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Abstract—Blockchain technology as an approach for decen-
tralized and distributed ledgers provides a natural fit solution
for trading applications. A number of existing approaches have
been developed in the recent years aiming to support trading
in various markets by means of this technology. However, the
role of blockchain in these approaches is in many cases confined
to recording the consensus on the transferred assets prescribed
by trade agreements that are made outside of the chain itself.
The premise of this work is that blockchain smart contracts can
actually be leveraged to automate the creation of those trading
agreements, adding a new level of autonomy in the operation
of the market itself. For these purposes we design and realize
as a proof of concept an Ethereum-based network of peers
trading electricity automatically using Solidity smart contracts.
Beyond introducing automated matchmaking capabilities for bids
in the market, the proposed approach also offers balancing of
computational effort across peers. An additional benefit is that
it minimizes the influence of single nodes to the operation of the
automated market by moving into a proof of stake-like scheme
of rotating leadership for block mining. Experimental evaluation
of the work shows promise, but further work is required for a
full blown solution. Lessons learned for Ethereum-based solution
development are also offered.

Index Terms—blockchain, smart contracts, energy trading,
buyer-seller matching, Ethereum

I. INTRODUCTION

Trading is an activity that can be described as a two-

sided agreement to transfer assets between parties. Many

developments in the field of Computer Science have found

their way into trading, most notably financial trading. Some

of these developments that have been around longer have

become more common, like how stock markets have been

computerized completely, a development that has been going

on already since the mid sixties [1]. Others, like high speed

trading are a prime example of how such developments can

bring about radical changes [2], [3]. Blockchain technology,

as a decentralized, distributed ledger in which the content

of the ledger is divided into blocks linked through crypto-

graphic hashing and stored by all participants in a network

as introduced in [4], is designed for tracking the transfer of

digital assets. In light of the ongoing efforts for automation

and digitization, it becomes of critical interest to explore this

apparent compatibility between trading and blockchain.

There are a number of approaches in the literature of recent

years that have explored this space. For example, Notheisen

et al. [5] develop a system for cars trading; Chiu and Koeppl

discuss using blockcahin for settlement in asset trading [6];

even data trading [7] can be supported by blockchain. The

main theme and focus on these approaches, however, is

on providing the means for digitally recording the transfer

of assets in an immutable and auditable manner by using

blockchain technology [8]. Traders (either humans or system-

s/algorithms) are to make decisions on the proposed trades,

and blockchain is to be used to reflect the outcomes of these

trades as agreements. Smart contracts are used to represent

these binding agreements, and to enforce the obligations of

the participating entities [9].
In this way of operating, however, we see a missed oppor-

tunity to take a step further, and actually automate, where

possible, the trade itself. Smart contracts, in this case, are

to be used not only for enforcing the trade agreements, but

also as the means for producing these agreements in the

first place. This work investigates the feasibility of realizing

a system of automated trading over a blockchain network,

using smart contracts for this purpose. Automated trading is

not a novel concept per se. Fan et al. [10], for example,

introduce a system that allows for the trading of bundles of

financial assets. A maximum buying price or minimum selling

price is set and a bundle of orders is placed at an exchange.

The exchange then matches these bundles by matching buy

orders in one bundle with sell orders in another bundle and

so on, seeking to maximize market surplus. After matching

the individual orders, the exchange sets up the transaction

between the corresponding parties and executes it. Matches

are made between parts of bundles, leaving some parts out

after a matching run. These assets are returned to the trader

after a round. The approach we propose in this work is similar

in spirit to this mode of operation but without the need for an

exchange to do the matching.
In order to scope down the task at hand, we focus on

bulk commodities trading, i.e. assets1 that are traded in large

quantities such as hydrocarbon products, grain, coal etc.,

and pick the energy trading domain, where energy is traded

between peers (producers and consumers of electricity) as

our use case. Energy trading systems appear to be great

candidates for adoption of the blockchain technology since it

1Technically speaking, assets are typically either break bulk commodities
like cars or electronic devices, or bulk commodities available in arbitrary
volumes, like energy or grain.
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offers many advantages in comparison to traditional systems

in the domain [12], [13]. The main research question that this

work is aiming to answer can therefore be summarized as: to
what extent can blockchain-supported trading of single types
of bulk commodities, and specifically energy, be automated
by means of smart contracts? Similarly to what Fan et al.

propose in [10], our system will perform matching on a set

of representations of the traders intention to buy or sell a

commodity, that is an amount of electricity in bulk, as the

means for automating the trading between interested parties.

