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Abstract
We introduce a new type of distributional constraints called ratio constraints, which explic-
itly specify the required balance among schools in two-sided matching. Since ratio con-
straints do not belong to the known well-behaved class of constraints called M-convex set, 
developing a fair and strategyproof mechanism that can handle them is challenging. We 
develop a novel mechanism called quota reduction deferred acceptance (QRDA), which 
repeatedly applies the standard DA by sequentially reducing artificially introduced maxi-
mum quotas. As well as being fair and strategyproof, QRDA always yields a weakly bet-
ter matching for students compared to a baseline mechanism called artificial cap deferred 
acceptance (ACDA), which uses predetermined artificial maximum quotas. Finally, we 
experimentally show that, in terms of student welfare and nonwastefulness, QRDA outper-
forms ACDA and another fair and strategyproof mechanism called Extended Seat Deferred 
Acceptance (ESDA), in which ratio constraints are transformed into minimum and maxi-
mum quotas.

This paper is based on our conference paper [45]. Main differences are: an extended study of QRDA’s 
axiomatic properties (weak non-bossiness, weak Maskin monotonicity, weak group strategyproofness, 
weak Pareto optimality, and Theorem 7), and an extended comparison with existing mechanisms for 
distributional constraints (theoretically with Theorem 12 and experimentally with simulation on Borda 
scores).
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1  Introduction

The matching theory has been extensively developed for markets in which two types of 
agents (e.g., students/schools, hospitals/residents) are matched  [39]. Recently, this topic 
has been attracting considerable attention from AI researchers  [3, 4, 23, 24, 27, 31]. A 
standard market deals with maximum quotas, which are capacity limits that cannot be 
exceeded. However, many real-world matching markets are subject to a variety of distribu-
tional constraints, including regional maximum quotas, which restrict the total number of 
students assigned to a set of schools  [25], minimum quotas, which guarantee that a certain 
number of students are assigned to each school  [7, 15, 17, 20, 41, 42], and diversity con-
straints, which enforce that a school satisfies a balance between different types of students, 
typically in terms of socioeconomic status [13, 19, 28, 31, 43].

Policymakers often hope for a well-balanced matching outcome, i.e., where the number 
of students (or doctors) assigned to each school (or hospital) is not too diverse. For exam-
ple, the Japanese government does not want the number of doctors assigned to rural hos-
pitals to be drastically fewer than the number assigned to urban hospitals [25]. The United 
States Military Academy solicits cadet preferences over assignments to various army 
branches while simultaneously trying to keep a good balance among the branches  [41, 42]. 
In China, there are two types of master’s degrees: professional and academic. Since aca-
demic master programs are much more popular than professional ones, the Chinese gov-
ernment seeks a good balance between these two programs [25]. One way to obtain a bal-
anced outcome is to impose artificially low maximum quotas to guarantee that students/
doctors are not overly concentrated in popular schools/hospitals. Another way is to intro-
duce minimum quotas to guarantee that a certain number of students/doctors are allocated 
to unpopular schools/hospitals. In recent years, strategyproof (i.e., no student has an incen-
tive to misreport her preference) and fair (i.e., no student has a justified envy) mechanisms 
that satisfy minimum quotas have been developed in a variety of settings  [15, 17, 20].

In this paper, we introduce a new type of constraints called ratio constraints that can 
explicitly specify the required balance among schools/hospitals, where parameter � speci-
fies the acceptable minimum ratio between the least/most popular schools. Such ratio 
constraints are used in practice. For example, in many universities (including the authors’ 
university), a department is divided into several courses. When assigning undergraduate 
students to courses, ratio constraints are imposed to maintain the balance among courses. 
Ratio constraints can be indirectly implemented by minimum and maximum quotas, i.e., 
if the maximum quota of each school is q and the minimum quota of each school is p, we 
can guarantee that the ratio is at least p/q. However, this approach lacks flexibility because 
we may find a matching that is better for students while still satisfying the ratio p/q. In con-
trast, our ratio constraints enforce a good balance among schools in a more flexible way; 
students can be assigned beyond q or p based on student preferences.

In this paper, we develop a novel mechanism called Quota Reduction Deferred Accept-
ance (QRDA), which repeatedly applies the well-known Deferred Acceptance (DA) mech-
anism [16] by sequentially reducing artificially introduced maximum quotas. Fragiadakis 
and Troyan [14] use the idea of sequentially reducing maximum quotas for a different goal. 
In their model, students are partitioned into different types and the goal is to satisfy type-
specific minimum and maximum quotas.

Developing a non-trivial strategyproof and fair mechanism that can handle ratio con-
straints is theoretically interesting and challenging. In existing works, it is shown that 
if constraints belong to a well-behaved class (which is called M-convex set), then a 
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mechanism called generalized DA, which is based on DA, is strategyproof and fair [18, 30]. 
As we discuss later, ratio constraints do not belong to this class. Our result is a first step 
toward identifying a class beyond an M-convex set, such that we can develop a non-trivial 
strategyproof and fair mechanism.

As well as being fair and strategyproof, QRDA is also proved to be weakly group strat-
egyproof. In terms of student welfare, we show that QRDA is weakly Pareto optimal, and 
moreover, no strategyproof mechanism exists that dominates QRDA. Furthermore, we 
show that QRDA outperforms a baseline mechanism called Artificial Cap Deferred Accept-
ance (ACDA), which uses predetermined artificial maximum quotas, both theoretically and 
experimentally. In terms of another desirable property called nonwastefulness (i.e., no stu-
dent claims an empty seat in a more desirable school), we experimentally show that QRDA 
outperforms ACDA. We extend these experiments by comparing QRDA with an additional 
mechanism, Extended Seat Deferred Acceptance (ESDA), with similar conclusions.

1.1 � Related work

To the best of our knowledge, we are the first to formally examine ratio constraints even 
though a similar concept called proportionality constraints is introduced  [36]. In their 
model, students are partitioned into different types (e.g., minority/majority) and the focus 
is on the ratio between different types of students within a school.1 In addition, they con-
sider that proportionality constraints are soft, which can be violated to some extent; in our 
model, constraints are hard and cannot be violated. Furthermore, they do not consider 
strategyproofness. Some papers have investigated strategyproofness in matching models 
with quotas constraints although they consider a completely different setting from ours [8, 
9, 22, 37]. These papers are concerned with a students-courses setting where only stu-
dents have preferences over courses and both students and courses have quotas/capacities, 
whereas in our setting, both students and schools have preferences and only schools have 
quotas. Closer to our setting, Kamada and Kojima [26] study students-schools matchings 
and characterize the constraints (called general upper bounds) that guarantee the exist-
ence of a student-optimal and fair matching. However, they differ from us by considering 
constraints imposed on individual schools whereas our constraints involve all schools, and 
by allowing constraints to depend on the identity of students whereas ratio constraints are 
based on the number of students.

There are two streams of works on matching with distributional constraints. One stream 
considers constraints that arise from real-life applications, e.g., regional maximum quo-
tas [25], individual/regional minimum quotas [15, 17], affirmative actions [13, 31], etc. 
The other stream is more mathematical and considers an abstract and general class of con-
straints, e.g., constraints that can be represented as a substitute choice function [21], an 
M-convex set [30], a general upper bound [26] etc. The first stream is based on practi-
cal applications. Thus, the obtained results are easier to understand and can be directly 
applied to real-life applications. The second stream is more general and mathematically 
well-organized, but applying obtained results to real-life applications can be non-trivial.

1  Aziz et  al. [5] establish a connection between regional quotas and diversity constraints. More specifi-
cally, diversity constraints can be represented as regional constraints among sub-schools, each of which 
corresponds to each type. This model still structurally differs from ours since we assume ratio constraints 
must be applied universally among all schools, while in their model, ratio constraints are effective within a 
region.
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We have proposed a new abstract model of distributional constraints called a union of 
symmetric M-convex sets, which subsumes our ratio constraints, and we showed prelimi-
nary results including QRDA’s strategyproofness in this extended model [46]. Our current 
paper belongs to the first stream, for instance, ratio constraints are relevant when dividing 
university students into several courses in a department while Zhang et  al. [46] belongs 
to the second stream. Thus, we believe that the results of this paper are easier to under-
stand and directly applied to real-life applications compared to theirs [46]. Furthermore, 
the proof techniques showing strategyproofness of QRDA differ on these two papers. Con-
structing theoretical results in a general model is much harder compared to a more spe-
cialized model. We cannot easily extend theoretical results presented in this paper to the 
general model (or some of them might not hold in the general model).

