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The multiple faces of urinary
glucose tetrasaccharide as
biomarker for patients with
hepatic glycogen storage

diseases

To the Editor
Hepatic glycogen storage diseases (GSDs) are rare inborn

errors of carbohydrate metabolism.1 Clinical presentations
include severe fasting intolerance, growth failure, and
hepatomegaly. Biochemical characteristics are (non)ketotic
hypoglycemia, hyperlactatemia, increased liver enzymes, and
hyperlipidemia. Strict dietary management is the cornerstone
of treatment. Routine analysis in plasma (i.e., glucose, lactate,
ketones, alanine and aspartate aminotransferases [ALT and
AST], creatine phosphokinase [CK], uric acid, lipids) and
urine (ketones) are essential for monitoring metabolic
control.1 Urinary glucose tetrasaccharide (Glc4) excretions,
first described as a biomarker of GSDII (Pompe disease),
can also be elevated in hepatic GSD patients.2 Indeed, in
our patient cohort, urinary Glc4 excretions were increased in
10/15 GSDIa (67%), 9/10 GSDIb (90%), 28/28 GSDIII (100%),
1/7 GSDIV (14%), 3/10 GSDIX (30%) and 8/9 GSDXI (89%),
compared with 17/22 GSDII (77%) patient samples. Highest
urinary Glc4 excretions were found in GSDIII patients.
GSDIII (OMIM 232400) is caused by a deficiency of

debranching enzyme activity due to biallelic pathogenic
AGL variants. The International Study on GSDIII described
the dual phenotypes of this disease, ranging from a merely
fasting intolerance associated liver disease in childhood
to a chronic, progressive muscle disease during adulthood
in an important subset of the patients, in whom also
heart, skeletal muscle, and bones can be affected.3 In a
recent issue of Genetics in Medicine, the authors of “Liver
fibrosis during clinical ascertainment of glycogen storage
disease type III: a need for improved and systematic
monitoring” described the natural history of liver disease
in 26 pediatric GSDIII patients.4 In their single-center,
retrospective, longitudinal study, a major observation was
that elevated markers of liver injury (ALT, AST), hyperli-
pidemia, and urinary Glc4 in childhood tended to normalize
with age, while CK activities were elevated and did not
decrease with age.
In our experience, a case-oriented analysis is important,

emphasized by observations in a recently diagnosed GSDIII
patient, homozygous for the pathogenic c.4529dupA AGL

variant. We observed decreased liver enzyme activities and
urinary Glc4 excretions after initiation of dietary management
(Supplemental Table 1). CK activities increased in conjunc-
tion with reaching milestones of physical development, such
as walking. A good positive correlation was found between
urinary Glc4 and plasma AST and ALT, but there was no (or
even a slightly negative) association with plasma CK, which
parallels the results of Halaby et al.4 In nine adult GSDIIIa
patients, however, we found that urinary Glc4 was positively
related to clinical signs of myopathy and plasma CK activities.
In this cohort, three patients with CK activities below 250 U/L
and six patients with CK above 750 U/L had median (range)
urinary Glc4 excretions of 2.1 (1.7–3.2, ref <1) and 20 (16–29,
ref <1) umol/mmol creatinine, respectively. Combining these
observations, we therefore hypothesize that in pediatric
GSDIII patients, decreasing Glc4 excretions reflect improved
fasting tolerance (i.e., a liver function), whereas in adults, glc4
excretion may be associated with chronic, progressive skeletal
muscle involvement.
Glc4 is a degradation product of glycogen and (other)

branched chain starches, such as amylopectin, formed by the
glycolytic activity of salivary and pancreatic α-amylases and
neutral α-1,4-glucosidase activities.5,6 Glc4 is associated with
increased glycogen storage in both liver, as demonstrated in
our patient and those of Halaby et al.,4 and in muscle.7 In this
respect, it is interesting to note that Glc4 is also elevated in
Duchenne muscular dystrophy and muscle trauma.5,8 Glc4
may therefore be a good biomarker not only for GSD, but also
for muscle disorders in general.
At the cellular level, Glc4 and other GSD biomarkers are at

far biochemical distance from the enzymatic defect, and for
some, including Glc4, the precise origin is yet unclear.
Moreover, biomarkers may not adequately reflect the
intracellular situation. In clinical care, blood or urine samples
are usually obtained at relatively random moments, and the
composition and the timing of the last meal versus acquiring
the samples affects the results of many of these markers,
including urinary Glc4.5 Prospective studies on the clinical
relevance of biomarkers for GSD are therefore highly
welcomed and were recently prioritized.9 It is important to
clearly define biomarker use in different stages of the disease
of interest: (1) identify the risk of developing an illness, (2)
screen for subclinical disease, (3) diagnose disease, (4)
categorize disease severity, and (5) predict prognosis.
Metabolomics may allow us to study and identify new
biomarkers for GSD patients, whereas stable isotope studies
may provide a better insight in metabolic fluxes in individual
patients. These studies are particularly important in the light
of upcoming trials with novel therapies, including messenger
RNA (mRNA) treatment and gene therapy.
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