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1 Introduction and Preliminaries

Nudel’man’s problemmay be viewed as a method to implement the operator approach
to interpolation due to Sarason [15]. Assume given a linear operator A on a complex
vector space V into itself. Suppose there is a natural way to interpret f (A), where f
is an analytic function which is defined and bounded by one on the open unit disk
of the complex plane. The problem is to find solutions f of the equation b = f (A)c
for given vectors b and c in V . A general theorem based on the commutant lifting
theorem of Sz.-Nagy and Foias [17] provides conditions for the existence of solutions.
Simple choices of A, b, c yield classical interpolation theorems of the Nevanlinna–
Pick, Carathéodory–Fejér, and Loewner types. See [13, Chapter 2].

Indefinite generalizations of operator methods for interpolation were pioneered by
Ball and Helton [7]. Arocena et al. [6] use a theorem of Ball and Helton to prove an
indefinite form of the commutant lifting theorem. This raised the possibility of finding
an indefinite generalization of Nudel’man’s problem, and such a generalization was
proposed in our paper [3] with T. Constantinescu. However, the proof of the Main
Theorem in [3] has gaps, which are identified in the Corrigendum [4]. Appendix B
in this work describes the problems in the proof and includes an example showing
what can go wrong. We have no counterexample to the original statement of the Main
Theorem in [3], but we feel that its validity is seriously in doubt. Five open questions
are identified in the present work, in Problems 3.3, 4.1, 5.1, 5.3, 5.5. Negative answers
to any of them would provide a counterexample to the original form of the Main
Theorem in [3].

This paper is a revised version of [3] that repairs the Main Theorem and shows the
changes needed in the applications. Briefly, a stronger hypothesis fixes the problems
in the proof of the Main Theorem. The applications in [3] to the classical interpolation
problems of Pick–Nevanlinna, Carathéodory–Fejér, and Sarason survive with minor
changes. The main losses are the theorems on boundary interpolation, for which the
stronger hypothesis has not yet been proved or disproved. The boundary theorems in
[3] are reformulated here as open problems, for which we obtain some partial results.

An effort has been made to make this paper self-contained, and thus we repeat
unaffected results from the original paper, including some verbatim passages. How-
ever, although the statement and proof of the Main Theorem (Alternative Form) in [3,
p. 834] could be inserted verbatim at the end of this paper, we shall not do so.

Throughout, κ denotes a nonnegative integer. By aHermitian form orHermitian
kernel on a set�wemean a complex-valued function K on�×� such that K (ζ, z) =
K (z, ζ ) for all ζ, z in �. We say that K has κ negative squares and write

sq− K = κ

if the maximum number of negative eigenvalues (counting multiplicities) among all
matrices

(
K (ζ j , ζi )

)n
i, j=1, ζ1, . . . , ζn ∈ �, n ≥ 1, is κ . Inner products are examples

of Hermitian forms.
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Proposition 1.1 A linear and symmetric inner product 〈·, ·〉H on a complex vector
space H has κ negative squares if and only if the maximum dimension of a strictly
negative subspace of H is κ .

For the purpose of this work, a strictly negative subspace of H is a subspace N
such that 〈 f , f 〉H < 0 for every f �= 0 in N .

Proof of Proposition 1.1 By definition, 〈·, ·〉H has κ negative squares if and only if the
maximum number of negative eigenvalues of every Gram matrix

(〈
g j , gi

〉
H
)n
i, j=1 , g1, . . . , gn ∈ H, n ≥ 1,

is κ . By [5, Lemma 1.1.1′], this occurs if and only if κ is the maximum dimension of
a strictly negative subspace of H. �	

A bounded selfadjoint operator T on a Hilbert space H is said to have κ negative
squares if the inner product

〈 f , g〉T = 〈T f , g〉H, f , g ∈ H,

has κ negative squares. In this case, we write sq− T = κ .

Proposition 1.2 Let H be a Hilbert space, T ∈ L(H) a selfadjoint operator. Then
sq− T = κ if and only if the negative spectrum of T consists of a finite number of
eigenvalues of total multiplicity κ .

Proof Write H = H− ⊕ H+, where H± are the spectral subspaces for T for the
intervals (−∞, 0) and [0,∞). We must show that the inner product 〈·, ·〉T has κ

negative squares if and only if dimH− = κ .
Suppose dimH− = κ . Then H− is a strictly negative subspace of (H, 〈·, ·〉T ) of

dimension κ . LetN be an arbitrary strictly negative subspace of (H, 〈·, ·〉T ). If P− is
the projection ontoH−, then P−|N is a one-to-one linear mapping fromN intoH−.
For if f ∈ N and P− f = 0, then f ∈ H+ and so 〈 f , f 〉T = 〈T f , f 〉H ≥ 0. Since
f ∈ N , f = 0. Therefore dimN ≤ κ . By Proposition 1.1, the inner product 〈·, ·〉T
has κ negative squares.

Conversely, suppose 〈·, ·〉T has κ negative squares. Again by Proposition 1.1, since
H− is a strictly negative subspace of (H, 〈·, ·〉T ), H− has dimension at most κ , say
dimH− = κ ′. Then by what we just showed, 〈·, ·〉T has κ ′ negative squares. Hence
κ ′ = κ , and therefore dimH− = κ . �	

2 Main Theorem

A function S(z) which is analytic on a subregion of the unit disc is in the generalized
Schur class Sκ = Sκ(D) if the Hermitian kernel [1 − S(z)S(ζ )]/(1 − zζ̄ ) has κ

negative squares. In this case, S(z) has an analytic continuation to D except for at
most κ poles. When κ = 0, S0 is the Schur class of analytic functions which are
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defined and bounded by one on D. By the Kreı̆n–Langer factorization [10, p. 382],
every S(z) in Sκ has the form

S(z) = B(z)−1 f (z), (2.1)

where f (z) belongs to S0, B(z) is a Blaschke product of degree κ , and f (z) does not
vanish at the zeros of B(z). Conversely, every such function belongs to Sκ . Recall that
a Blaschke product of degree κ is a function of the form

B(z) = c
κ∏

j=1

z − a j

1 − zā j
, |c| = 1, a1, . . . , aκ ∈ D.

Here the points a1, . . . , aκ need not be distinct.
Assume given a complex vector space V with algebraic dual V ′. We write

(x, x ′) = x ′(x)

for the action of a linear functional x ′ in V ′ on a vector x in V . Every linear operator
A : V → V has a dual A′ : V ′ → V ′ defined by

(x, A′x ′) = (Ax, x ′), x ∈ V, x ′ ∈ V ′.

Nudel’man’s Problem. Given vectors b, c in V and a linear operator A on V into
itself, find a pair ( f , B), where f ∈ S0 and B is a Blaschke product of degree κ , such
that

f (A)c = B(A)b (2.2)

in the sense described below. We call (A, b, c) the data of the problem.
By an admissible set for given data (A, b, c), we understand a subsetD of V ′ such

that1

(i) D is a linear subspace of V ′ which is invariant under A′;
(ii) the sums

∑∞
j=0 |(A jb, x ′)|2 and ∑∞

j=0 |(A jc, x ′)|2 are finite for all x ′ in D;
(iii) there is a constant M > 0 such that for all x ′ in D,

∞∑

j=0

|(A jb, x ′)|2 ≤ M
∞∑

j=0

|(A jc, x ′)|2. (2.3)

When an admissible set D has been chosen, we interpret (2.2) to mean that

∞∑

j=0

f j (A
jc, x ′) =

∞∑

j=0

Bj (A
jb, x ′), x ′ ∈ D, (2.4)

1 We emphasize that condition (iii) for an admissible family in the form used in this paper is stronger than
that of [3]. See Appendix B for an explanation why the stronger form is needed.
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where f (z) = ∑∞
j=0 f j z j and B(z) = ∑∞

j=0 Bj z j are Taylor expansions.

Theorem 2.1 (Main Theorem) Let (A, b, c) be given data,D an admissible set. Define
a Hermitian form K on D × D by

K(x ′, y′) =
∞∑

j=0

[
(A jc, x ′)(A jc, y′) − (A jb, x ′)(A jb, y′)

]
(2.5)

for all x ′, y′ ∈ D. Let κ be a nonnegative integer.

(1) If K has κ negative squares, there is a pair ( f , B), where f ∈ S0 and B is a
Blaschke product of degree κ , such that f (A)c = B(A)b.

(2) If there is a pair ( f , B) as in (1), thenK has κ ′ negative squares for some κ ′ ≤ κ .

This is proved for the case κ = 0 in [13, pp. 23–24] using the Sz.-Nagy and Foias
commutant lifting theorem. The general case is derived using the Ball–Helton almost
commutant lifting theorem in the following form.