2 � Model

A student-school matching market with ratio constraints is defined by a tuple 
(S,C,≻S,≻C, 𝛼).

–	 S = {s1,… , sn} is a finite set of n students.
–	 C = {c1,… , cm} is a finite set of m schools.
–	 ≻S= (≻s1

,… ,≻sn
) is the profile of the student preferences, where each ≻s is a strict 

and complete preference order over C. For example, if s strictly prefers c over c′ , it is 
denoted by c ≻s c

′ . Moreover, we denote by c ⪰s c
� if either c ≻s c

′ or c = c�.
–	 ≻C= (≻c1

,… ,≻cm
) is the profile of the school preferences, where each ≻c is a strict 

and complete preference order over S. For example, if c strictly prefers s over s′ , it is 
denoted by s ≻c s

′ . Moreover, we denote by s ⪰c s
� if either s ≻c s

′ or s = s�.
–	 0 ≤ � ≤ 1 defines the acceptable minimum ratio between the least/most popular 

schools.

X = S × C is a finite set of all possible contracts. Contract (s, c) ∈ X means that student 
s is matched to school c. For Ẋ ⊆ X , Ẋs denotes {(s, c) ∈ Ẋ ∣ c ∈ C} , and Ẋc denotes 
{(s, c) ∈ Ẋ ∣ s ∈ S} . In other words, Ẋs (resp. Ẋc ) denotes all contracts in Ẋ related to s 
(resp. c). For Ẋ ⊆ X , we define r(Ẋ) as follows:

In other words, r(Ẋ) is the ratio between the numbers of students in the least/most popular 
schools in Ẋ.

Definition 1  (Feasibility) For Ẋ ⊆ X , Ẋ is student-feasible if |Ẋs| = 1 for all s ∈ S . We call 
a student-feasible set of contracts a matching. Ẋ is school-feasible if r(Ẋ) ≥ 𝛼 . Ẋ is feasible 
if it is both student/school-feasible.

In this market, we assume all schools are acceptable to all students and vice versa. Even 
though this is a strong assumption, it is a necessary condition for the existence of a feasi-
ble matching in our model. The same assumption is widely used in existing works [2, 15, 
18, 43]. Moreover, to guarantee the existence of a feasible matching, ratio � must be at 

r(Ẋ) =
minc∈C |Ẋc|
maxc∈C |Ẋc|

.



Autonomous Agents and Multi-Agent Systems (2020) 34:23	

1 3

Page 5 of 29  23

most ⌊n∕m⌋∕⌈n∕m⌉ since even in the most balanced matching, the most popular school has 
⌈n∕m⌉ students and the least popular school has ⌊n∕m⌋ students. For matching Ẋ , we call 
school c strictly minimum if for all c′ ( ≠ c ), |Ẋc| < |Ẋc′ | holds, and strictly maximum if for 
all c′ ( ≠ c ), |Ẋc| > |Ẋc′ | holds.

With a slight abuse of notation, for two matchings Ẋ and Ẍ , we denote Ẋs ≻s Ẍs , if 
Ẋs = {(s, c�)} , Ẍs = {(s, c��)} , and c′ ≻s c

′′ , i.e., if student s prefers the school that she 
obtained in Ẋ to the one in Ẍ . We also use notations like c ≻s Ẋs or Ẋs ≻s c , where c is a 
school and Ẋs is student s’s contract. Furthermore, if either Ẋs ≻s Ẍs or Ẋs = Ẍs , we denote 
Ẋs ⪰s Ẍs , which reads as student s weakly prefers Ẋs over Ẍs.

Mechanism � is a function that takes a profile of student preferences ≻S as input2 and 
returns a set of contracts. Let 𝜑s(≻S) denote Ẋs , where 𝜑(≻S) = Ẋ . Let ≻S⧵S′ denote a profile 
of the preferences of all students except students in S′ , and let (≻S� ,≻S⧵S� ) denote a profile 
of the preferences of all students, where the preferences of students in S′ are ≻S′ and the 
preferences of the other students are ≻S⧵S′.

In this paper, we study three mechanism properties that are desirable in the context of 
matching, namely strategyproofness, fairness and nonwastefulness. Strategyproofness 
guarantees that students always have an incentive to truthfully report their preferences. A 
mechanism satisfies strategyproofness if no profile exists where an individual student can 
benefit from misreporting.

Definition 2  (Strategyproofness) Mechanism � is strategyproof if no truthful prefer-
ence profile ≻S , student s ∈ S , and ≻′

s
 (a misreport of s’s preference) exist such that 

𝜑s((≻
�
s
,≻S⧵{s})) ≻s 𝜑s((≻s,≻S⧵{s})).

A stronger requirement than strategyproofness is group strategyproofness, which 
ensures that no group of students can benefit from misreporting.

Definition 3  (Group Strategyproofness) Mechanism � is weakly group strategyproof if no 
truthful preference profile ≻S , group of students S′ ⊆ S , and ≻′

S′
 (a misreport of the prefer-

ences of students in S′ ) exist such that for all s ∈ S� , 𝜑s((≻
�
S�
,≻S⧵S� )) ≻s 𝜑s((≻S� ,≻S⧵S� )) . 

Mechanism � is strongly group strategyproof if no truthful preference profile ≻S , group 
of students S′ ⊆ S , and ≻′

S′
 (a misreport of the preferences of students in S′ ) exist such 

that for all s ∈ S� , 𝜑s((≻
�
S�
,≻S⧵S� )) ⪰s 𝜑s((≻S� ,≻S⧵S� )) , and for some student s ∈ S� , 

𝜑s((≻
�
S�
,≻S⧵S� )) ≻s 𝜑s((≻S� ,≻S⧵S� )).

Fairness is defined through the notion of justified envy. Given a specific matching, stu-
dent s has justified envy toward student s′ if s′ is assigned to school c′ which s prefers to her 
current school despite the fact that c′ prefers s over s′.

Definition 4  (Fairness) In matching Ẋ , where (s, c) ∈ Ẋ , student s has justified envy toward 
another student s′ if for some c� ∈ C , (s, c�) ≻s (s, c) , (s�, c�) ∈ Ẋ , and (s, c�) ≻c� (s

�, c�) hold. 
Matching Ẋ is fair if no student has justified envy in Ẋ . Furthermore, a mechanism is fair if 
it always produces a fair matching.

2  We assume the profile of school preferences ≻C is publicly known and concentrate on strategyproofness 
for students (the proposing side). Thus, we do not specify it as an input of a mechanism.
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Nonwastefulness is concerned with the efficiency of a mechanism and guarantees 
that no student claims an empty seat. Given a specific matching, student s claims an 
empty seat in c′ , which s prefers to her current school c, if moving her from c to c′ holds 
the school-feasibility.

Definition 5  In matching Ẋ , where (s, c) ∈ Ẋ , student s claims an empty seat in c′ if 
(s, c�) ≻s (s, c) and (Ẋ ⧵ {(s, c)}) ∪ {(s, c�)} is school-feasible. Matching Ẋ is nonwasteful 
if no student claims an empty seat in Ẋ . Furthermore, a mechanism is nonwasteful if it 
always produces a nonwasteful matching.

In standard matching terminology, fairness and nonwastefulness are combined to 
form a notion called stability [14, 17, 18, 26]. Decomposition of stability into fairness 
and nonwastefulness is commonly used when dealing with distributional constraints [15, 
18, 25, 26, 30]. However, in our setting, these two properties are incompatible as Theo-
rem 1 shows. Therefore, in this paper, we focus on finding a fair matching while reduc-
ing wastefulness as much as possible.