In this respect, it focuses on the buyer-seller matching aspect

of transaction handling in the classification of related works

by Wang et al. [11].

The rest of this paper is structured as follows. The domain

of the use case is analyzed in Section II, and requirements

on a desired solution are consequently elicited. Our proposed

system design is discussed in Section III; the proof of concept

implementation of our proposal and the evaluation of our

solution are elaborated in Section IV. Section V presents

related work from blockchain-supported trading approaches,

with an emphasis on the identified use case, and positions our

approach with respect to the state of the art. Section VI closes

this paper with a summary of the main points and future work.

II. SYSTEM REQUIREMENTS

A. Use Case

For the purposes of this work, we consider a domain

consisting of a set of markets with specific characteristics.

More specifically, as discussed in the previous section, we

are looking at markets that involve a single bulk commodity.

Examples of such markets are grain and energy. The energy

market is specifically interesting, given how renewable energy

is more and more apparent as a necessity, and how volumes

of solar and wind power generation are strongly fluctuating

and cannot be predicted long beforehand. This brings us to

the second characteristic: within such markets, an intent to

buy or sell is only temporarily relevant. After an arbitrary but

short amount of time, these intentions become obsolete if not

materialized. Take the example of a wind park during a week

of strong winds. The owner of the park would want to sell

electricity before generating it, and deliver it while generating.

In addition, it is common to trade within the market on an

auction or open exchange, meaning that it is common to have

trading information public.

Since we are looking at a set of markets, the speeds at which

these markets operate will differ. However, we consider high-

speed trading as out of the scope of this work. We therefore

assume that trade interactions take at least in the order of

hours to be established and at least in the order of days

to complete from both sides. In addition, in the markets of

interest, commodities are traded between businesses in high

volume, making trade interactions very valuable. Lastly, the

markets consist of businesses trading among each other: all

traders in theses markets are peers, acting potentially as both

producers and consumers (prosumers). In short, this work is

aimed at markets where a single bulk commodity is offered

or demanded in high volume, for limited periods of time,
between peers, daily, and in a public fashion. The energy

trading market acts as the specific instantiation of the domain

under consideration for the purposes of this paper, but the

provided solution (and the discussion which follows) seeks to

be equally applicable to similar markets in the same domain.

The users of a system in this domain, from now on

called traders, must make their willingness to buy or sell a

commodity volume known to peers. Throughout this paper,

we will call an announcement of willingness to buy a demand
and an announcement of willingness to sell an offer. An offer

or demand will inform peers of the amount that is offered or

demanded, the point in time where the amount is or should be

available, and at what price per unit. The unit used is assumed

to be system-wide and is therefore left out in the details

of the trade interactions. Offers and demands are available

through the system in such a way that there is certainty that a

trustworthy party backs the offer or demand. Since offers can

be trusted to be serious and their contents to be truthful, or

at least in good faith, they can be matched automatically. A

match indicates that there is a possibility for a trade to occur. If

the parties involved are both willing to engage in this specific

trade, an agreement between them can be created inside the

system. After this, the exchange of the commodity for currency

takes place, starting with the delivery of the commodity, which

will be reflected in the system. When the agreed upon volume

of the commodity has been delivered, the receiving party will

have to deliver payment to finish the trade interaction, which is

also reflected in the system. All these interactions are recorded

by the system and this combined record forms a source of truth

for reference during the interaction or in the case of disputes.

B. Requirements

Based on this use case description above, the following

requirements on a blockchain-based solution are elicited:

R1 A trader must be able to publish an offer or demand,

stating in what volume a commodity is needed or can be

provided, at what price per unit, and in which time win-

dow. Offers and demands that are compatible are matched

automatically. Resulting matches must be confirmed by

both parties involved in a match in order to take effect.

R2 The offering party has to be able to make a claim

that it sent a certain volume of the commodity, and

the demanding party must be able to confirm such a

claim, formulated as a trade agreement. When the agreed

upon volume is confirmed by both parties, a payment
agreement must be created automatically to reflect this

fact based on the contents of the trade agreement.