Theorem 2.2 For each j = 1, 2, let Tj ∈ L(H j ) be a contraction on the Hilbert
space H j , let W j ∈ L(G j ) be an isometric dilation of Tj on a Hilbert space G j , and
let Pj be the projection of G j onto H j . Let C ∈ L(H1,H2) be an operator such that
CT1 = T2C.

(1) If sq− (1 − C∗C) = κ , there exists a pair (E, C̃) such that E is a closed W1-
invariant subspace of G1 of codimension κ and C̃ is a contraction operator on E
into G2 satisfying

C̃W1|E = W2C̃ and P2C̃ = CP1|E .

(2) If there is a pair (E, C̃) as in (1), then sq− (1 − C∗C) ≤ κ .

Theorem 2.2 is proved in a more general form in Theorem 1.1 in Arocena et al. [6].

Proof of Theorem 2.1 Let Hc be the set of functions on D of the form

hx ′(z) =
∞∑

j=0

(A jc, x ′)z j , x ′ ∈ D. (2.6)

By conditions (i) and (ii) for an admissible set, Hc is a linear subspace of the Hardy
space H2 which is invariant under S∗, where S is multiplication by z in H2. Condition
(iii) assures that the formula

X0 :
∞∑

j=0

(A jc, x ′)z j →
∞∑

j=0

(A jb, x ′)z j , x ′ ∈ D, (2.7)

defines a bounded operator onHc into H2. By the definition of X0,

S∗X0h = X0S
∗h, h ∈ Hc. (2.8)
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Let X ∈ L( �Hc, H2) be the extension by continuity of X0. By (2.5),

K(x ′, y′) = 〈
hx ′ , hy′

〉
H2 − 〈

X0hx ′ , X0hy′
〉
H2 , x ′, y′ ∈ D. (2.9)

An approximation argument shows that the number of negative squares of K is the
same as the number of negative squares of the Hermitian form

〈
(1 − X∗X)h, k

〉
H2 = 〈h, k〉H2 − 〈Xh, Xk〉H2 , h, k ∈ �Hc,

which is the same as sq− (1 − X∗X). That is, if any one of these numbers is κ , all
are equal to κ . By standard methods for Hilbert space operators, sq− (1 − XX∗) =
sq− (1 − X∗X).

Proof of (1). Assume that K has κ negative squares, so sq− (1 − X∗X) = κ . Set

H1 = H2 and T1 = S;
H2 = �Hc and T2 = E∗

2 SE2, where E2 : H2 → H2 is inclusion;
G1 = G2 = H2 and W1 = W2 = S;
C = X∗ ∈ L(H2,H2).

Then W1,W2 are isometric dilations of T1, T2. By (2.8), CT1 = T2C . Also sq− (1 −
C∗C) = sq− (1− XX∗) = sq− (1− X∗X) = κ , and so the assumptions of Theorem
2.2(1) are met. By that result, there is a closed S-invariant subspace E of H2 of
codimension κ , and a contraction C̃ ∈ L(E, H2) such that SC̃ f = C̃ S f for all
f ∈ E , and

C f = P2C̃ f , f ∈ E . (2.10)

Here P2 is the projection on H2 with rangeH2. Write ϕ̃(z) = ϕ(z̄) for any complex-
valued function ϕ on D. Then E = B̃H2 where B is a Blaschke product of degree κ .
For any ϕ ∈ H∞, let Mϕ be multiplication by ϕ on H2. For every h ∈ H2,

C̃MB̃ Sh = C̃ S(B̃h) = SC̃ B̃h = SC̃MB̃h,

and therefore C̃MB̃ commutes with S. Since C̃ is a contraction, C̃MB̃ = M f̃ for some

f ∈ S0. To verify (2.4), consider any x ′ ∈ D and h ∈ H2. Then by (2.10) and (2.7),

〈 ∞∑

j=0

(A jc, x ′)z j , M f̃ h

〉

H2

=
〈 ∞∑

j=0

(A jc, x ′)z j , C̃MB̃h

〉

H2

=
〈 ∞∑

j=0

(A jc, x ′)z j , P2C̃MB̃h

〉

H2

=
〈 ∞∑

j=0

(A jc, x ′)z j ,CMB̃h

〉

H2

=
〈 ∞∑

j=0

(A jc, x ′)z j , X∗MB̃h

〉

H2

=
〈 ∞∑

j=0

(A jb, x ′)z j , B̃h
〉

H2

.

When h = 1, this reduces to (2.4).
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Proof of (2). Assume (2.4) holds for some f and B as in (1). For all x ′ ∈ D,

〈 ∞∑

j=0

(A jc, x ′)z j , f̃ (z)

〉

H2

=
〈 ∞∑

j=0

(A jb, x ′)z j , B̃(z)

〉

H2

. (2.11)

Hence for all x ′ ∈ D and n ≥ 0,

〈 ∞∑

j=0

(A jc, x ′)z j , zn f̃ (z)
〉

H2

=
〈 ∞∑

j=0

(A j+nc, x ′)z j , f̃ (z)

〉

H2

=
〈 ∞∑

j=0

(A jc, (A′)nx ′)z j , f̃ (z)

〉

H2

=
〈 ∞∑

j=0

(A jb, (A′)nx ′))z j , B̃(z)

〉

H2

=
〈 ∞∑

j=0

(A j+nb, x ′)z j , B̃(z)

〉

H2

=
〈 ∞∑

j=0

(A jb, x ′)z j , zn B̃(z)

〉

H2

.

Let hx ′ be as in (2.6). Recalling the definition (2.7) of X0, we deduce that

〈
hx ′ , f̃ g

〉

H2
= 〈

X0hx ′ , B̃g
〉
H2

first for g(z) = zn and then for any g in H2. By the arbitrariness of x ′,
〈
h, f̃ g

〉

H2
= 〈

Xh, B̃g
〉
H2 = 〈

h, X∗ B̃g
〉
H2 , h ∈ �Hc, g ∈ H2.

Therefore the restriction of X∗ to E = B̃H2 is a contraction. Write

X =
(
X1
X2

)
, X1 ∈ L( �Hc, E), X2 ∈ L( �Hc, E⊥).

Then X1 is a contraction because X∗
1 = X∗|E is a contraction. Thus

1 − X∗X = 1 − X∗
1X1 − X∗

2X2,

where 1 − X∗
1X1 ≥ 0. Since B̃ is a Blaschke product of degree κ , dim E⊥ = κ . Thus

−X∗
2X2 has rank at most κ . It follows that sq− (1 − X∗X) ≤ κ , and hence the kernel

K has κ ′ ≤ κ negative squares. �	

3 Classical Interpolation Problems on the Disc

The classical interpolation problem of Pick–Nevanlinna falls within the scope of The-
orem 2.1.
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Theorem 3.1 (Cf. [3, Theorem 3.1]) Let z1, . . . , zn be distinct points in the unit discD,
w1, . . . , wn any complex numbers, and let κ be a nonnegative integer. Set

P =
(
1 − w j w̄i

1 − z j z̄i

)n

i, j=1
. (3.1)

(1) If P has κ negative eigenvalues, then there is a pair ( f , B) with f ∈ S0 and B a
Blaschke product of degree κ such that f (z j ) = B(z j )w j for all j = 1, . . . , n.

(2) If there is a pair ( f , B) as in (1), then P has κ ′ ≤ κ negative eigenvalues.

Proof We apply Theorem 2.1 with V = C
n . Identify V ′ with C

n with the pairing
(x, y) = x1y1 + · · · + xn yn , where x j , y j are the entries of x, y. For data, choose

A = diag {z1, . . . , zn}, b =
⎛

⎜
⎝

w1
...

wn

⎞

⎟
⎠ , c =

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ .

We show that D = V ′ is an admissible set for the data. Conditions (i) and (ii) are
easily verified. We check (iii). For any x in D,

∞∑

j=0

(A jb, x)z j =
∞∑

j=0

n∑

k=1

z jkwk xk z
j =

n∑

k=1

wk xk
1 − zk z

,

∞∑

j=0

(A jc, x)z j =
∞∑

j=0

n∑

k=1

z jk xk z
j =

n∑

k=1

xk
1 − zk z

.

Thus (iii) requires that for some M > 0,

∥
∥∥∥

n∑

k=1

wk xk
1 − zk z

∥
∥∥∥

2

≤ M

∥
∥∥∥

n∑

k=1

xk
1 − zk z

∥
∥∥∥

2

, x ∈ C
n, (3.2)

where ‖ · ‖ is the norm in H2. The inequality (3.2) is easily brought to the form of a
matrix inequality WCW ∗ ≤ MC , where

C =
(

1

1 − zi z̄ j

)n

i, j=1
, W = diag {w1, . . . , wn}.