Theorem 1  Under ratio constraints, fairness and nonwastefulness are incompatible.

We use the following example to show that, when considering ratio constraints, fair-
ness and nonwastefulness are incompatible in general.

Example 1  S = {s1, s2, s3, s4} , C = {c1, c2, c3} , � = 1∕2 . Preferences of students and 
schools are as follows:

Proof  Consider Example  1. For satisfying the ratio constraints, two students must be 
assigned to exactly one school, and each of the other two schools must be given one stu-
dent. If feasible matching is fair, it must contain (s2, c2) and (s4, c3) ; otherwise, either s2 or 
s4 has justified envy. Here, c1 is the least popular school for everybody, but at least one stu-
dent must be assigned to it. Assigning both s1 and s3 to c1 is wasteful. Assume we assign s1 
to c1 . If we assign s3 to c2 , s3 claims an empty seat in c3 . If we assign s3 to c3 , s1 has justified 
envy toward s3 . Next, assume we assign s3 to c1 . If we assign s1 to c3 , s1 claims an empty 
seat in c2 . If we assign s1 to c2 , s3 has justified envy toward s1 . 	�  ◻

We mention a family of well-studied distributional constraints in student-school mar-
ket, for which there already exists a strategyproof and fair mechanism, namely M-con-
vex constraints, motivated by discrete convex analysis  [34, 35]. For Ẋ , let 𝜁 (Ẋ) denote 
m-element vector (|Ẋc1

|, |Ẋc2
|,… , |Ẋcm

|) . Assume distributional constraints are defined 
by a set of vectors V , i.e., Ẋ is school-feasible if 𝜁 (Ẋ) ∈ V.

Definition 6  (M-convex Set) Let �i denote an m-element unit vector, where its i-th element 
is 1 and all other elements are 0. A set of m-element vectors V ⊆ ℕ

m
0
 forms an M-convex 

set, if for all � , � � ∈ V , for all i such that 𝜁i > 𝜁 ′
i
 , there exists j ∈ {k ∈ {1,… ,m} | 𝜁k < 𝜁 �

k
} 

such that � − �i + �j ∈ V and � � + �i − �j ∈ V hold.

s1, s2 ∶ c2 ≻ c3 ≻ c1
s3, s4 ∶ c3 ≻ c2 ≻ c1

c1 ∶ s1 ≻ s3 ≻ s2 ≻ s4
c2 ∶ s2 ≻ s3 ≻ s1 ≻ s4
c3 ∶ s4 ≻ s1 ≻ s3 ≻ s2
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M-convexity is a discrete analogue of maximum elements of a convex set in a continu-
ous domain. Intuitively, an M-convex set has no hollow in the set. Definition 6 means that 
for any two vectors � , � � ∈ V , we can find another element of V , i.e., � − �i + �j , which 
is obtained by moving one step from � toward � ′ (as well as � � + �i − �j ∈ V , which is 
obtained by moving one step from � ′ toward � ). For example, consider the standard school 
choice market, where the distributional constraints correspond to maximum quotas on 
schools. Assume there are three students and two schools whose maximum quotas are 
three. Since we require each student must be assigned to a school, feasible vectors are: 
{(0, 3), (1, 2), (2, 1), (3, 0)} . For (0,  3) and (3,  0), by moving one step from (0,  3) toward 
(3, 0), we obtain (1, 2). Similarly, by moving one step from (3, 0) toward (0, 3), we obtain 
(2, 1).

Kojima et al. [30] shows that if the set of feasible vectors forms an M-convex set, then a 
mechanism called generalized DA is strategyproof and fair.3 However, we cannot apply the 
generalized DA to the setting of ratio constraints since the following theorem shows that 
ratio constraints do not belong to the family of M-convex constraints.

Theorem 2  Ratio constraints cannot be represented by M-convex sets.

Proof  Assume n = 10 , m = 4 , and � = 1∕3 . Consider two school-feasible vectors: 
� = (1, 3, 3, 3) and � � = (2, 2, 2, 4) . For i = 2 , we can choose either j = 1 or j = 4 . For j = 1 , 
� � + �2 − �1 = (1, 3, 2, 4) is not school-feasible, and for j = 4 , � − �2 + �4 = (1, 2, 3, 4) is 
not school-feasible. 	�  ◻

Another well-studied efficiency notion is Pareto optimality, which requires that no other 
matching exists where all students are weakly better off.

Definition 7  (Pareto Optimality and Domination) Matching Ẋ strongly dominates another 
matching Ẍ if Ẋs ≻s Ẍs holds for every s ∈ S . Matching Ẋ weakly dominates another 
matching Ẍ if Ẋs ⪰s Ẍs holds for every s ∈ S and student s ∈ S exists such that Ẋs ≻s Ẍs 
holds. Matching Ẋ is weakly (resp. strongly) Pareto optimal for students if no matching 
Ẍ that strongly (resp. weakly) dominates Ẋ exists. Furthermore, a mechanism is weakly 
(resp. strongly) Pareto optimal if it always produces a weakly (resp. strongly) Pareto opti-
mal matching for students. Mechanism � dominates another mechanism � if for each pref-
erence profile of students ≻S , 𝜑(≻S) weakly dominates 𝜓(≻S) or 𝜑(≻S) = 𝜓(≻S) holds, and 
≻S exists such that 𝜑(≻S) weakly dominates 𝜓(≻S).

Finally, we define two properties, weak non-bossiness and weak Maskin monotonicity, 
which are closely related to weak group strategyproofness. First, we present some defini-
tions used to describe these properties.

The strict upper contour set of school c at preference ≻s , noted U(≻s, c) , is the set of 
school that student s strictly prefers to school c, formally:

U(≻s, c) = {c� ∈ C ∣ c� ≻s c}.

3  To be precise, they use a condition called M ♮-convex set, which is a generalization of an M-convex set. 
When all students must be assigned to schools, it becomes equivalent to an M-convex set.
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Preference ≻′
s
 is a monotonic transformation of preference ≻s at school c (or equivalently at 

contract (s, c)), if U(≻�
s
, c) ⊆ U(≻s, c) . In other words, the set of schools that are preferred 

to c in ≻′
s
 is a subset of the schools that are preferred to c in ≻s . Preference ≻′

s
 is an upper-

contour-set preserving transformation of ≻s at school c (or equivalently at contract (s, c)), 
if U(≻�

s
, c) = U(≻s, c) . Informally, the set of schools that are preferred to c in ≻′

s
 is exactly 

the set of schools that are preferred to c in ≻s.
These notions naturally extend to preference profiles. Profile ≻′

S
 is a monotonic (resp. 

upper-contour-set preserving) transformation of profile ≻S at matching Ẋ if for each student 
s, preference ≻′

s
 is a monotonic (resp. upper-contour-set preserving) transformation of pref-

erence ≻s at Ẋs.

Definition 8  (Weak Non-bossiness) Mechanism � is weakly non-bossy if for any prefer-
ence profile ≻S , student s and preference ≻′

s
 such that ≻′

s
 is an upper-contour-set preserving 

transformation of ≻s at 𝜑s(≻S) , it holds that:

Definition 9  (Weak Maskin Monotonicity) Mechanism � is weakly Maskin monotone if for 
all ≻S and ≻′

S
 such that ≻′

S
 is a monotonic transformation of ≻S at 𝜑(≻S) , 𝜑s(≻

�
S
) ⪰�

s
𝜑s(≻S) 

holds for each student s.

3 � Quota reduction deferred acceptance

3.1 � Mechanism description

We first introduce the standard DA, which is a component of our mechanism. A standard 
market is a tuple (S,C,≻S,≻C, qC) , whose definition resembles a market with ratio con-
straints. The only difference is that its constraints are given as a profile of maximum quo-
tas: qC = (qc)c∈C . Matching Ẋ is school-feasible if for all c ∈ C , |Ẋc| ≤ qc holds. The stand-
ard DA is defined as follows:

Mechanism 1  (Standard DA) 

Step 1 Each student s applies to her favorite school according to ≻s from the schools 
that did not reject her so far.
Step 2 Each school c provisionally accepts the top qc students from the applying stu-
dents based on ≻c and rejects the rest of them (no distinction between newly applying 
students and already provisionally accepted students).
Step 3 If no student is rejected, return the current matching. Otherwise, go to Step 1.