R3 The demanding party must make a claim that it sent an

amount of payment and the offering party to confirm it, as

per the generated payment agreement. When the transfer
of funds is confirmed, the interaction between the two

parties is finished and none of the agreements mentioned

above can be altered after the fact.
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R4 All the actions that facilitate the functionality described

above should be auditable and reproducible, so that any

dispute over a trade interaction concerning one or more

functionalities that the system offers can be settled by

reproducing one or more steps in the interaction.

R5 The ownership and operating burden of the system

should be distributed fairly among participants. This also

includes the amount of data to be stored per participant in

the system. The required computational and storage pre-

requisites should not be so restrictive that it is impossible

for traders to begin participation in the network later in

its lifetime.

R6 The system should perform fast enough for an action to be

effective within an acceptable amount of time (arbitrarily

set to an hour for the use case), subject to a possible

counter party’s latency of response.

To the above, we also need some technical requirements on

the blockchain solution to be created for the use case, affecting

the selection of an appropriate technology stack to implement

the foreseen solution. More specifically:

T1 The blockchain must allow the maintenance of stateful

accounts; alterations to the state of the accounts is per-

formed by means of transactions.

T2 The blockchain must store all changes to the states of

accounts as part of its transaction history.

T3 It must be possible to control which participant in the

network creates a block, and how many transactions are

stored per block, while still respecting R5. This constraint

is to limit the network to the participants in a market.

III. DESIGN

A. Technologies

As a first step in our design process, we decide on the

blockchain platform to be adopted for further developing our

solution. Since there are a number of available blockchain

platforms in the field with an acceptable perceived level of ma-

turity, we opt for adopting one of them instead of developing

from scratch. Looking at the technical requirements T1–T3,

we choose the Ethereum blockchain, described in [14]. The

Ethereum blockchain is an account-based blockchain, where

accounts send transactions amongst each other, satisfying T1.

New accounts are created by sending transactions to a zero-

account, which is by definition not-owned. There are two types

of accounts, Externally Owned Accounts (EOAs) and Contract
Accounts (or simply contracts). EOAs are controlled by private

keys and do not contain code, but are used to send transactions

to other accounts. Contracts consist of the state of account,

including its balance, and some contract code to be invoked

as part of the execution of a transaction. All transactions are

stored on the chain, and any previous state of an account

can be reproduced (T2). Despite the fact that Ethereum is

meant for public blockchain networks, with the way contracts

can be written for the Ethereum blockchain, T3 can also be

satisfied by the specifics of the design. The Ethereum project

also includes a client that allows fairly easy creation of and

interaction with a private chain, which is convenient for a proof

of concept implementation. A detailed technical description of

the Ethereum blockchain can be found in [15].

For our design we aim to leverage the use of smart contracts

as the means of realizing the automated trading mechanisms.

There are a number of available smart contract languages

that would fit our choice of blockchain platform, for example

Serpent2, Vyper3, LLL4, and Solidity5. Since Solidity actu-

ally comes recommended from the Ethereum developers, is

still actively developed, and is of sufficient abstraction level

to facilitate development we opt for it. Solidity allows for

programming smart contracts in a high level, object oriented

language. To create a smart contract, one should first describe

its initial state and its behavior in Solidity code. This code is

then compiled to Ethereum Virtual Machine (EVM) bytecode

and executed by the EVM, resulting into the state of accounts

being altered, or transactions being sent with the compiled

code as payload to be executed.

In order to keep the amount of data on the chain to

a minimum (R5) and considering also the requirements on

performance (R6), we supplement the Ethereum blockchain

with the Inter Planetary File System (IPFS) [16], allowing us

to off-load any data not necessary for the chain to it. IPFS is a

distributed file storage system with an easy to use interface. It

is based on a collection of protocols inspired by technologies

such as Distributed Hashtables, BitTorrent, SPS and Git to

provide a low-latency distributed file system.

In the following we provide a high-level view of the

architecture of the proposed system and its operating prin-

ciple, before delving into more depth on aspects of particular

interest.