Here
C = (〈

gi , g j
〉)n
i, j=1 ,

where gk(z) = 1/(1− zk z), k = 1, . . . , n. Since z1, . . . , zn are distinct, the functions
g1, . . . , gn are linearly independent. Therefore C is nonnegative and invertible [9, p.
407]. Thus δ In ≤ C ≤ μIn for some δ, μ > 0. If η = max{|wk | : k = 1, . . . , n}, then

WCW ∗ ≤ μη2 In ≤ δ−1μη2C,
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which implies (iii) with M = δ−1μη2. Thus D is an admissible set.
A short calculation shows that the Hermitian form (2.5) is given by

K(x, y) =
n∑

i, j=1

1 − w j w̄i

1 − z j z̄i
x j ȳi = 〈Px, y〉Cn ,

for all x, y ∈ C
n . Therefore sq− K = sq− P , which by Proposition 1.2 is the number

of negative eigenvalues of P (counting multiplicity). The condition f (A)c = B(A)b
is also easily seen to be equivalent to the relations f (z j ) = B(z j )w j , j = 1, . . . , n.
Thus Theorem 3.1 is a special case of Theorem 2.1. �	

In [3, Theorem 3.1], the matrix (3.1) is replaced by its transpose Pt . This does not
change anything, because P and Pt have the same eigenvalues and multiplicities. In
fact, for any selfadjoint n × n matrix M , the transpose and conjugate of M coincide:
Mt = �M . If λ is an eigenvalue for M with eigenvector x , then Mx = λx , and so
�Mx̄ = λx̄ . A complete orthonormal system of eigenvectors x1, . . . , xn for M with
eigenvalues λ1, . . . , λn thus induces a complete orthonormal system of eigenvectors
x̄1, . . . , x̄n for �M with the same eigenvalues.

Theorem3.2 of [3] iswithdrawn (seeAppendixB), but the special case for countable
sets can be derived from Theorem 3.1 using a normal families argument.

Theorem 3.2 (Cf. [3, Theorem3.2]) Let� be a countable subset ofD. Let S0 : � → C

be a given function, and let κ be a nonnegative integer. Set

K0(ζ, z) = 1 − S0(z)S0(ζ )

1 − zζ̄
, ζ, z ∈ �.

(1) If sq− K0 = κ , then there is a pair ( f , B) with f ∈ S0 and B a Blaschke product
of degree κ such that f (z) = B(z)S0(z) for all z ∈ �.

(2) If there is a pair ( f , B) as in (1), then sq− K0 = κ ′ ≤ κ .

It is an open question what happens when � is uncountable.

Problem 3.3 Is Theorem 3.2 true for an arbitrary subset � of D?

The answer is affirmative when κ = 0 according to the following known result:
For any subset � of D, a function S0 : � → C is the restriction of a Schur function
f ∈ S0 if and only if the kernel K0 is nonnegative. This result is due to Krein and
Rekhtman [11]; see also Akhiezer [2, p. 104]. It also follows from our Main Theorem
(Theorem 2.1) in the definite case, as shown in [13, p. 25].

Our proof of Theorem 3.2 (the countable case) uses a compactness property of
Blaschke products.

Lemma 3.4 Let B1, B2, . . . be a sequence of Blaschke products, each of degree at
most κ . Then there exist positive integers n1 < n2 < · · · and a Blaschke product B of
degree κ ′ ≤ κ such that Bnk → B uniformly on all compact subsets of D.
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Proof Write each Bj (z) as a product of κ factors (in any order),

Bj (z) = Bj1(z) · · · Bjκ(z),

where each Bjk(z) is either a constant of modulus one or a simple Blaschke factor

γ
z − α

1 − ᾱz
, |γ | = 1 and |α| < 1.

Consider the sequence of first factors: B11(z), B21(z), B31(z), . . . . If infinitely many
terms in this sequence are constants γk of modulus one, we can find a subsequence that
converges to a constant γ of modulus one as scalars, and hence as functions uniformly
on compact sets. Otherwise infinitely many terms have the form

γk
z − αk

1 − ᾱk z
, |γk | = 1 and |αk | < 1.

By passing to a subsequence we can arrange that γk → γ and αk → α as scalars,
where |γ | = 1 and |α| ≤ 1. When |α| < 1, it is easy to see that

γk
z − αk

1 − ᾱk z
→ γ

z − α

1 − ᾱz

uniformly on compact subsets of D. When |α| = 1, one can show that

γk
z − αk

1 − ᾱk z
→ η

uniformly on compact subsets of D, where η = −γα is a constant of absolute value
one. When κ = 1, we have produced the required subsequence. For κ > 1, we need
only repeat the process for the second factors, third factors, and so on. At each stage
we choose the next subsequence from the previous one. The final subsequence has the
required properties. �	
Proof of Theorem 3.2 (1) Assume sq− K0 = κ . Suppose first that � is a finite set
consisting of the points z1, . . . , zn . If w j = S(z j ), j = 1, . . . , n, then

(
K0(z j , zi )

)n
i, j=1 =

(
1 − wi w̄ j

1 − zi z̄ j

)n

i, j=1

is the transpose Pt of the matrix (3.1). As noted above, P and Pt have the same
number of negative eigenvalues and multiplicities, and therefore (1) follows from
Theorem 3.1(1) in this case.

Suppose � is countably infinite. Choose finite subsets �1 ⊆ �2 ⊆ · · · such that
� = ⋃∞

1 �n . We can assume that K0 has κ negative squares on each of the finite
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sets. For each n ≥ 1, by what we just showed there exist fn ∈ S0 and Bn a Blaschke
product of degree at most κ such that

fn(z) = Bn(z)S0(z), z ∈ �n .

By passing to a subsequence, without loss of generality we can assume that fn → f
uniformly on compact subsets ofD for some f ∈ S0 (see the theory of normal families
in e.g. Ahlfors [1, Chapter IV]). By passing to another subsequence using Lemma 3.4,
we can also assume that Bn → B uniformly on compact subsets of D, where B is a
Blaschke product of degree κ ′ for some κ ′ ≤ κ .

Consider an arbitrary z ∈ �. Then z ∈ �n0 for some n0. Hence z ∈ �n for every
n ≥ n0, and so

fn(z) = Bn(z)S0(z), n ≥ n0.

Letting n → ∞, we obtain f (z) = B(z)S0(z). If κ ′ = κ , we are done. If κ ′ < κ , we
can multiply both f and B by κ − κ ′ simple Blaschke factors to obtain a pair ( f , B)

having the required properties. This proves (1).
(2) This is an immediate consequence of Theorem 3.1(2). �	
Another choice of data in Theorem 2.1 yields a result of Carathéodory-Fejér type.

Theorem 3.5 (Cf. [3, Theorem3.4])Letw(z) = w0+w1z+· · ·+wnzn be apolynomial
with complex coefficients, and set

T =

⎛

⎜⎜
⎝

w0 w1 · · · wn

0 w0 · · · wn−1
· · ·

0 0 · · · w0

⎞

⎟⎟
⎠ .

Let κ be a nonnegative integer such that κ ≤ n + 1.

(1) If 1 − T ∗T has κ negative eigenvalues, then there is a pair ( f , B) with f ∈ S0
and B a Blaschke product of degree κ such that B(z)w(z) = f (z) + O(zn+1).

(2) If there is a pair ( f , B) as in (1), then 1− T ∗T has κ ′ ≤ κ negative eigenvalues.

Corollary 3.6 (Cf. [3, Corollary 3.5]) Let w(z) = w0 + w1z + · · · + wnzn and T be
as in Theorem 3.5, and let κ be a nonnegative integer such that κ ≤ n+ 1. If 1− T ∗T
has κ negative eigenvalues, there is a κ ′ ≤ κ and a function S(z) in Sκ ′ which is
holomorphic at the origin and such that w(z) = S(z) + O(zn+1−κ).

Proof of Theorem 3.5 Let V and V ′ be as in the proof of Theorem 3.1 but with C
n

replaced by C
n+1. For the data (A, b, c), choose

A =

⎛

⎜⎜
⎜⎜
⎝

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0

· · ·
0 0 · · · 1 0

⎞

⎟⎟
⎟⎟
⎠

, b =

⎛

⎜
⎜⎜
⎝

w0
w1
...

wn

⎞

⎟
⎟⎟
⎠

, c =

⎛

⎜
⎜⎜
⎝

1
0
...

0

⎞

⎟
⎟⎟
⎠

.