Informally, quota reduction deferred acceptance (QRDA) produces an initial standard 
market from a market with ratio constraints, and then, at each stage, iteratively (i) applies 
DA on the standard market and (ii) restricts the constraints on this market (i.e., reduces the 
maximum quotas), until the matching returned by DA is also feasible with respect to the 
ratio constraints.

To determine the initial standard market, we use qmax , which is the largest value that 
satisfies the following equation:

[𝜑s(≻
�
s
,≻S⧵{s}) = 𝜑s(≻S)] ⇒ [𝜑(≻�

s
,≻S⧵{s}) = 𝜑(≻S)].
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Indeed, note that if t ( > qmax ) students are assigned to c, a school that is assigned at most 
t� = ⌊(n − t)∕(m − 1)⌋ students exists. Since qmax is the largest value satisfying Eq.  (1), 
t�∕t < 𝛼 holds. Thus, no matching is feasible where t students are assigned to c, i.e., in a 
feasible matching, a school accepts at most qmax students.

Which maximum quota is reduced at each stage is defined by � , the sequence of 
schools based on the round-robin order c1, c2,… , cm . Let �(k) denote the k-th school in � , 
i.e., �(k) = cj , where j = 1 + (k − 1 mod m) . For simplicity, we assume � is based on a 
fixed round-robin order, but all our results hold for any balanced sequence � , i.e., for each 
� ∈ ℕ0 , �(m� + 1), �(m� + 2),… , �(m� + m) is a permutation of c1, c2,… , cm . Further-
more, this requirement is crucial to guarantee the strategyproofness of QRDA as Exam-
ple 3 later demonstrates.

QRDA is defined with respect to a specific quota reduction sequence � . However, in the 
following, we assume that � is the round-robin order c1, c2,… , cm , and we only specify � 
when necessary. The formal definition of QRDA is given in Mechanism 2. We denote by qk

c
 

the quota of school c at stage k of QRDA.

Mechanism 2  (Quota reduction deferred acceptance (QRDA))
Initialization:

For all c ∈ C , q1
c
← qmax , k ← 1.

Stage k ( ≥ 1):

Step 1 Run the standard DA in market (S,C,≻S,≻C, q
k
C
) and obtain matching Ẋk.

Step 2 If Ẋk is school-feasible, then return Ẋk.
Step 3 Otherwise, for school c� = �(k) , qk+1

c�
← qk

c�
− 1 , and for c ( ≠ c′ ), qk+1

c
← qk

c
 . Go 

to Stage k + 1.

We illustrate the QRDA’s execution in Example 1. We choose qmax = 2 such that Eq. (1) 
is satisfied. In stage 1, s1 and s2 are assigned to c2 , and s3 and s4 are assigned to c3 . This 
matching is not feasible. Thus, in stage 2, the quota of c1 is decreased but the obtained 
matching is identical. In stage 3, the quota of c2 is decreased. Then s3 is assigned to c1 , s2 is 
assigned to c2 , and s1 and s4 are assigned to c3 . This matching is feasible and fair.

3.2 � Mechanism properties

In this subsection, we analyze the properties that QRDA satisfies starting with feasibility 
and fairness.

Theorem 3  QRDA returns a feasible and fair matching.

Proof  QRDA terminates when it obtains a feasible matching. As mentioned in Sect.  2, 
recall that in the most balanced matching, the most popular school has ⌈n∕m⌉ students and 
the least popular school ⌊n∕m⌋ . Assume QRDA continues to reduce the maximum quotas 
of the schools without obtaining a feasible matching. Eventually, since the average number 
of students per school is n/m and the sequence � is balanced, there will be stage k such that 

(1)� ⋅ qmax ≤
⌊n − qmax

m − 1

⌋
.
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the following conditions hold: 
∑

c∈C q
k
c
= n and for all c ∈ C , ⌊n∕m⌋ ≤ qc ≤ ⌈n∕m⌉ . In this 

stage k, the provisional matching of QRDA, Ẋ , satisfies r(Ẋ) = ⌊n∕m⌋ ∕ ⌈n∕m⌉ ≥ 𝛼 , and 
thus, Ẋ is feasible. Therefore, QRDA must terminate before k, i.e., QRDA terminates at 
stage k′ ( ≤ k ). Hence, Ẋk′ is identical to the matching obtained by the standard DA for the 
market (S,C,≻S,≻C, q

k�

C
) . Since DA is fair [16], Ẋk′ must be fair. 	�  ◻

From the Proof of Theorem 3, we can show the following useful lemma.

Lemma 1  During the QRDA’s execution, the maximum quota of any school is at least 
⌊n∕m⌋.

Proof  As indicated in the Proof of Theorem  3, QRDA must terminate at stage k′ ( ≤ k ). 
Since QRDA decreases quotas and, at stage k, ⌊n∕m⌋ ≤ qc ≤ ⌈n∕m⌉ for any c ∈ C , school 
quotas are always at least ⌊n∕m⌋ while running QRDA. 	�  ◻

QRDA’s strategyproofness is not trivial at all. Since schools’ quotas are decreasing, a 
student might have an incentive to terminate the mechanism early to secure the seat in a 
school, which might not be available in later stages.

Moreover, when considering more general constraints (non M-convex), iterative DA 
mechanisms do not automatically inherit DA’s strategyproofness, even with a balanced 
quota reduction sequence. For illustration, consider an iterative DA mechanism in Exam-
ple 2, where initial quotas are equal to the largest number of students in a school in any 
feasible matching and the quota reduction sequence is balanced.

Example 2  S = {s1, s2, s3, s4, s5, s6} , C = {c1, c2, c3} , � ∶ c1, c2, c3 and feasible vectors are 
{(3, 1, 2), (2, 2, 2)} . Preferences of students and schools are as follows:

The initial maximum quotas are q1
C
= (3, 3, 3) . In stage 1, all students are assigned to 

their favorite school, and the matching is not feasible. The mechanism proceeds by reduc-
ing by one the quota of schools c1 and c2 in stage 2 and 3 respectively, and the matching 
remains the same. In stage 4, the quota of school c3 is decreased by one. Student s6 is 
rejected and then applies to c1 which also rejects her. Hence, s6 is assigned to c2 , and the 
matching becomes feasible. However, if s6 misreports her preference with ≻′

s6
 such that c1 is 

her favorite school, s6 is assigned to c1 at stage 1 and the matching is feasible. Thus, s6 can 
successfully manipulate the mechanism.

To show that no student can manipulate in QRDA under ratio constraints, we utilize 
several properties. Recall that school c is strictly maximum if any other school has strictly 
less students than c, and strictly minimum if any other school has strictly more students 
than c.

Lemma 2  Assume in stage k of QRDA that obtained matching Ẋk is not feasible, and 
school c′ is strictly maximum, i.e., for all c ( ≠ c′ ), |Ẋk

c′
| > |Ẋk

c
| holds. Let t denote |Ẋk

c�
| − 1 . 

In stage k + 1 , if the number of students assigned to c′ is decreased (due to the reduction 
of qc′ ) to t, and the number of students assigned to another school c′′ is increased, i.e., 
|Ẋk+1

c��
| = |Ẋk

c��
| + 1 , then one of the following two cases must be true: 

s1, s2 ∶ c1 ≻ c2 ≻ c3
s3 ∶ c2 ≻ c3 ≻ c1

s4, s5, s6 ∶ c3 ≻ c1 ≻ c2

c1, c2, c3 ∶ s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5 ≻ s6
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(a)	 |Ẋk+1
c��

| = t + 1 holds, and c′′ is strictly maximum.
(b)	 |Ẋk+1

c��
| ≤ t holds, and for each school c, the number of assigned students is at most t.

