
https://doi.org/10.1177/1073191117715113
https://www.tvnp.nl/inhoud/tijdschrift_artikel/NP-13-2-6/Beschrijving-van-de-nieuwe-Nederlandse-normering-van-de-Ekman-60-Faces-Test-EFT-onderdeel-van-de-FEEST
https://www.tvnp.nl/inhoud/tijdschrift_artikel/NP-13-2-6/Beschrijving-van-de-nieuwe-Nederlandse-normering-van-de-Ekman-60-Faces-Test-EFT-onderdeel-van-de-FEEST
https://www.tvnp.nl/inhoud/tijdschrift_artikel/NP-13-2-6/Beschrijving-van-de-nieuwe-Nederlandse-normering-van-de-Ekman-60-Faces-Test-EFT-onderdeel-van-de-FEEST


Wechsler, D. (2008). Wechsler Adult Intelligence Scale –Fourth edition (WAIS-IV). San Antonio,

TX: NCS Pearson.

Zachary, R. A., & Gorsuch, R. L. (1985). Continuous norming: Implications for the WAIS-R. Journal

of Clinical Psychology, 41(1), 86–94. https://doi.org/10.1002/1097-4679(198501)41:1<86:
AID-JCLP2270410115>3.0.CO;2-W

Zhu, J., & Chen, H.-Y. (2011). Utility of inferential norming with smaller sample sizes. Journal of

Psychoeducational Assessment, 29, 570–580. https://doi.org/10.1177/0734282910396323

Received 21 August 2019; revised version received 8 April 2020

Supporting Information

The following supporting informationmay be found in the online edition of the article:

Table S1.Distributional parameters of the population models in the simulation study.

Table S2. Values of ω2 from full-factorial mixed effects ANOVA on the RMSE.

Table S3. Mean RMSEs (and SDs) of the models across prior type, prior misspecifi-

cation, Nprior, and Nnorm, across 1,000 replications.

Data S1. R code empirical illustration.

More efficient norm estimation 117

https://doi.org/10.1002/1097-4679(198501)41:1<86:AID-JCLP2270410115>3.0.CO;2-W
https://doi.org/10.1002/1097-4679(198501)41:1<86:AID-JCLP2270410115>3.0.CO;2-W
https://doi.org/10.1177/0734282910396323