B. High-level Architecture

The proposed system consists of two groups of smart con-

tracts, as summarized by Fig. 1: MARKETPLACE, MATCHES,

TRADEAGREEMENTS and PAYMENTAGREEMENTS, that pro-

vide the functionality prescribed by R1–R3, and TRADERS and

LEADER which are used to satisfy R5–R6. More specifically,

transactions to publish offers and demands are connected to

the MARKETPLACE contract. MARKETPLACE contains two

collections, one for offers and one for demands, corresponding

to respective IPFS file paths. These files on the IPFS contain

all the data related to the offers and demands, the EOA address

of the owner of the offer or demand, and a signature as proof

that the data was put there by the owner. Offers and demands

are matched automatically, and the results of this matching

are listed in the MATCHES contract. When the MATCHES

contract has received signed confirmation messages6 from

2https://github.com/ethereum/serpent
3https://github.com/ethereum/vyper
4https://solidity.readthedocs.io/en/v0.5.12/lll.html (deprecated)
5https://github.com/ethereum/solidity
6Since all transactions in Ethereum are provided with a signature from the

sender, this is as trivial as sending a message containing the text “accept” or
“reject”.
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MARKETPLACE MATCHES TRADEAGREEMENTS PAYMENTAGREEMENTS

TRADERS

LEADER

Verify Publish

Fig. 1. The smart contracts comprising the proposed system, and their interactions

both parties involved, it lists the match as an agreement in

the TRADEAGREEMENTS contract defining the terms of the

exchange to take place.

The offering party, after sending a certain volume, claims

that the actual volume sent has changed; if the demanding

party, after receiving said volume, confirms this claim, the

actual volume sent for the agreement in question is updated

in TRADEAGREEMENTS. If the actual volume sent matches

the amount of the total volume to be sent, the delivery is

complete, and TRADEAGREEMENTS creates an entry in the

PAYMENTAGREEMENTS contract. This contract works exactly

like TRADEAGREEMENTS, but in the opposite direction. Here,

the demanding party makes a claim of an actual amount paid

after sending, while the offering party will confirm the actual

amount paid upon reception. When the amount is confirmed to

be paid, the trade interaction is finished and no more updates

can be done. The entire interaction is now auditable through

the transactions that led to the current state of accounts. Dis-

putes in terms of non-compliant with TRADEAGREEMENTS

volumes and funds transfers not matching the PAYMENTA-

GREEMENTS are reflected on the chain itself, and can be used

as evidence for further adjudication and/or conflict resolution

(outside of the scope of this work).

As shown in Fig. 1, all contracts connect to TRADERS.

Every contract checks, for every public method, that the

invoker of that method is listed as participant of the network in

TRADERS (requirement T3), identified by their EOA address.

The last contract in the figure, LEADER, is used to enforce

the fair distribution of computational effort required for the

automated matchmaking (R5) across all network members.

These two issues (matchmaking and leadership) are discussed

in more detail in the following.

C. Automated Matchmaking

For matchmaking purposes we use an adaptation of the

algorithm proposed in [17], itself an adaptation of previous

work [18], [19] on automated contract generation for Web

Services. More specifically, the algorithm that Daffurn Lewis

proposes in [17] for the purpose of matchmaking in a system

of the type we are considering can be summarized as follows:

1: function MATCHMAKING(Offers O, Demands D)

2: Matches M ← ∅
3: for all o ∈ O do
4: for all d ∈ D do
5: mQ← MATCHQUANTITY(o, d)

6: mP ← MATCHPRICE(o, d)

7: mT ← MATCHTIMEWINDOW(o, d)

8: if mQ > 0 ∧mP > 0 ∧mt > 0 then
9: M ←M ∪ {

10: offerAddress ← o.address,

11: demandAddress ← d.address,

12: quantity ← mQ,

13: price ← mP
14: timeWindow ← mT}
15: D ← D − d
16: O ← O − o
17: end if
18: end for
19: end for
20: return M
21: end function

The algorithm performs matchmaking on two lists, one list

of offers and one list of demands (called bids in [17]). It

iterates over the list of offers and finds the first match in the
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list of demands. Matching is based on treating the prices and

quantities in the demands and offers as intervals, allowing the

application of Allen’s interval algebra [20] to examine their re-

lations, in the same manner as discussed in [19]. If the offered

quantity in an offer is sufficient to satisfy demand (i.e. function

MATCHQUANTITY returns non-zero value) for a price that is

at most equal to the desired one (MATCHPRICE> 0) in the

prescribed time window (MATCHTIMEWINDOW> 0), then a

match is created by combining the two and removing them

from their respective lists for further matching. The algorithm

iterates over all offers until the list is empty or exhausted.
As a result, the matching is done on a first-fit basis,

meaning that the first demand found that can be fulfilled

with a given offer is selected for a match. The resulting

matches list the highest volume acceptable for the offering

party at the lowest price acceptable by the offering party.