Proof  If the number of students assigned to c′′ in stage k is t, then the first condition of 
case (a) holds. Furthermore, for each school c ( ≠ c′, c′′ ), |Ẋk+1

c
| = |Ẋk

c
| < t + 1 holds. 

Thus, c′′ is strictly maximum. If the number of students assigned to c′′ in stage k is strictly 
smaller than t, then the first condition of case (b) holds. For each school c ( ≠ c′, c′′ ), 
|Ẋk+1

c
| = |Ẋk

c
| < t + 1 holds. 	� ◻

When analyzing the effect of manipulations of student s in stage k, it is conveni-
ent to assume in stage k (and thereafter) that a matching is obtained as follows. First, 
all students except s are provisionally matched to schools by DA with respect to qk

C
 . 

Continue the DA procedure by adding s to the current provisional matching. The match-
ing obtained in this way is identical to the matching obtained by applying DA when 
all the students enter the market simultaneously [11]. If the matching satisfies the ratio 
constraints, QRDA terminates. Otherwise, the quota of school c = �(k) is reduced and 
the mechanism proceeds to stage k + 1 . In the current provisional matching, if school 
c accepts qk

c
 students, the least preferred student s′ is rejected. Then s′ applies to the 

next school, and so on. Otherwise, the quota of school c = �(k + 1) is reduced, and the 
mechanism proceeds to stage k + 2 , and so forth.

In the above procedure, when s enters the market, she first applies to some school c. 
If c accepts all the students applying to it, then the current stage terminates. Otherwise, 
c rejects one student, s′ ( s′ can be s or another student), who applies to the next school, 
and so on. We call such a sequence of applications and rejections a rejection chain. 
More formally, let Cs = (c, c�,… , c��) be a partial order over S, denoting the order in 
which student s is going to apply, i.e., s applies first to c; if rejected, she applies to c′ , 
and so on. Cs is called a scenario, and does not need to be exhaustive. Assume s enters 
the market with scenario Cs . Define R(Cs) as the rejection chain of Cs . It starts when s 
applies to the first school in Cs and describes the sequence of applications and rejections 
until s is rejected by the last school in Cs , or the mechanism terminates. Table 1 shows 
an example of a rejection chain.

Another useful lemma to prove QRDA’s strategyproofness is the Scenario Lemma. This 
lemma is inspired by the original Scenario Lemma [11], which is only proved for the stand-
ard DA and does not trivially extend to QRDA.

Lemma 3  (Scenario Lemma) Consider two scenarios, Cs and C′
s
 , of student s starting from 

the same stage of QRDA. If (1) each school that appears in C′
s
 also appears in Cs (the order 

Table 1   Example of rejection 
chain

Stage # Action

k 1 Student s applies to school c
1
.

2 School c
1
 rejects student s

1
.

3 Student s
1
 applies to school c

2
 (and is accepted).

k + 1 1 School c
3
 rejects student s

2
 (due to its quota reduction).

2 Student s
2
 applies to school c

4
.

…
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of appearance is irrelevant), (2) student s applies to all the schools in Cs , and (3) all the 
actions of R(C�

s
) happen in the same stage, then all the actions in R(C�

s
) also happen in 

R(Cs).

Proof  The first action in R(C�
s
) is “student s applies to school c,” where c is the first school 

that appears in C′
s
 . Since c also appears in Cs , and s applies to all the schools in Cs , R(Cs) 

also includes this action. For an inductive step, assume the first i − 1 actions in R(C�
s
) also 

happen in R(Cs) , and consider the i-th action of R(C�
s
) . The i-th action in R(C�

s
) must be 

either (i) “student s′ applies to school c′ ” or (ii) “school c′ rejects student s′.”
In case (i) with s� = s , since school c′ must appear in Cs and s applies to all the schools in 

Cs , R(Cs) also includes this action. In case (i) with s′ ≠ s , there must be a previous action, 
“school c′′ rejects student s′ ,” in R(C�

s
) . From the inductive assumption, this action also 

happens in R(Cs) . Thus, the action “student s′ applies to school c′ ” also happens in R(Cs).
In case (ii), let S′

c′
 be the set of students who applied to c′ before the i-th action in R(C�

s
) , 

and let Sc′ be the set of all the students applying to c′ until all actions in R(Cs) are executed. 
Here, S′

c′
⊆ Sc′ holds since every application before the i-th action in R(C�

s
) also appears in 

R(Cs) . Since in the i-th action of R(C�
s
) , s′ is rejected by school c′ , she is not among c′ ’s 

favorite qk
c′
 students in set S′

c′
 . Since the quotas of schools are non-increasing as QRDA con-

tinues, in some stage k′ ( ≥ k ), student s′ must not be among the favorite qk′
c′
 students in Sc′ . 

Thus, the action “school c′ rejects student s′ ” eventually occurs in R(Cs) . 	�  ◻

Now we are ready to prove our main theorem.

Theorem 4  QRDA is strategyproof.

Proof  Assume student s is assigned to a better school when she misreports. Without loss 
of generality, we assume her true preference is c1 ≻s c2 ≻s ⋯ ≻s cm , and s is assigned to 
school cj in stage k when misreporting while assigned to ci in stage k′ under her true prefer-
ence, where cj ≻s ci.

First, we show that if k′ ≤ k , student s cannot benefit from misreporting. The standard 
DA satisfies a property called resource monotonicity, i.e., DA’s outcome is weakly less pre-
ferred by each student if the quotas decrease [12]. It implies that when student s truthfully 
report her preference in both stages k and k′ , her assignment is (weakly) worse in k than in 
k′ . Furthermore, it is known that DA is strategyproof [11, 38]. Hence, in stage k, student s’s 
assignment is worse when she misreports than when she truthfully reports. Therefore, s’s 
assignment is (weakly) worse when she misreports in k than when she truthfully reports in 
k′ , and thus, s cannot benefit from misreporting if k′ ≤ k . Hence, in the following, k < k′ 
holds.

Let Cs be (c1, c2,… , ci−1) , which is based on the true preference of s and truncated 
before ci . Then the last action in R(Cs) must be “school ci−1 rejects student s.” On the other 
hand, let C′

s
 be a sequence of schools to which s applies when s misreports, in which the last 

school is cj . For C′
s
 , the following two cases are possible: (i) cj is the least preferred school 

for s within C′
s
 based on her true preference ≻s or (ii) C′

s
 contains at least one school that is 

less desired than cj based on ≻s.
In case (i), each school c that appears in C′

s
 also appears in Cs . Thus, we can apply 

Lemma 3. Let Ẋ denote the set of contracts obtained by assigning all students except s by 
DA with respect to qk

C
 . Assume that when s enters the market with Cs , she is assigned to 

school c′ ( ≠ cj ) and infeasible matching Ẋk is obtained. When s enters the market with C′
s
 , 
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she is assigned to cj and feasible matching Ẍk is obtained. From these facts, at least one of 
the following four cases (which are not necessarily mutually exclusive) must be true: 

(1)	 cj is strictly minimum in Ẋ , i.e., |Ẋcj
| < |Ẋc| holds for each c ( ≠ cj).

(2)	 |Ẋcj
| = qk

cj
 and a student is rejected when student s applies to school cj in scenario C′

s
 . 

Then student s′ ( ≠ s ) is eventually assigned to c′′ ( ≠ cj ), such that c′′ is strictly minimum 
in Ẋ.

(3)	 c′ is strictly maximum in Ẋk , i.e., |Ẋk
c�
| = |Ẋc� | + 1 > |Ẋk

c
| = |Ẋc| holds for each c ( ≠ c′

).
(4)	 |Ẋc� | = qk

c�
 and a student is rejected when s applies to school c′ in scenario Cs . Then 

student s′′ ( ≠ s ) is eventually assigned to c̃ ( ≠ c′ ), such that c̃ is strictly maximum in 
Ẋk , i.e., |Ẋk

c̃
| = |Ẋc̃| + 1 > |Ẋk

c
| = |Ẋc| holds for each c ( ≠ c̃).