25 Page 12 of 30 D. Alpay et al.

We check that the set D = V ′ is admissible. Condition (i) in the definition of admis-
sibility is clear, and (ii) is trivial because A j = 0 for j > n. The sums in (2.3) can be
evaluated, reducing (iii) to the assertion that T is bounded as an operator on C

n+1 in
the Euclidean metric. Thus D = V ′ is admissible.

TheHermitian form (2.5) is given byK(x, y) = 〈(1 − T ∗T )x, y〉Cn+1 for all x, y ∈
C
n+1. In fact, for any x ∈ C

n+1,

K(x, x) = (|x0|2 + · · · + |xn|2
)

− (|w0x0 + · · · + wnxn|2 + |w0x1 · · · + wn−1xn|2 + · · · + |w0xn|2
)

= ‖x‖2
Cn+1 − ‖T x‖2

Cn+1

= 〈
(1 − T ∗T )x, x

〉
Cn+1 .

By Proposition 1.2, sq− K is equal to the number of negative eigenvalues of 1− T ∗T .
The equation f (A)c = B(A)b with f (z) = ∑∞

j=0 f j z j and B(z) = ∑∞
j=0 Bj z j is

equivalent to the identities

f0 = w0B0, f1 = w1B0 + w0B1, . . . , fn = wn B0 + wn−1B1 + · · · + w0Bn,

or B(z)w(z) = f (z) + O(zn+1). The result thus follows from the Theorem 2.1, �	
Proof of Corollary 3.6 Let ( f , B) be a pair as in part (1) of Theorem 3.5. If B(z) has
a zero of order r at the origin, f (z) has a zero of order at least r at the origin. Hence
S(z) = f (z)/B(z) belongs to Sκ ′ for some κ ′ ≤ κ and is holomorphic at the origin,
and w(z) = S(z) + O(zn−r+1) = S(z) + O(zn+1−κ). �	

A simultaneous generalization of the Pick–Nevanlinna and Carathéodory-Fejér
problems can be treated in the same way by choosing A in Jordan form. The calcula-
tions are straightforward but somewhat lengthy, and we shall not pursue this direction.
For the definite case, see [8] and [13, §2.6].

The Main Theorem also yields a result on generalized interpolation in the sense of
Sarason [15]. Let C be an inner function on D, and let

H(C) = H2 � CH2

in the inner product of H2. The reproducing kernel for H(C) is given by

KC (w, z) = 1 − C(z)C(w)

1 − zw̄
, z, w ∈ D.

Let S be the shift operator S : h(z) → zh(z) on H2, and let T be the compression of
S toH(C), that is,

T = PH(C)S|H(C),

where PH(C) is the projection operator on H2 with range H(C). The space H(C)

is invariant under S∗ and T ∗ = S∗|H(C). Since T is completely nonunitary, for any
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ϕ ∈ H∞ an operator ϕ(T ) on H(C) is defined by the H∞-functional calculus (see
[16] and [17, p. 114]):

ϕ(T ) = s-lim
r↑1 ϕ(rT ).

Equivalently, for this particular situation, ϕ(T ) = PH(C)Mϕ |H(C), where Mϕ is mul-
tiplication by ϕ on H2. For every ϕ ∈ H∞, ϕ(T ) commutes with T , and ϕ(T ) is a
contraction if ϕ is a Schur function.

Theorem 3.7 (Cf. [3, Theorem 3.6]) Let C be an inner function on the unit disc, and
define T on H(C) as above. Let R be a bounded linear operator on H(C) such that
T R = RT .

(1) If 1 − RR∗ has κ negative squares, then there is a pair ( f , B), where f ∈ S0
and B is a Blaschke product of degree κ , such that

B(T )R = f (T ).

(2) If there is a pair ( f , B) as in (1), 1 − RR∗ has κ ′ negative squares for some
κ ′ ≤ κ .

If R is a contraction, the condition in (1) is satisfied with κ = 0, and in this case
the result reduces to the original theorem of Sarason [15, Theorem 1].

Proof In the Main Theorem, let V = H(C), A = T , c = KC (0, ·), and b = Rc =
RKC (0, ·). Let D be the set of continuous linear functionals on V = H(C); thus
D = {x ′

k : k ∈ H(C)} where for any k ∈ H(C),

(h, x ′
k) = 〈h, k〉H(C), h ∈ H(C).

Then A′x ′
k = x ′

T ∗k for any k ∈ H(C), and so condition (i) holds in the definition of
admissibility. To verify (ii), notice that for any k(z) = ∑∞

0 a j z j inH(C),

∞∑

j=0

|(A jc, x ′
k)|2 =

∞∑

j=0

∣∣∣∣
〈
KC (0, ·), T ∗ j k

〉

H(C)

∣∣∣∣

2

=
∞∑

j=0

|a j |2 = ‖k‖2H2 < ∞.

(3.3)
If we replace c by b and use the identity RT = T R, we obtain

∞∑

j=0

|(A jb, x ′
k)|2 =

∞∑

j=0

∣∣
∣∣
〈
KC (0, ·), T ∗ j R∗k

〉

H(C)

∣∣
∣∣

2

= ‖R∗k‖2H2 < ∞, (3.4)

and thus (ii) holds. Condition (iii) is immediate from (3.3) and (3.4) because R is
bounded in the norm ofH(C), which is the norm of H2.
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The form (2.5) is given by

K(x ′
h, x

′
k) =

∞∑

j=0

[〈
T j KC (0, ·), h

〉

H(C)

〈
k, T j KC (0, ·)

〉

H(C)

−
〈
T j RKC (0, ·), h

〉

H(C)

〈
k, T j RKC (0, ·)

〉

H(C)

]

= 〈k, h〉H2 − 〈
R∗k, R∗h

〉
H2

= 〈k, h〉H(C) − 〈
R∗k, R∗h

〉
H(C)

= 〈
(1 − RR∗)k, h

〉
H(C)

(3.5)

for any h and k inH(C).
(1) Assume that 1−RR∗ has κ negative squares. By (3.5), the Hermitian form (2.5)

has κ negative squares. Hence by part (1) of the Main Theorem, there is a function
f ∈ S0 and a Blaschke product B of degree κ such that B(A)b = f (A)c, that is, if
B(z) = ∑∞

0 Bj z j and f (z) = ∑∞
0 f j z j , then for every h ∈ H(C),

∞∑

j=0

Bj

〈
T j RKC (0, ·), h

〉

H(C)
=

∞∑

j=0

f j
〈
T j KC (0, ·), h

〉

H(C)
.

Using Abel summation of these series, we see that

B(T )RKC (0, ·) = f (T )KC (0, ·). (3.6)

Since R commutes with T , it commutes with B(T ) and f (T ). Hence B(T )R and
f (T ) agree on the smallest invariant subspace of T containing KC (0, ·). The latter
subspace is all of H(C), and thus we obtain B(T )R = f (T ).

(2) Assume that a pair ( f , B) exists as in (1). Reversing the preceding steps, we
see that B(A)b = f (A)c, hence by part (2) of the Main Theorem the form (2.5) has
κ negative squares. Therefore by (3.5), 1 − RR∗ has κ ′ negative squares for some
κ ′ ≤ κ . �	

4 Boundary Problems, Disc Case

Theorem 3.8 of [3] is withdrawn (see Appendix B), but in its place we can formulate
an open problem. We make a minor change in the hypotheses of [3, Theorem 3.8]
by assuming there that |b/c| ≤ 1 a.e.; this is a necessary condition for the desired
representation, and so nothing is lost. This change appears in Problem 4.1 in the
hypothesis that |S0(u)| ≤ 1 a.e. It is essential for the application of Kronecker’s
theorem in Theorem 4.2(3).

Let σ be normalized Lebesgue measure on ∂D = {u : |u| = 1}, and write L2, L∞
for L2(∂D), L∞(∂D). We identify H2 with a subspace of L2 in the usual way. The
class of boundary functions for Sκ(D) is denoted Sκ(∂D). If is a Borel subset of ∂D,
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L2() is the subspace of functions in L2 supported on . Let Sκ() be the space of
restrictions to  of functions in Sκ(∂D). The characteristic function of  is denoted
1; if ϕ is a function on , we view ϕ1 as a function defined on ∂D which is equal
to ϕ a.e. on  and equal to zero on the complement of . In what follows, we exclude
the degenerate case that  is a Lebesgue null set.

Problem 4.1 [Cf. [3, Theorem 3.8]] Let S0 be a measurable complex-valued function
on a Borel subset  of ∂D such that |S0(u)| ≤ 1 a.e. on , and let κ be a nonnegative
integer. Define a Hermitian form on L2() × L2() by

L(ϕ, ψ) = lim
r↑1

∫



∫



1 − S0(u)S0(v)

1 − r2uv̄
ϕ(u)ψ(v) dσ(u)dσ(v), ϕ, ψ ∈ L2().