While a more sophisticated matching scheme can be added

to our system, this first-fit basis one is sufficient to satisfy

the requirements we identified in the previous section. What’s

more, due to its simplicity, the algorithm is also very fast: in

the experiment discussed in [17], it takes only 1 second to

match 17500 randomly generated offers and demands when

used as a NodeJS package running on an older (circa 2014)

generation laptop. This means that the algorithm is more than

fast enough to satisfy R6.
Nevertheless, we also have to consider that if the algorithm

itself is implemented as a smart contract, it will have to be run

by every participant any time matchmaking is required, which

is less than desirable. Therefore the algorithm is run off the

chain by a selected leader defined in the LEADER contract, in

rounds (see below). The input used and the output produced

is recorded in a file on the IPFS which is referred to explicitly

by the MATCHES contract. This way, matchmaking results can

always be verified by anyone in the network, if necessary.

D. Rounds & Leadership
The introduction of rounds and leadership is required in

our system since for the size of networks prescribed by the

adopted use case, i.e. at maximum in the order of thousands

nodes, the proof of work algorithm used by the Ethereum

blockchain for consensus building (similar to the one by

Dwork and Naor [21]) can be easily subverted by a peer

with disproportionate amount of hardware. For this purpose,

we propose that the recording of mutations to the system, as

effected by transactions, is organized in rounds. The activities

in each round are summarized in Fig. 2. The proposed scheme

is somewhat similar to the proof-of-stake consensus mecha-

nism to be introduced in Ethereum 2.07, codename Serenity.

However, at the point of writing this paper, this release is still

in the future; we therefore base our work as we will discuss

further in Section IV on a version of Ethereum still relying on

proof-of-work, with our leadership mechanism implemented

on top of it.
More specifically: in each round, one of the traders acts

as the round leader. At the start of each round (top left of

7https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/proof-of-stake/

Fig. 2), the leader notifies the other traders that they can begin

sending bids (that is, demands or offers) as transactions to the

MARKETPLACE contract. At the end of the round (bottom

left of Fig. 2), and before the matchmaking starts, the leader

notifies the other traders that the window for sending bids

in the current round is closed. The leader then retrieves the

offers and demands from the MARKETPLACE contract and

runs the matchmaking algorithm as discussed in the previous

section. When the matchmaking is done, the leader records

the result of the round in one or more blocks on the chain,

listing the offers and demands included in matchmaking, and

the matches made by the algorithm, in a file on the IPFS, and

storing the path to this file in the MATCHES contract to allow

future auditing. Matches are required to be digitally signed by

both trading parties (producer and consumer) in order to be

added to the TRADEAGREEMENTS contract, and eventually to

PAYMENTAGREEMENTS, as discussed in Section III-B. Since

this part of the operation of the proposed system is outside

of the scope of this paper, we are omitting it from Fig. 2 for

clarity and simplicity.

Unmatched offers and demands, and matches from previous

rounds that are not accepted by both parties are discarded

at the end of the round. Each offer and demand is therefore

valid for only one round. This means that the responsibility of

keeping offers and demands available until they are matched or

obsolete lies with the traders themselves. This is an acceptable

situation in light of the benefit of the greater scalability of

the chain it provides. Newly made matches are published as

the final action of the leader in one or more blocks, before

unseating themselves and starting the leader selection process

(right hand side of Fig. 2).

Leader selection is based on a lottery scheduling scheme

similar to [22] as the means of enforcing the fair distribution

of work throughout the network (R5). At the end of each

round, the currently selected leader, trader Ta, draws a lot

from the collection of all issued tickets. The owner of the

ticket, say Tb, is selected as the leader for the next round, and

the ticket is marked as available again, taking it away from

Tb. If Tb now holds no tickets, they are issued an amount

of new tickets proportionate to the standard deviations σb of

the sum of transactions Ri in all the rounds L that Tb was

leader
∑

i∈LTb
Ri from the mean transactions per round so

far R̄ (minimum one ticket). The amount of tickets issued is

limited by a maximum upper value, which is to be determined

experimentally for the purpose of preventing unequal chances

at becoming a leader between traders. Incorporating this

mechanism into the proposed solution is outside of the scope

of this work, and the matter for future work. Leadership is

enforced in practice by requiring all transactions in a block

to have as block creator’s address the leader of this round (as

defined in the LEADER contract). This way, only transactions

included in a block by the current leader can be valid and lead

to valid blocks; therefore only the leader can create blocks.