For case (1), the last action in R(C�
s
) must be “student s applies to school cj ,” which also 

appears in R(Cs) . Assume this action occurs in stage k′′ ( ≤ k′).
Since cj is strictly minimum in Ẋ , we obtain �Ẋcj

� < ⌊n∕m⌋ for the following reason. Let 
u denote |Ẋcj

| . Then for each school c ( ≠ cj ), |Ẋc| ≥ u + 1 holds. Since the total number of 
students in Ẋ is n − 1 , and there are m − 1 schools except cj , we obtain 
(u + 1)(m − 1) + u ≤ n − 1 . By transforming this formula, we obtain u ≤ n∕m − 1 . Since 
n∕m − 1 < ⌊n∕m⌋ holds, we obtain u < ⌊n∕m⌋.

From Lemma 1, since the maximum quota of each school is at least ⌊n∕m⌋ , cj can accept 
another student. As the mechanism continues, the quotas are decreased according to the 
sequence � , based on the round-robin order c1, c2,… , cm . It implies that the number of 
students assigned to the most popular school in each stage never increases. Thus, when cj 
accepts another student, the obtained matching is feasible, and the mechanism terminates. 
Therefore, in stage k′′ , the mechanism terminates when s applies to cj . However, this con-
tradicts our assumption that the last action in R(Cs) is “student s is rejected by school ci−1.”

For case (2), we can use a similar argument as case (1) and show that the mechanism 
terminates with a feasible matching in R(Cs) , which contradicts our assumption.

In the rest of this proof, we assume cases (1) and (2) do not occur. For case (3), let t 
denote |Ẋc′ | . Since Ẋk is not feasible and Ẍk is feasible, if the number of students of the 
most popular school becomes t + 1 , then the matching becomes infeasible. If the number of 
students of that school is at most t, then the matching becomes feasible. Assume the last 
action in R(C�

s
) is “student s′ applies to school c

�
 ,” such that |Ẍk

c
�

| = |Ẋc
�
| + 1 holds. Since 

Ẍk is feasible, |Ẍk
c
�

| = |Ẋc
�
| + 1 ≤ t must hold. According to Lemma 3, action “student s′ 

applies to school c
�
 ” also appears in R(Cs) . Assume this action happens in stage k′′ ( ≤ k′).

Then from Lemma 2, case (a) continues to hold until stage k′′ in R(Cs) . Otherwise, case 
(b) holds and the number of assigned students for each school becomes at most t. Then the 
matching becomes feasible, and the mechanism terminates. Thus, the number of assigned 
students of c

�
 remains |Ẋc

�
| < t . At stage k′′ in R(Cs) , case (b) must hold. Recall that quotas 

are decreased according to � . Then, the quota of c
�
 must be at least t, since before stage k′′ , 

there exists a school with t + 1 students. Thus, when s′ applies to school c
�
 , an available 

seat exists in c
�
 , and s′ will be accepted. Furthermore, every school accepts at most t stu-

dents. Thus, the obtained matching is feasible, and the mechanism terminates. This contra-
dicts the assumption that the last action in R(Cs) is “school ci−1 rejects student s.”

For case (4), we can use a similar argument as case (3) and show that the mechanism 
terminates with a feasible matching in R(Cs) , which contradicts our assumption.
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Furthermore, for case (ii), we can create a new scenario C′′
s
 by removing all the schools 

that are less desired than cj based on ≻s from C′
s
 . Then if s is assigned to cj in R(C��

s
) , we 

obtain the same contradiction as case (i) by comparing R(C��
s
) and R(Cs) . Thus, action 

“school cj rejects student s” must appear in R(C��
s
) . Then by Lemma  3, this action also 

appears in R(C�
s
) , but this is also a contradiction. 	�  ◻

QRDA’s strategyproofness heavily relies on the fact that � is balanced. Indeed, if � is 
not balanced, QRDA is not strategyproof as Example 3 demonstrates.

Example 3  S = {s1, s2, s3, s4, s5, s6, s7, s8, s9} , C = {c1, c2, c3} , � = 1∕4 and � ∶ c2, c2, c1 . 
Preferences of students and schools are as follows:

QRDA sets q1
C
= (5, 5, 5) , which satisfies Eq.  (1). In stage 1, each student is assigned 

to her favorite school but this matching is not feasible. Then, in each of the two following 
stages, the quota of c2 is decreased by one but the matching remains the same. In stage 4, 
the quota of c1 is decreased by one and s5 is rejected. Next, she applies to c2 , which also 
rejects her, and she is finally assigned to c3 . The corresponding matching is feasible:

However, if student s5 misreports with preference ≻′
s5
 such that c2 is her favorite school, 

QRDA stops with a feasible matching at stage 1:

Student s5 manipulated the mechanism to get a better result (s5, c2).
Furthermore, if � is not balanced, the matching obtained by QRDA could not be feasible 

since we assume that all students must be assigned somewhere.
A question that naturally arises is whether a group of students can manipulate QRDA. 

It is known that DA is not group strategyproof in the strong sense, and thus it extends to 
QRDA. However, DA is weakly group strategyproof [6], and thus a legitimate question is 
whether QRDA inherits this property. To show that QRDA is weakly group strategyproof, 
we first show that QRDA satisfies weak non-bossiness and weak Maskin monotonicity. 
Notice first that DA is both weakly non-bossy4 [6] and weakly Maskin monotone [29]. We 
first show that QRDA is weakly non-bossy.

Lemma 4  QRDA is weakly non-bossy.

Proof  For a profile ≻S , we write 𝜑(≻S) the matching returned by QRDA on profile ≻S , and 
𝜑k(≻S) the (maybe not feasible) matching returned by QRDA on ≻S at some stage k.

s1, s2, s3, s4, s5 ∶ c1 ≻ c2 ≻ c3
s6, s7, s8 ∶ c2 ≻ c3 ≻ c1

s9 ∶ c3 ≻ c1 ≻ c2

c1, c2, c3 ∶ s1 ≻ s2 ≻ s3 ≻ s4 ≻ s6 ≻ s7 ≻ s8 ≻ s9 ≻ s5

(
c1 c2 c3

{s1, s2, s3, s4} {s6, s7, s8} {s5, s9}

)
.

(
c1 c2 c3

{s1, s2, s3, s4} {s5, s6, s7, s8} {s9}

)
.

4  Weak non-bossiness is equivalent to S-respectfulness [6] when the preferences are strict.
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By contradiction assume profile ≻S , student s and preference ≻′
s
 which is an upper-con-

tour-set preserving transformation of ≻s at 𝜑s(≻S) exist such that 𝜑s(≻
�
s
,≻S⧵{s}) = 𝜑s(≻S) , 

but student s′ exists such that 𝜑s� (≻
�
s
,≻S⧵{s}) ≠ 𝜑s� (≻S) . Assume also that QRDA terminates 

at stage k with ≻S , and at stage k′ with ≻�
S
= (≻�

s
,≻S⧵{s}) . Then we consider three cases: 

k� = k	� QRDA finishes at the same stage with ≻S or ≻′
S
 , but then it contradicts the fact that 

DA is weakly non-bossy.
k′ < k	� QRDA finishes earlier with ≻′

S
 . By strategyproofness of QRDA, it holds 

𝜑k
s
(≻S) ⪰s 𝜑

k�

s
(≻�

S
) . Since ≻′

s
 is an upper-contour-set preserving transformation of 

≻s at 𝜑k
s
(≻S) , it implies that 𝜑k

s
(≻S) ⪰

�
s
𝜑k�

s
(≻�

S
) . However, if 𝜑k

s
(≻S) ≻

�
s
𝜑k�

s
(≻�

S
) , 

then preference ≻s is a manipulation for student s when assuming that ≻′
s
 is sin-

cere; hence 𝜑k
s
(≻S) = 𝜑k�

s
(≻�

S
) . Thus ≻′

s
 is also an upper-contour-set preserving 

transformation of ≻s at 𝜑k�

s
(≻�

S
) , and equivalently, ≻s is an upper-contour-set pre-

serving transformation of ≻′
s
 at 𝜑k�

s
(≻�

S
) . With a similar argument as above, at stage 

k′ , by strategyproofness of DA, it holds 𝜑k�

s
(≻�

S
) = 𝜑k�

s
(≻S) . Thus, because DA is 

weakly non-bossy and 𝜑k�

s
(≻�

S
) = 𝜑k�

s
(≻S) , it holds that 𝜑k� (≻�

S
) = 𝜑k� (≻S) . Thus 

𝜑k� (≻S) is feasible at stage k′ , and QRDA should terminate at stage k′ on profile 
≻S , which is a contradiction.