Does it follow that S0 ∈ Sκ() if and only if sq− L = κ?

The limit defining the Hermitian form L always exists [13, Theorem A, p. 30]. In
fact, for all ϕ,ψ ∈ L2(),

lim
r↑1

∫



∫



ϕ(u)ψ(v)

1 − r2uv̄
dσ(u)dσ(v)

=
∞∑

j=0

( ∫



u jϕ(u) dσ(u)
)( ∫



v jψ(v) dσ(v)
)−− = 〈Q−(ϕ1),ψ1〉L2 , (4.1)

where Q− is the orthogonal projection on L2 whose range is the closed span of all
functions u j , j ≤ 0.

Theorem 4.2 In Problem 4.1:

(1) The answer is affirmative for κ = 0.
(2) If S0 ∈ Sκ(), then sq− L ≤ κ with equality for κ = 0 and κ = 1. Moreover,

sq− L �= 0 for all κ ≥ 1.
(3) If  = ∂D, then S0 ∈ Sκ(∂D) if and only if sq− L = κ .

Proof (1) This follows from [13, Theorem A, p. 30].
(2) The case κ = 0 is covered in (1). Assume κ ≥ 1 and S0 ∈ Sκ(). The

Hermitian form L is an inner product on L2(). Hence by Proposition 1.1, to prove
that sq− L ≤ κ , it is sufficient to show that any subspace of L2() which is strictly
negative with respect to L has dimension at most κ .

By the Kreı̆n–Langer factorization, S0 = B−1 f a.e. on , where B is a Blaschke
product of degree κ and f ∈ S0(∂D). By the definite case applied to f , the Hermitian
form

L0(ϕ, ψ) = lim
r↑1

∫



∫



1 − f (u) f (v)

1 − r2uv̄
ϕ(u)ψ(v) dσ(u)dσ(v), ϕ, ψ ∈ L2(),

is nonnegative. Write

1 − S0(u)S0(v)

1 − r2uv̄
= 1 − f (u) f (v)

1 − r2uv̄
− S0(u)

1 − B(u)B(v)

1 − r2uv̄
S0(v).
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An induction argument shows that

1 − B(u)B(v) = (1 − uv̄)

κ∑

j=1

e j (u)e j (v),

where e1, . . . , eκ are rational functions which are bounded on �D. Thus

1 − S0(u)S0(v)

1 − r2uv̄
= 1 − f (u) f (v)

1 − r2uv̄
− 1 − uv̄

1 − r2uv̄

κ∑

j=1

S0(u)e j (u)e j (v)S0(v).

Therefore for all ϕ,ψ ∈ L2(),

L(ϕ, ψ) = L0(ϕ, ψ) − lim
r↑1

∫



∫



1 − uv̄

1 − r2uv̄

κ∑

j=1

ϕ(u)S0(u)e j (u)e j (v)S0(v)ψ(v) dσ(u) dσ(v).

For all u, v ∈  and r in (0, 1),

∣∣∣∣
1 − uv̄

1 − r2uv̄

∣∣∣∣ =
∣∣∣∣1 − (1 − r2)uv̄

1 − r2uv̄

∣∣∣∣ ≤ 2.

Hence

L(ϕ, ψ) = L0(ϕ, ψ) −
κ∑

j=1

∫



ϕ(u)S0(u)e j (u) dσ(u)

∫



e j (v)S0(v)ψ(v) dσ(v). (4.2)

Consider now any subspace N of L2() such that

L(ϕ, ϕ) < 0, 0 �= ϕ ∈ N . (4.3)

We show that any κ + 1 elements ϕ1, . . . , ϕκ+1 of N are linearly dependent. Set

ϕ∗ = η1ϕ1 + · · · + ηκ+1ϕκ+1,

where η1, . . . , ηκ+1 are scalars to be determined. No matter how η1, . . . , ηκ+1 are
chosen, ϕ∗ belongs toN becauseN is a subspace, and so L(ϕ∗, ϕ∗) ≤ 0. We choose
η1, . . . , ηκ+1, not all zero, such that

∫



ϕ∗(u)S0(u)e j (u) dσ(u) = 0, j = 1, . . . , κ. (4.4)

Such a choice is possible because (4.4) is a system of κ equations in κ + 1 unknowns.
Then by (4.2) and (4.4),

L(ϕ∗, ϕ∗) = L0(ϕ∗, ϕ∗) ≥ 0.
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Therefore L(ϕ∗, ϕ∗) = 0 and so ϕ∗ = 0 by (4.3). This yields a nontrivial dependence
relation for ϕ1, . . . , ϕκ+1. It follows that dimN ≤ κ , and hence sq− L ≤ κ .

It remains to show that sq− L �= 0. If sq− L = 0, then S0 ∈ S0() by [13, Theorem
A, p. 30]. This is impossible since we assume S0 ∈ Sκ() with κ ≥ 1. Therefore
sq− L �= 0. This completes the proof of (2).

(3) Set

P− = projection on L2− = [u−1, u−2, . . . ],
Q− = projection on uL2− = [1, u−1, u−2, . . . ],

where [·] indicates closed span in L2. Then P− = u−1Q−u.
Assume sq− L = κ . Define a Hermitian form L1(h, k) on H2 × H2 by

L1(h, k) = L(uh, uk), h, k ∈ H2.

Since L1 is essentially a restriction of L , sq− L1 = κ ′ ≤ κ . By (4.1), for all ϕ,ψ ∈ L2,

L(ϕ, ψ) = 〈Q−ϕ,ψ〉L2 − 〈Q−S0ϕ, S0ψ〉L2 .

If ϕ,ψ ∈ uH2, then Q−ϕ = 0, and so

L(ϕ, ψ) = −〈Q−S0ϕ, S0ψ〉L2 .

For any h, k ∈ H2,

L1(h, k) = L(uh, uk) = −〈Q−S0uh, S0uk〉L2 = −〈P−S0h, S0k〉L2

= −〈P−S0h, P−S0k〉L2 = −〈
HS0h, HS0k

〉
L2−

= −〈
H∗
S0HS0h, k

〉
H2 ,

where HS0 : H2 → L2− is the Hankel operator with symbol S0 (see Appendix A). By
Proposition 1.2,

κ ′ = sq− L1 = sq− (−H∗
S0HS0) = rank H∗

S0HS0 = rank HS0 .

By Kronecker’s Theorem (Theorem A.1), there is a Blaschke product B0 of degree κ ′
such that B0S0 = f0 ∈ H∞. Since we assume |S0(u)| ≤ 1 a.e. on ∂D, | f0(u)| ≤ 1
a.e. on ∂D, and so f0 ∈ S0(∂D). If B0 and f0 have common zeros in D, we can
remove them by dividing B0 and f0 by appropriate Blaschke factors. Then we obtain
a Blaschke product B of degree κ ′′ ≤ κ ′ and f ∈ S0(∂D) such that

S0 = B−1 f ∈ Sκ ′′(∂D).

By part (2) of the theorem proved above,

κ = sq− L ≤ κ ′′.
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By construction, κ ′′ ≤ κ ′ ≤ κ , so κ ′′ = κ ′ = κ . Thus S0 ∈ Sκ(∂D), and the sufficiency
part of (3) follows.

Conversely, assume S0 ∈ Sκ(∂D). Again by part (2),

sq− L = κ1 ≤ κ.

Hence by what we just proved, S0 ∈ Sκ1(∂D). Since S0 ∈ Sκ(∂D) by assumption, this
is possible only if κ1 = κ . Thus sq− L = κ , and the necessity part of (3) follows. �	

5 Boundary Problems on a Half-Plane

The half-plane boundary theorems in [3, Section 4] are also withdrawn (Appendix B).
We shall similarly reformulate them here as open problems and give partial results
analogous to the disc case. We omit [3, Theorem 4.5] in the interest of brevity.

The generalized Schur class Sκ(C+) on the upper half-plane is the set of functions

S(z) = S0
( z − i

z + i

)
,

where S0 belongs to Sκ(D). The generalized Nevanlinna class Nκ(C+) is the set of
functions f (z) which are analytic on a subregion � of C+ such that the Hermitian
kernel [ f (z) − f (ζ )]/(z − ζ̄ ) has κ negative squares on � × �. If S(z) belongs to
Sκ(C+), then

f (z) = i
1 + S(z)

1 − S(z)
(5.1)

defines a function in Nκ(C+), and every function in Nκ(C+) is obtained in this way;
when κ = 0 we exclude S(z) ≡ 1 from this correspondence. The associated boundary
classes are denoted Sκ(R) andNκ(R). Given a Borel subset ofR, Sκ() andNκ()

are the spaces of restrictions to . Let H2(C±) be the Hardy classes for the upper and
lower half-planes, H2±(R) their boundary classes.We note that L2(R) is the orthogonal
direct sum of H2−(R) and H2+(R).