This scheme ensures that each leader performs an equally

distributed amount of work and therefore no trader has a
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Fig. 2. The flow of information in a system round including the leader selection process, and the affected contracts in the system

disproportionate stake in the system. Furthermore, new traders

joining an existing network are eligible for the maximum

between 1
σ

∑
i∈LTnew

Ri and the maximum number of tickets

that can be held by a trader at a time. This allows Tnew to

catch up with the other traders in the network without giving

the trader an unnecessary amount of control to the network.

Since we ensure to ensure reproducibility and auditability (R4)

also for the ticket draw itself, we use Ethereum’s built-in

hash function originally introduced in [23] as a pseudo-random

generator. The number and time stamp of the block in which

the leader selection occurs are given as input to the function.
One issue that we did not touch in the discussion above

is the actual amount of work for the leader per round. While

the block size B is fixed, the amount of transactions to be

included per block, and the amount of blocks to be generated

per round still needs to be defined. In order to deal with this

issue, we make the assumption that the amount of work to

be executed per transaction (matching) is the same for every

transaction, considering also transactions that are neither offers

nor demands — for example the confirmations of matches and

the creation of trade agreements.
We start with the observation that the maximum number of

matches max |M | that can be made in a round is the minimum

between the number of offers |O| and the number of demands

|D| in that round. The total number of transactions in the i-th
round Ri is therefore:

Ri = |Oi|+ |Di|+min(|Oi|, |Di|) + ρi

where ρi is the number of other transactions to be processed.

Let Rmax be the experimentally defined maximum amount

of transactions per round as discussed above. The leader has

to stop including transactions from other traders in blocks as

soon as it holds that

Rmax −min(|Oi|, |Di|) > |Oi|+ |Di|+ ρi

Assuming that τi transactions are included in Ri, then it

follows that at most

�τi +min(|Oi|, |Di|)
B

�

blocks will be created by the leader in this round. In this

manner, as the amount of offers and demands changes with the

amount of participants to the network over time, the amount of

work required by each round leader will fluctuate accordingly

in response (R5).

57

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2021 at 08:05:01 UTC from IEEE Xplore.  Restrictions apply. 



IV. IMPLEMENTATION & EVALUATION

A. Implementation

In order to demonstrate the feasibility of our proposal we

implemented the proposed system in a proof of concept trading

platform8. In terms of adopted software, we used the Go

implementation of the Ethereum system at version 1.8.209.

The system followed the Byzantium hard fork of the Ethereum

protocol10. Solidity release 0.4.2511 was used for the smart

contracts. We also used the Javascript implementation of IPFS

at version 0.3512.

function publishOffer(bytes _ipfs_file_id) public {
if (current_offers_amount == _offers.length) {
_offers.push(_ipfs_file_id);

} else {
_offers[current_offers_amount] = _ipfs_file_id;
}
emit NewBid(current_offers_amount);
current_offers_amount++;

}

function publishDemand(bytes _ipfs_file_id) public {
if (current_demands_amount == _demands.length) {
_demands.push(_ipfs_file_id);

} else {
_demands[current_demands_amount] = _ipfs_file_id;
}
emit NewBid(current_demands_amount);
current_demands_amount++;

}

Listing 1. Solidity code for publishing an offer or a demand on the chain

Listing 1 is a snippet from the MARKETPLACE contract

showing the functions handling the publishing of offers and

demands to the chain by means of their IPFS handles.

One issue with the adoption of Ethereum as the imple-

mentation network is that of controlling participation to it.

Ethereum, by default, is a network in which anyone can begin

participating in by simply knowing its identification number,

discovering other participants and adhering to the protocols.

This kind of open protocol is undesirable for our system. An

option we have is to use the TRADERS contract to check every

transaction, but this kind of controlled access is a property of

a permissioned blockchain, like Hyperledger Fabric [24]. We

decided that this issue lies outside of the scope of our proof of

concept implementation and approaches like [25] can be used

to resolve this issue in practice.