k′ > k	� QRDA finishes later with ≻′
S
 . First, at stage k, by strategyproofness of DA, it holds 

𝜑k
s
(≻S) ⪰s 𝜑

k
s
(≻�

S
) . Since ≻′

s
 is an upper-contour-set preserving transformation of 

≻s at 𝜑k
s
(≻S) , it implies that 𝜑k

s
(≻S) ⪰

�
s
𝜑k
s
(≻�

S
) . However, if 𝜑k

s
(≻S) ≻

�
s
𝜑k
s
(≻�

S
) , then 

preference ≻s is a manipulation for student s when assuming that ≻′
s
 is sincere; 

hence 𝜑k
s
(≻S) = 𝜑k

s
(≻�

S
) . It holds that 𝜑k(≻�

S
) = 𝜑k(≻S) because DA is weakly non-

bossy and 𝜑k
s
(≻�

S
) = 𝜑k

s
(≻S) . Thus 𝜑k(≻�

S
) is feasible at stage k, and QRDA should 

terminates at stage k on profile ≻′
S
 , which is a contradiction.

 	�  ◻

Before showing that QRDA is weakly Maskin monotone, we prove the following 
property concerning DA when the preferences are monotonically transformed. Given 
a profile ≻S , let 𝜑D(≻S) denote the matching returned by DA on ≻S , and then 𝜑D

s
(≻S) 

denote the assignment of a specific student s.

Lemma 5  For any preference profiles ≻S and ≻′
S
 such that ≻′

S
 is a monotonic transformation 

of ≻S at 𝜑D
s
(≻S) , the number of students in each school is the same in 𝜑D(≻S) and 𝜑D(≻�

S
).

Proof  We prove this claim in the case when only one student transforms her preference. By 
recursion, the argument adapts to the general case.

Consider preference profiles ≻S and ≻�
S
= (≻�

s
,≻S⧵{s}) such that ≻′

s
 is a monotonic trans-

formation of ≻s at 𝜑D
s
(≻S) . Now consider two scenarios when student s is added last in the 

market, scenario Cs with preference ≻S and scenario C′
s
 with preference ≻′

S
 . Since ≻′

s
 is a 

monotonic transformation of ≻s at 𝜑D
s
(≻S) , we can apply the Scenario lemma for DA [11], 

and thus all actions that happen with C′
s
 also happen with Cs . In particular, consider school 

c′ which is the last school that finally gains one student when s is added in the market. 
Then, in scenario Cs , the action “school c′ accepts an additional student” also happens and 
then DA terminates after this action. It implies that the number of students in each school 
is the same in both scenarios. 	�  ◻
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Lemma 6  QRDA is weakly Maskin monotone.

Proof  For a profile ≻S , we write 𝜑(≻S) for the matching returned by QRDA on profile ≻S , 
and 𝜑k(≻S) the (maybe not feasible) matching returned by QRDA on ≻S at some stage k.

By contradiction assume profile ≻S and profile ≻′
S
 which is a monotonic transforma-

tion of ≻S at 𝜑(≻S) exist such that 𝜑s(≻S) ≻
�
s
𝜑s(≻

�
S
) for some student s. Assume also that 

QRDA terminates at stage k with ≻S , and at stage k′ with ≻′
S
 . Then we consider three cases: 

k� = k	� QRDA finishes at the same stage with ≻S or ≻′
S
 , but then it contradicts the fact that 

DA is weakly Maskin monotone.
k′ < k	� QRDA finishes earlier with ≻′

S
 . At stage k, by weak Maskin monotonicity of DA, 

𝜑k
s
(≻�

S
) ⪰�

s
𝜑k
s
(≻S) holds for all s ∈ S . Furthermore, by resource monotonicity 

of DA, 𝜑k�

s
(≻�

S
) ⪰�

s
𝜑k
s
(≻�

S
) holds for all s ∈ S . It implies that 𝜑k�

s
(≻�

S
) ⪰�

s
𝜑k
s
(≻S) 

holds for all s ∈ S , which contradicts the fact that student s exists such that 
𝜑s(≻S) ≻

�
s
𝜑s(≻

�
S
).

k′ > k	� QRDA finishes later with ≻′
S
 . Recall that ≻′

S
 is a monotonic transformation of ≻S at 

𝜑(≻S) . Then, with Lemma 5 at stage k, it holds that the number of students in each 
school is the same in matching 𝜑k(≻S) and 𝜑k(≻�

S
) , which implies that the ratio is 

the same in both matching. It contradicts the fact QRDA finishes at stage k′ ( > k ) 
on profile ≻′

S
 . 	�  ◻

Now we prove that QRDA is weakly group strategyproof by using Barberà et al. [6]’s 
result. In addition to weak non-bossiness, weak Maskin monotonicity, and strategyproof-
ness, this result requires an additional constraint on the richness of the preference domain. 
Intuitively, a preference domain is said to be rich if for any two admissible preferences, 
an admissible preference that is “between” these two preferences exists, i.e., a prefer-
ence exists that combines the two preferences’ properties in a specific way. Since we only 
require each preference to be a strict and complete order over C, this richness condition is 
trivially satisfied.

Theorem 5  QRDA is weakly group strategyproof.

Proof  Barberà et al. [6] show that a mechanism that is based on a rich domain, strategy-
proof, weakly Maskin monotone, and weakly non-bossy is also weakly group strategy-
proof.5 As the authors mentioned, this result applies to the many-to-one matching model. 
Moreover, their model can take any feasibility constraints into account, and hence, the ratio 
constraints as well. 	�  ◻

Concerning efficiency, it is known that DA is not strongly Pareto optimal and this 
result extends to QRDA. Indeed, recall that, in Example 1, QRDA returns the following 
matching:

5  Indeed, when the preferences are strict, weak Maskin monotonicity implies S-joint monotonicity and 
weak non-bossiness is equivalent to S-respectfulness [6].
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This matching is weakly dominated by the matching:

Hence, QRDA is not strongly Pareto optimal. However, QRDA inherits weak Pareto opti-
mality from DA.

Theorem 6  QRDA is weakly Pareto optimal.

Proof  Let Ẍ denote a matching obtained by QRDA. We assume to the contrary that a 
matching Ẋ exists such that Ẋs ≻s Ẍs for all s ∈ S.

First we consider that � = 0 . All students are accepted to their first choice in Ẍ and no 
matching can strongly dominate Ẍ.

The other case is that � ≠ 0 ( 0 < 𝛼 ≤ 1 ), i.e., |Ẋc| ≥ 1 and |Ẍc| ≥ 1 for all c ∈ C . As 
every student must be allocated to a school, the last action of QRDA must be “student s′ 
applies to school c′ ” (no student is rejected after this action). Here QRDA terminates and 
returns the matching Ẍ . This implies that the number of provisionally accepted students in 
school c′ is less than its artificial maximum quota while running QRDA, i.e., no student 
is rejected by c′ in QRDA. Let S′ be the set of students assigned to c′ in Ẋ and it is true 
that |S′| > 0 since |Ẋc| ≥ 1 . As mentioned in our assumption, Ẋs ≻s Ẍs also holds for each 
student s in S′ , that is, all students in S′ prefer school c′ over their assignments in matching 
Ẍ . In QRDA, however, the students in S′ must apply to school c′ before applying to their 
assigned schools, which implies that all students in S′ are rejected by school c′ in QRDA. 
This is a contradiction because school c′ rejects no student in QRDA. Hence, no matching 
strongly dominates Ẍ . 	�  ◻

An important property of DA is that no strategyproof mechanism exists that domi-
nates DA [1]. However, this result has only been proved in the general two-sided match-
ing framework, where unacceptable students/schools are allowed. Since it is a negative 
result, it does not trivially extend to our setting.6 We show that this property holds for DA 
even when all students/schools are acceptable and all students have to be matched. First we 
prove the following property concerning the matchings that weakly dominate the matching 
returned by DA.