Problem 5.1 (Cf. [3, Theorem 4.1]) Let S0 be a measurable complex-valued function
on a Borel subset  of R such that |S0(u)| ≤ 1 a.e. on , and let κ be a nonnegative
integer. Define a Hermitian form on L2() × L2() by

L(ϕ, ψ) = lim
ε↓0

i

2

∫



∫



1 − S0(s)S0(t)

s − t + iε
ϕ(s)ψ(t)dsdt, ϕ, ψ ∈ L2().

Does it follow that S0 ∈ Sκ() if and only if sq− L = κ?
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By [13, pp. 33–34], for all ϕ,ψ ∈ L2(),

lim
ε↓0

i

2

∫



∫



ϕ(s)ψ(t)

s − t + iε
ds dt

=
∞∑

j=0

(∫



(
t − i

t + i

) j 1

t + i
ϕ(t) dt

)(∫



(
t − i

t + i

) j 1

t + i
ψ(t) dt

)−−

= π 〈P−(ϕ1),ψ1〉L2(R) , (5.2)

where P− is the projection from L2(R) onto H2−(R). Hence the Hermitian form L is
well defined.

Theorem 5.2 In Problem 5.1:

(1) The answer is affirmative for κ = 0.
(2) If S0 ∈ Sκ(), then sq− L ≤ κ with equality for κ = 0 and κ = 1. Moreover,

sq− L �= 0 for all κ ≥ 1.
(3) If  = R, then S0 ∈ Sκ(R) if and only if sq− L = κ .

Proof (1) This follows from [13, Theorem B, p. 31].
(2) By (1) it is sufficient to treat the case κ ≥ 1. Since S0 ∈ Sκ(C+), we can write

S0(x) = B(x)−1 f (x) a.e. on R, where B is a Blaschke product on C+ of degree κ

and f ∈ S0(C+). The Hermitian form

L0(ϕ, ψ) = lim
ε↓0

i

2

∫



∫



1 − f (s) f (t)

s − t + iε
ϕ(s)ψ(t)dsdt, ϕ, ψ ∈ L2(),

is nonnegative by the known case κ = 0. Write

1 − S0(s)S0(t)

s − t + iε
= 1 − f (s) f (t)

s − t + iε
− S0(s)

1 − B(s)B(t)

s − t + iε
S0(t).

By induction,

1 − B(z)B(w) = 2

i
(z − w̄)

κ∑

j=1

e j (z)e j (w),

where each e1(z), . . . , eκ (z) is rational and belongs to H2(C+). Thus

i

2

1 − S0(s)S0(t)

s − t + iε
= i

2

1 − f (s) f (t)

s − t + iε
− s − t

s − t + iε

κ∑

j=1

S0(s)e j (s)e j (t)S0(t).
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Then for all ϕ,ψ in L2(),

L(ϕ, ψ) = L0(ϕ, ψ)

− lim
ε↓0

∫



∫



s − t

s − t + iε

κ∑

j=1

ϕ(s)S0(s)e j (s)e j (t)S0(t)ψ(t)dsdt .

Here ϕS0e j and ψS0e j are in L1() for all j = 1, . . . , κ , and

∣
∣∣∣

s − t

s − t + iε

∣
∣∣∣

2

= (s − t)2

(s − t)2 + ε2
≤ 1

for all s, t ∈  and ε > 0. Hence

L(ϕ, ψ) = L0(ϕ, ψ) −
κ∑

j=1

∫



ϕ(s)S0(s)e j (s)ds
∫



e j (t)S0(t)ψ(t)dt .

This identity is parallel to (4.2) in the proof of Theorem 4.2(2). We use it in the same
way to show that any subspace N of L2() which is strictly negative with respect to
L has dimension at most κ . Hence sq− L ≤ κ by Proposition 1.1. The last statement
in (2) also follows as in Theorem 4.2(2).

(3) Assume sq− L = κ . By (5.2), for all ϕ,ψ in L2(R),

lim
ε↓0

i

2

∫

R

∫

R

ϕ(s)ψ(t)

s − t + iε
dsdt = π〈P−ϕ,ψ〉L2(R),

and hence
L(ϕ, ψ) = π〈P−ϕ,ψ〉L2(R) − π〈P−S0ϕ, S0ψ〉L2(R).

Let L1 be the restriction of L to H2+(R) × H2+(R). For ϕ,ψ in H2+(R),

L1(ϕ, ψ) = −π〈P−S0ϕ, S0ψ〉L2(R),

because P−ϕ = 0. Then

L1(ϕ, ψ) = −π〈P−S0ϕ,P−S0ψ〉L2(R)

= −π
〈HS0ϕ,HS0ψ

〉
H2−(R)

= −π
〈H∗

S0HS0ϕ,ψ
〉
H2+(R)

,

where HS0 : H2+(R) → H2−(R) is the Hankel operator with symbol S0 (see
Appendix A). Since L1 is a restriction of L ,

sq− L1 = κ ′ ≤ κ.
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By Proposition 1.2,

κ ′ = sq− L1 = sq− (−H∗
S0HS0) = rankH∗

S0HS0 = rankHS0 .

ByKronecker’s Theorem for the half-plane (TheoremA.3), there is a Blaschke product
B0 on the half-plane of degree κ ′ such that the function

f0 = B0S0

belongs to H∞(R). Since we assume that |S0(x)| ≤ 1 a.e., f0 is bounded by one
a.e. on R, and hence f0 ∈ S0(R). Viewed as functions on C+, f0 and B0 may have
common zeros. These can be removed by cancelling appropriate Blaschke factors. We
thus obtain a Blaschke product B of degree κ ′′ ≤ κ ′ and an f ∈ S0(R) having no
common zeros, such that

S0 = B−1 f ∈ Sκ ′′(R).

By part (2) of the theorem,
κ = sq− L ≤ κ ′′.

Since κ ′′ ≤ κ ′ ≤ κ by construction, κ ′′ = κ ′ = κ . Therefore S0 ∈ Sκ(R), as was to
be shown.

For the converse direction, suppose S0 ∈ Sκ(R). Apply part (2) again to conclude
that sq− L ≤ κ . By what we just proved, it follows that S0 ∈ Sκ1(R), where κ1 =
sq− L . Then S0 ∈ Sκ1(R) ∩ Sκ(R), and this is possible only if κ1 = κ . �	
Problem 5.3 (Cf. [3, Theorem 4.2]) Let f0 be a measurable complex-valued function
on a Borel subset  of R such that Im f0(x) ≥ 0 a.e. on , and let κ be a nonnegative
integer. LetD be the linear space of measurable functions ϕ on  such that ϕ and f0ϕ
belong to L2(). Define a Hermitian form on D × D by

L(ϕ, ψ) = lim
ε↓0

∫

R

∫

R

f0(s) − f0(t)

s − t + iε
ϕ(s)ψ(t)dsdt, ϕ, ψ ∈ D. (5.3)

Does it follow that f0 ∈ Nκ() if and only if sq− L = κ?

Theorem 5.4 In Problem 5.3:

(1) The answer is affirmative for κ = 0.
(2) If f0 ∈ Nκ(), then sq− L ≤ κ , with equality when κ = 0 or κ = 1. Moreover,

sq− L �= 0 for all κ ≥ 1.
(3) When  = R, then f0 ∈ Nκ(R) if and only if sq− L = κ .

Proof Part (1) follows from the theorem in [13, p. 34].
For parts (2) and (3), set S0(x) = ( f0(x) − i)/( f0(x) + i). Then

1 − S0(s)S0(t) = 2i
[
f0(t) − f0(s)

]

[
f0(s) + i

][
f0(t) − i

] . (5.4)
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Hence |S0(x)| ≤ 1 a.e. on  because Im f0(x) ≥ 0 a.e. on . Define a Hermitian
form on L2() × L2() by

K (ϕ, ψ) = lim
ε↓0

i

2

∫



∫



1 − S0(s)S0(t)

s − t + iε
ϕ(s)ψ(t)dsdt

for all ϕ,ψ ∈ L2(). We show that

sq− K = sq− L . (5.5)

By (5.4),

K (ϕ, ψ) = lim
ε↓0

i

2

∫



∫



2i
[
f0(t) − f0(s)

]

[
f0(s) + i

][
f0(t) − i

]
ϕ(s)ψ(t)

s − t + iε
dsdt

= lim
ε↓0

∫



∫



f0(s) − f0(t)

s − t + iε

ϕ(s)

f0(s) + i

ψ(t)

f0(t) − i
dsdt

= lim
ε↓0

∫



∫



f0(s) − f0(t)

s − t + iε
ϕ̃(s) ψ̃(t)dsdt

= L(ϕ̃, ψ̃), (5.6)

where

ϕ̃(s) = ϕ(s)

f0(s) + i
, ψ̃(t) = ψ(t)

f0(t) + i
.