An additional issue that the adoption of Ethereum raises is

that of mining difficulty. In the proposed rotating leadership

scheme presented in the previous section, the validity of a

block is dependent only on the identity of the creator, that

is, the selected leader for the round. A digital signature of

the block creator is sufficient for these purposes, which is

by default included in all valid Ethereum transactions. It is

therefore sufficient to configure the network for the lowest

possible mining difficulty, and to implement the leadership

8https://github.com/pieterDekker/blockhain-trading-platform
9https://github.com/ethereum/go-ethereum/releases/tag/v1.8.20
10https://github.com/ethereum/EIPs/blob/master/EIPS/eip-609.md
11https://github.com/ethereum/solidity/releases/tag/v0.4.25
12https://github.com/ipfs/js-ipfs/releases/tag/v0.35.0

in rounds through the MARKETPLACE and LEADER smart

contracts. For the purposes of this proof of concept, we also

opted not to implement the TRADEAGREEMENTS contract, to

be updated by the MATCHES contract as shown in Fig. 2.

Any trade agreement that is the result of intentional actions

of the involved parties has the IPFS file handle of an offer

and of a demand with their respective signatures. Relying on

the cryptographical security of digital signatures, we assume

it is infeasible to insert trade agreements that refer to unique,

authentic appearing offers and demands. Therefore, a listed

trade agreement is either the result of intentional actions of the

parties involved, or completely meaningless, apart from taking

up unnecessary storage space. The same observation holds for

created payment agreements. Implementing these contracts is

part of future work.

B. Evaluation

As discussed above, the Ethereum network realization of

our proposal is meant as a proof of concept, allowing us to

evaluate to what extent the main research question of this work

is actually answered by it. Looking at the requirements on a

solution identified in Section II-B, it is fairly straightforward to

show that our proposed system satisfies most of them. More

specifically, by combining Ethereum with IPFS T1 (stateful

accounts) and T2 (history of state modifications) are met

out of the box. Controlled network membership (T3) is not

straightforward and has been shifted to future work in terms of

implementation, but in principle it would be relatively simple

to enforce by means of the TRADERS contract, as discussed

above. In purely functional terms, the TRADERS, MARKET-

PLACE, MATCHES, TRADEAGREEMENTS, and PAYMENTA-

GREEMENTS contracts realize all the functionality required for

R2–R3. The project repository contains test scripts that allow

for confirming this independently.

Applying the lottery-based rotating leadership scheme

means that R5 is also satisfied by definition. An experimental

demonstration of the equal burden over time would require the

deployment of a large scale network of nodes, which is cur-

rently outside of our capabilities, but a target for future work

through the adoption of our proposal in existing networks.

Auditability and reproducibility of actions is also guaranteed

for all phases of each leadership round, down to the drawing

of lots for the leadership election (R4).

The one requirement that we therefore need to investigate

further is that of acceptable performance (R6). For this purpose

we created a small benchmark, also included in the project

repository. The benchmark consists of a script deploying a

MARKETPLACE contract, populating it with randomly gen-

erated offers to be published in sequential order as separate

transactions, and measuring the time it takes to retrieve the

transactions from the chain. A shell script which iterates over

multiples of 10 from 10 to 100 offers invokes the marketplace

simulation script. Running the benchmark on a Lenovo Idea-

pad 320 laptop with an Intel i5-8250 CPU at 1.6 GHz with

8 GB of RAM running Ubuntu Linux LTE 16.04, shows a

turnaround time of at most 1749.2 seconds. Let the average la-
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tency between any two traders in the network be 0.3 seconds13,

the number of traders 1000 and let the network topology be

entirely linear (i.e. the worst possible case). Assume that the

sender of the transactions is at one extreme of the network and

the leader at the other. Under these worst case conditions, it

would take 999×0.3+1749.2+999×0.3 = 2348.6 seconds,

a little over 39 minutes, for an offer to be published and the

publishing trader to see that in effect. This is well within the

limit acceptable by the domain as discussed in Section II.

We did not measure the matching latency, but as reported

in [17], it takes less than a second to generate all matches

and update the MATCHES contract. We can therefore conclude

that the performance of the network, at least in this artificial

environment, is more than acceptable.