To deduce (5.5), we need to show that V : ϕ(x) → ϕ(x)/
[
f0(x) + i

]
is a one-to-one

mapping from L2() onto D. Let ϕ(x) ∈ L2(), and set ϕ̃(x) = ϕ(x)/
[
f0(x) + i

]
.

Decompose f0(x) into its real and imaginary parts, f0(x) = u(x) + iv(x). Then
v(x) ≥ 0 a.e., and so

∣∣∣∣
1

f0(x) + i

∣∣∣∣

2

= 1

u(x)2 + [
v(x) + 1

]2 ≤ 1,

∣∣∣∣
f0(x)

f0(x) + i

∣∣∣∣

2

= u(x)2 + v(x)2

u(x)2 + [
v(x) + 1

]2 ≤ 1.

Therefore ϕ̃, f0ϕ̃ belong to L2(), and hence ϕ̃ is in D. Conversely, if ϕ̃ ∈ D, then
ϕ̃, f0ϕ̃ belong to L2(), and hence ϕ(x) = [

f0(x) + i
]
ϕ̃(x) is in L2(). Thus V is

one-to-one and onto, and hence (5.5) follows from (5.6).
By (5.1), f0 ∈ Nκ() if and only if S0 ∈ Sκ(). Thus by (5.5), parts (2) and (3)

of the theorem follow from the corresponding parts of Theorem 5.2. �	
The classical Loewner Theorem uses difference-quotient kernels and applies to

real-valued functions [3, p. 38]. In Problem 5.3, the Hermitian form (5.3) can be
written in an analogous form when f0 is real valued.
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Problem 5.5 (Cf. [3, Theorem 4.4]) Let f0 be a measurable real-valued function on a
Borel subset  of R, and let κ be a nonnegative integer. Let D be the linear space of
measurable functions ϕ on such that ϕ and f0ϕ belong to L2(). Define aHermitian
form on D × D by

L(ϕ, ψ) = lim
ε↓0

∫∫

|t−s|>ε

f0(s) − f0(t)

s − t
ϕ(s)ψ(t)dsdt, ϕ, ψ ∈ D. (5.7)

Does it follow that f0 ∈ Nκ() if and only if sq− L = κ?

The double integral in (5.7) is taken over {(s, t) ∈  ×  : |t − s| > ε}, but we
write simply |t − s| > ε when no confusion can arise.

Theorem 5.6 In Problem 5.5:

(1) The answer is affirmative for κ = 0.
(2) If f0 ∈ Nκ(), then sq− L ≤ κ , with equality when κ = 0 or κ = 1. Moreover,

sq− L �= 0 for all κ ≥ 1.
(3) When  = R, then f0 ∈ Nκ(R) if and only if sq− L = κ .

As before, let P− be the projection from L2(R) onto H2−(R). Then [14, p. 113]

P− = 1

2
(1 + i H), (5.8)

where H : L2(R) → L2(R) is the Hilbert transform. This is defined by

(Hϕ)(x) = PV
1

π

∫

R

ϕ(t)

t − x
dt = lim

ε↓0
1

π

∫

|t−x |>ε

ϕ(t)

t − x
dt

for all ϕ in L2(R). The limit exists pointwise a.e. on R and in the norm of L2(R). The
operator i H is selfadjoint and unitary. For any Borel subset  of R, let H be the
compression of H to L2(). Then for all ϕ in L2(),

(Hϕ)(x) = PV
1

π

∫



ϕ(t)

t − x
dt

a.e. on . The operator i H is selfadjoint, and therefore H∗
 = −H.

Proof of Theorem 5.6 By (5.8), we can write (5.2) in the form

lim
ε↓0

∫



∫



ϕ(s)ψ(t)

s − t + iε
ds dt = 2π

i
〈P−(ϕ1),ψ1〉L2(R)

= π

i
〈(1 + i H)(ϕ1),ψ1〉L2(R)

= π 〈(H − i)ϕ, ψ〉L2().
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Hence if ϕ, f0ϕ and ψ, f0ψ belong to L2(), the Hermitian form (5.3) is given by

lim
ε↓0

∫

R

∫

R

f0(s) − f0(t)

s − t + iε
ϕ(s)ψ(t)dsdt

= π 〈(H − i)( f0ϕ), ψ〉L2()

− π 〈(H − i)ϕ, f0ψ〉L2()

= π 〈H( f0ϕ), ψ〉L2() + π 〈ϕ, H( f0ψ)〉L2()

+ 2π 〈(Im f0)ϕ, ψ〉L2() .

The last term on the right side is zero because we assume that f0 is real valued. For
(5.7) we obtain

lim
ε↓0

∫∫

|t−s|>ε

f0(s) − f0(t)

s − t
ϕ(s)ψ(t) dsdt

= lim
ε↓0

∫



(∫

|t−s|>ε

f0(s)ϕ(s)

s − t
ds

)
ψ(t)dt

− lim
ε↓0

∫



(∫

|t−s|>ε

ϕ(s)

s − t
ds

)
f0(t)ψ(t)dt

= π 〈H( f0ϕ), ψ〉L2() − π 〈Hϕ, f0ψ〉L2()

= π 〈H( f0ϕ), ψ〉L2() + π 〈ϕ, H( f0ψ)〉L2().

Thus (5.3) and (5.7) coincide when f0 is real valued, and so the result follows from
Theorem 5.4. �	

Appendix A: Hankel Operators

In this appendix, we review Kronecker’s theorem for the disc and half-plane. The
standard source for Hankel operators is Peller [12].

Let P− be the projection from L2(∂D) onto the closed span L2− of u−1, u−2, . . . .
The Hardy space H2 is identified with the associated space of boundary functions in
L2(∂D). Given ϕ ∈ L∞(∂D), the Hankel operator Hϕ : H2 → L2− is defined by

Hϕ f = P−ϕ f , f ∈ H2.

The identity
P−SHϕ = HϕS (A.1)

is verified by checking the action of each side on un for all n ≥ 0. By (A.1), the kernel
of Hϕ is invariant under the shift operator S.

Theorem A.1 (Kronecker’s Theorem for the Unit Circle) Let ϕ ∈ L∞(∂D).

(1) If rank Hϕ = κ < ∞, there is a Blaschke product B of degree κ such that
Bϕ ∈ H∞.
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(2) If Bϕ ∈ H∞ for some finite Blaschke product B, then rank Hϕ ≤ deg B.

Proof (1) Suppose rank Hϕ = κ . Since Hϕ is one-to-one on the orthogonal comple-
ment of its kernel,

dim
(
H2 � ker Hϕ

) = κ. (A.2)

Since ker Hϕ is invariant under S, ker Hϕ = BH2 for some inner function B, by
Beurling’s theorem. By (A.2), B is a Blaschke product of degree κ . Since Hϕ is zero
on BH2,

P−ϕB = HϕB = 0.

Therefore Bϕ ∈ H2 ∩ L∞(∂D) = H∞.
(2) Assume B is Blaschke and Bϕ ∈ H∞. Then Bϕ ∈ H2 and so HϕB = P−ϕB =

0. Since ker Hϕ is invariant under S, BH2 ⊆ ker Hϕ . Therefore

rank Hϕ = dim
(
H2 � ker Hϕ

) ≤ dim
(
H2 � BH2) = deg B,

as was to be shown. �	
To derive a version of Kronecker’s Theorem for the real line, we define mappings

α and β = α−1 connecting the unit disc and upper half-plane by

α(w) = i
1 + w

1 − w
, w ∈ �D\{1},

β(z) = z − i

z + i
, z ∈ �C+\{∞}.

We use a natural unitary operator U : L2(∂D) → L2(R), which is defined by

U f = F,

where f ∈ L2(∂D) and F ∈ L2(R) are connected by

F(t) = 1√
π

1

t + i
f (β(t)), t ∈ R\{∞}, (A.3)

f (eiθ ) = 2i
√

π

1 − eiθ
F(α(eiθ )), eiθ ∈ ∂D\{1}. (A.4)

To check that U is unitary, we show that both mappings f → F and F → f are
isometric. The following formulas to change variables are given in (5-4) and (5-5) in
[14]. For ϕ ∈ L1(∂D),

1

2π

∫ 2π

0
ϕ(eiθ ) dθ = 1

π

∫

R

ϕ(β(t))

t2 + 1
dt . (A.5)

For ψ ∈ L1(R),

∫

R

ψ(t)dt =
∫ 2π

0

−2eiθ

(1 − eiθ )2
ψ(α(eiθ )) dθ. (A.6)
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First suppose f ∈ L2(∂D) and F is defined by (A.3). By (A.6),

∫

R

|F(t)|2dt =
∫

R

ψ(t)
︷ ︸︸ ︷
1/π

|t + i |2 | f (β(t))|2 dt
(A.6)=

∫ 2π

0

−2eiθ

(1 − eiθ )2
ψ(α(eiθ )) dθ

=
∫ 2π

0

−2eiθ

(1 − eiθ )2
1/π

|α(eiθ ) + i |2 | f (β(α(eiθ )))|2 dθ

=
∫ 2π

0
| f (eiθ )|2 dθ.

Suppose F ∈ L2(R) is given and f is defined by (A.4). Then

1

2π

∫ 2π

0
| f (eiθ )|2 dθ = 1

2π

∫ 2π

0

ϕ(eiθ )
︷ ︸︸ ︷∣
∣∣∣
2i

√
π

1 − eiθ
F(α(eiθ ))

∣
∣∣∣

2

dθ

(A.5)= 1

π

∫

R

ϕ(β(t))

t2 + 1
dt

= 1

π

∫

R

1

t2 + 1

∣∣∣∣
2i

√
π

1 − β(t)
F(α(β(t)))

∣∣∣∣

2

dt

=
∫

R

|F(t)|2dt .

The unitarity of U follows.
Define H2±(R) and H∞(R) as the spaces of boundary functions of theHardy classes

H2(C±) and H∞(C+). Write L2(∂D) = H2 ⊕ H2−, where

H2 = [1, u, u2, . . . ], H2− = [u−1, u−2, . . . ],

and let P± be the projections on H2 and H2−. One can show that

UH2 = H2+(R), UH2− = H2−(R),

L2(R) = H2+(R) ⊕ H2−(R).

Let P± be the projections from L2(R) onto H2±(R). By the preceding relations,

P± = U P±U−1. (A.7)
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We define the Hankel operator Hψ : H2+(R) → H2−(R) for any ψ ∈ L∞(R) as in
Peller [12, p. 51]:

Hψ F = P−ψF, F ∈ H2+(R).

The following result is given in Peller [12, Lemma 8.3 on p. 51].

Theorem A.2 If ϕ ∈ L∞(∂D) and ψ ∈ L∞(R) are connected by ϕ = ψ ◦ α, then

Hϕ = U−1HψU .

Proof For all f ∈ L2(∂D),

Uϕ f = 1√
π

1

t + i
ϕ(β(t)) f (β(t)) = ψ(t)

1√
π

1

t + i
f (β(t)) = ψU f .

Therefore
P−Uϕ f = P−ψU f = HψU f .

By (A.7), P−U = U P− and hence

P−Uϕ f = U P−ϕ f = UHϕ f .

Thus HψU f = UHϕ f . �	
Theorem A.3 (Kronecker’s Theorem for the Real Line) Let ψ ∈ L∞(R).

(1) If rankHψ = κ < ∞, there is a Blaschke product B for the upper half-plane of
degree κ such that Bψ ∈ H∞(R).

(2) If Bψ ∈ H∞(R) for some finite Blaschke product B for the upper half-plane,
then rankHψ ≤ deg B.

Proof Set ϕ = ψ ◦ α. A function B on C+ is a Blaschke product of degree κ if and
only if the function B ◦ α is a Blaschke product of degree κ on D.

(1) If rankHψ = κ , then rank Hϕ = κ by the Theorem A.2. By Theorem A.1(1),
there is a Blaschke product B̃ on D of degree κ such that B̃ϕ belongs to H∞ on
D. Then B = B̃ ◦β is a Blaschke product onC+ of degree κ , and Bψ = (B̃ϕ)◦α

belongs to H∞(R).
(2) Suppose Bψ ∈ H∞(C+) for some finite Blaschke product B. Then B̃ = B ◦ α

is a finite Blaschke product on D such that B̃ϕ = (Bψ) ◦ α is in H∞(D). By
Theorem A.1(2), rank Hϕ ≤ deg B̃. Therefore rankHψ ≤ deg B. �	

Appendix B: Brief Corrigendum

The first and third paragraphs that follow are quoted verbatim from the Corrigendum
[4] to the original paper [3]; the second is a paraphrase from [4]. The example at the
end is new.
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TheMain Theorem in [3, p. 816] has gaps. In the proof of Part (1), the statement on
p. 832, line 6, that the operator X0 = Y0+K is bounded is an error, because no reason
is given why the finite-rank summand K is bounded. A similar error occurs in Part (2)
on p. 833, line 15, where again it is asserted without justification that X0 is bounded.
A correct version of the Main Theorem is obtained by replacing the condition (iii) in
([3, Definition 2.1]) with a stronger version:

(iii′) there is an M > 0 such that
∑∞

j=0 |(A jb, x ′)|2 ≤ M
∑∞

j=0 |(A jc, x ′)|2 for all
x ′ in D.

Condition (iii′) makes X0 bounded from the start, and then the proof of the Main
Theorem goes through as written. The Main Theorem (Alternative Form) on p. 834 is
correct as written provided that condition (iii′) is adopted.

A number of applications survive this change. The following results in [3] are true
as stated: Theorem 3.1 on Pick–Nevanlinna interpolation, Theorem 3.4 and Corollary
3.5 on Carathéodory-Fejér interpolation, and Theorem 3.6 on Sarason generalized
interpolation. (Proofs are given in Sect. 3 above.)

Other applications do not survive because (iii′) is not satisfied or cannot readily
be verified. Theorem 3.2, its corollary, and Theorem 3.7 are in this category and are
withdrawn. The boundary results in Theorem 3.8, its corollary, and the results in
Section 4 are withdrawn for the same reason. An exception here is the Alternative
form of Corollary 3.9 on p. 824, which does not use the Main Theorem and is correct
as written. The Example on p. 825 remains valid when (iii) is replaced by (iii′).
Example. Let M be a linear subspace of a Hilbert space H, X0 a linear operator on
M intoH. We show that the inner product

〈 f , g〉M = 〈 f , g〉H − 〈X0 f , X0g〉H, f , g ∈ M,

on M may have a finite number of negative squares with X0 unbounded in the norm
ofH. In fact, letM be the subspace of polynomials inH = L2(−1, 1). Let X0 be the
operator

X0 : p(x) → p(0)e(x), p ∈ M,

where e(x) ≡ 1 on (−1, 1). Then for all p, q ∈ M,

〈p, q〉M = 〈p, q〉H − 〈X0 p, X0q〉H = 〈p, q〉H − 2p(0)q(0). (B.1)

The operator X0 is unbounded in the norm ofH becausewe canmake |p(0)| arbitrarily
large for p in M such that ‖p‖H ≤ 1. Such a polynomial can be chosen of the form
p(x) = C(1 − x2)n ; with C any positive constant, by various means we can choose
n large enough that ‖p‖H ≤ 1.

We show that the maximum dimension of a strictly negative subspace of
(M, 〈·, ·〉M) is one. If p(x) = 1 − x2, then

〈p, p〉M = 〈p, p〉H − 2|p(0)|2 =
∫ 1

−1
(1 − x2)2 dx − 2 = −14

15
< 0.
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Hence there is a one-dimensional strictly negative subspace of (M, 〈·, ·〉M). Let N
be any strictly negative subspace of (M, 〈·, ·〉M), so for any p in N , 〈p, p〉M ≤ 0
with equality only for p ≡ 0. We show that any two elements p, q of N are linearly
dependent.

Case 1 p(0) = 0 or q(0) = 0. If e.g. p(0) = 0, then 〈p, p〉M = 〈p, p〉H ≥ 0
by (B.1). Since p ∈ N and N is strictly negative, 〈p, p〉M ≤ 0 with equality only
for p ≡ 0. Therefore p ≡ 0, and trivially p and q are linearly dependent.

Case 2 p(0)q(0) �= 0. Set r = q(0)p − p(0)q. Then r ∈ N and r(0) = q(0)p(0) −
p(0)q(0) = 0. As above, this implies r ≡ 0, and hence p and q are linearly dependent.

A particular instance of this situation is when X0 is the operator defined in [3,
p. 831, line 16]. The example shows that the hypothesis of a finite number of negative
squares, by itself, is not sufficient to conclude that X0 is bounded.
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