C. Lessons Learned

Ethereum and its contract language Solidity are technologies

still very much under development. This means that work-

ing with them creates additional difficulties, on top of the

challenges that come with the task to be performed. Firstly,

Solidity compiles to intermediate machine code that can be

executed by the EVM. However, not all of the EVM machine

code is completely implemented as desirable. As an example,

at the time of developing our proof of concept prototype, there

was an assertion statement for which the failure case would

compile to an invalid opcode (an instruction to the EVM)14.

It should be noted that, for the execution of code as a result

of transaction, a small fee in Ethereum’s currency, Ether, is

required by the creator of the block; this fee is called gas. The

sender of the transaction that results in code execution attaches

a certain fixed amount of ether to that transaction to be used as

gas, to control spending on executing code. The result of this

invalid opcode was that, instead of simply failing at that point,

the EVM would abort processing of that transaction, consume

all available gas for that transaction and revert the changes

made to the state. This created confusion, since it seemed

something had gone wrong with the transaction itself, while

it was simply the assertion that was failing. At the same time,

error reporting is very minimal in the EVM making it difficult

to debug code. Our advice to future developers is therefore to

familiarize themselves with the status of the Ethereum project,

specifically what exactly has been implemented fully and what

is still incomplete, before adopting it in their approach.

V. RELATED WORK

There are a number of efforts towards developing

blockchain-based energy trading platforms. A well-known ex-

ample is NRG-X-Change, introduced in Mihaylov et al. [26].

They propose a system in which prosumers can provide energy

to a smart grid in exchange for a cryptocurrency, NRGcoin.

Subsequently, prosumers can use NRGcoins to buy energy

from the grid or trade them like any other cryptocurrency

on an independent exchange for whatever other currencies

13https://wondernetwork.com/pings
14This is also discussed here: https://github.com/ethereum/solidity/issues/

2586

that exchange supports. The result is a system that facilitates

energy exchange in a decentralized manner. Other similar

industrial approaches are SolarCoin15, Sunchain16, the Pylon

network17, and the Power Ledger18 platform. The interested

reader is referred to the survey of the State of the Art in

blockchain-based energy trading by Wang et al. [11] for an

up-to-date perspective on approaches in this domain.

As discussed in the introductory section, our work aims to

automate the buyer–seller matching in these kind of markets.

As per [11], matching approaches either use an instantiation

of the stable matching problem on bipartite graphs based on

node preferences [27] usually aimed at preserving the privacy

of participants [28], or an auction-enabling mechanism as in

for example [29], [30]. Of particular mention is the Power

Ledger platform which provides its own matching algorithms

for dealing with demand and supply based on the availability

of renewable energy resources in the geographical area of

prosumers19. With respect to these approaches, the innovation

in our proposal is two-fold: first the adoption of an existing

efficient mechanism for contract matching which allows us to

satisfy the performance requirements on a developed network

safely; and second, the introduction of a mechanism which

ensures fairness in the distribution of effort across network

nodes for the actual matching.

VI. CONCLUSION

Supporting the trading of assets by means of transparently

and immutably recording the involved business transactions

is an ideal case of the adoption of blockchain technology.

Going beyond this record-keeping functionality, in this work

we propose to introduce also a degree of automation in the

trading of single type bulk commodities like energy by means

of automated matchmaking of offers and demands. The system

we propose is developed on top of the Ethereum blockchain

platform, and aims to address requirements coming from the

energy trading domain. A special interest in our system is

in balancing the effort required for applying the decentralized

matchmaking approach that we introduce. For this purpose we

move into a proof-of-stake-like mechanism for block mining

done in rounds by rotating leaders selected through lottery

drawing. The evaluation of the performance of our developed

prototype in a small scale experimental setting shows that our

proposal is able to scale as expected.

Future work aims at addressing the shortcomings of the pro-

totype identified in the previous sections. More specifically, the

TRADEAGREEMENTS and PAYMENTAGREEMENTS contracts

are to be implemented and incorporated in the network. A large

scale evaluation of the proposed solution, and a systematic

comparison with similar approaches discussed in the related

work sections is also a target for the immediate future.

15http://www.solarcoin.org/
16http://www.sunchain.fr/
17https://pylon-network.org/
18https://www.powerledger.io/
19https://www.powerledger.io/our-technology/
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trading under network constraints in a low-voltage network,” IEEE
Transactions on Smart Grid, 2018.

60

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2021 at 08:05:01 UTC from IEEE Xplore.  Restrictions apply. 