Lemma 7  Let Ẋ be a matching that weakly dominates the matching returned by DA which 
we denote Ẍ , and let S� = {s ∈ S ∣ Ẋs ≻s Ẍs} . Then a permutation � of S′ exists such that 
for all s ∈ S� , Ẋs = Ẍ𝜇(s).

Proof  Consider preference profile ≻S , matching Ẋ that weakly dominates matching Ẍ 
which is returned by DA on ≻S , and S� = {s ∈ S ∣ Ẋs ≻s Ẍs} . Assume that no permutation 

(
c1 c2 c3
{s2} {s3} {s1, s4}

)
.

(
c1 c2 c3
{s2} {s1, s3} {s4}

)
.

6  Intuitively, another strategyproof mechanism could dominate DA on some specific profiles, but 
Abdulkadiroğlu et al. [1] show that it cannot dominate DA on all the profiles. Therefore, this result does not 
stand when considering strict subdomain of preferences.
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� of S′ exists such that for all s ∈ S� , Ẋs = Ẍ𝜇(s) . It implies that a school exists, denoted 
by c� ∈ C , that gains one (or more) student from Ẍ to Ẋ , and let s⋆ denote such a stu-
dent. Therefore, the matching Ẍ ⧵ Ẍs⋆ ∪ {(s⋆, c�)} is feasible, which means that s⋆ claims 
an empty seat in c′ in matching Ẍ . Thus Ẍ is not stable, which contradicts the fact that DA 
returns a stable matching. 	�  ◻

Informally, this property means that students can only improve from the matching 
returned by DA by trading schools in cycles among them. Given a permutation � of a set of 
student S′ ⊆ S , we denote by trading cycle any of the disjoint cycles that compose � , in the 
fashion of the Top Trading Cycle mechanism [40].

Now we can show the desired property for DA.

Lemma 8  No strategyproof mechanism exists that dominates DA even when all students/
schools are acceptable and all students have to be matched.

Proof  Assume that a strategyproof mechanism � dominates DA. It implies that a profile ≻S 
exists such that the matching Ẋ returned by � , weakly dominates the matching Ẍ returned 
by DA, i.e., for all s ∈ S , Ẋs ⪰s Ẍs and for some s ∈ S , Ẋs ≻s Ẍs . Consider student s⋆ ∈ S 
such that Ẋs⋆ ≻s⋆ Ẍs⋆ , and let c⋆ denote the school to which s⋆ is assigned in Ẍ . Lemma 7 
implies that s⋆ belongs to a trading cycle from matching Ẍ to Ẋ . We denote c� the last 
school which accepts a student under the alternative DA when s⋆ is added after all other 
students. During the process of DA, c� rejects no student and thus Ẍs ⪰s c

� holds for all 
s ∈ S . It implies that s⋆ is not assigned to c� in Ẍ , otherwise s⋆ cannot trade her school 
since no student is willing to join c� , and thus Ẍs⋆ ≻s⋆ c�.

Now consider the preference ≻′
s⋆

 which is similar to ≻s⋆ with the only difference that the 
positions of schools c⋆ and c� are exchanged. We denote Ẍ′ (resp Ẋ′ ) the matching returned 
by DA (resp. � ) under profile ≻�

S
= (≻�

s⋆
,≻S⧵{s⋆}) . Consider the alternative DA when stu-

dent s⋆ is added to the market after all other students and notice that before adding s⋆ to 
the market, school c� has an available seat. Then, when s⋆ is added with preference ≻′

s⋆
 , the 

process of DA is the same as when s⋆ is added with preference ≻s⋆ , until s⋆ applies to c� 
(instead of c⋆ ) and is accepted. After s⋆ is accepted in c� under preference ≻′

s⋆
 , DA termi-

nates, but when s⋆ is accepted in c⋆ under preference ≻s⋆ , it occurs a rejection chain which 
ends when school c� accepts a student. It implies that for all s ∈ S ⧵ {s⋆} , Ẍ�

s
⪰s Ẍs , and 

then Ẍ�
s
⪰s c

� . Then, under profile ≻′
S
 , s⋆ cannot trade her school since no student is willing 

to join c� , and thus s⋆ is assigned to c� also in Ẋ′ . However, if the true preference of student 
s⋆ is ≻′

s⋆
 , she can misreport with ≻s⋆ and improve her school under mechanism � , from c� 

to c⋆ , which contradicts the fact that � is strategyproof. 	�  ◻

We can now consider whether QRDA inherits this property. The following theorem 
shows indeed that, for any balanced � , no strategyproof mechanism exists that dominates 
QRDA� , where QRDA� is the QRDA mechanism defined by the quota reduction sequence 
� . The proof follows a similar flow as the proof for Lemma 8.

Theorem 7  Given a balanced � , no strategyproof mechanism exists that dominates QRDA�.

Proof  Given a balanced quota reduction sequence � , assume that a strategyproof mecha-
nism � exists that dominates QRDA� . It implies that a profile ≻S exists such that the match-
ing Ẋ returned by � , weakly dominates the matching Ẍ returned by QRDA� , i.e., for all 
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s ∈ S , Ẋs ⪰s Ẍs and for some s ∈ S , Ẋs ≻s Ẍs . Assume that QRDA� terminates at stage k 
and consider student s⋆ ∈ S such that Ẋs⋆ ≻s⋆ Ẍs⋆ . Let c⋆ denote the school to which s⋆ is 
assigned in Ẍ . Since Ẍ is returned by DA at stage k, Lemma 7 implies that s⋆ belongs to 
some trading cycle from matching Ẍ to Ẋ . We denote c� the last school which accepts a 
student at stage k of QRDA� . During stage k, c� rejects no students and then Ẍs ⪰s c

� holds 
for all s ∈ S . It implies that s⋆ is not assigned to c� in Ẍ , otherwise s⋆ cannot participate in 
any trading cycle since no student is willing to join c� , and thus Ẍs⋆ ≻s⋆ c�.

Now consider the preference ≻′
s⋆

 which is similar to ≻s⋆ with the only difference that 
the positions of schools c⋆ and c� are exchanged. We denote Ẍ′ (resp Ẋ′ ) the matching 
returned by QRDA� (resp. � ) under profile ≻�

S
= (≻�

s⋆
,≻S⧵{s⋆}) . Notice that profile under 

≻′
S
 , QRDA� may terminate at a stage different from stage k. However, we first focus on 

stage k. At stage k, consider the alternative DA when s⋆ is added to the market after all 
other students with preference ≻s⋆ , and then matching Ẍ is returned, or with preference 
≻′
s⋆

 , and then some matching denoted by X̃′ is returned, which may be different from Ẍ′ . In 
both cases, before adding s⋆ , school c� has an available seat. Then, when s⋆ is added with 
preference ≻′

s⋆
 , the process of DA is the same as when s⋆ is added with preference ≻s⋆ , until 

s⋆ applies to c� (instead of c⋆ ) and is accepted. When s⋆ is accepted in c� under preference 
≻′
s⋆

 , DA terminates with matching X̃′ , but when s⋆ is accepted in c⋆ under preference ≻s⋆ , 
it occurs a rejection chain which ends when school c� accepts a student. It implies that (a) 
for all s ∈ S ⧵ {s⋆} , X̃�

s
⪰s Ẍs holds; and (b) matching X̃′ and Ẍ have the same number of 

students in each school, and thus under profile ≻′
S
 , QRDA� terminates at stage k or earlier. 

Resource monotonicity of DA implies that for all s ∈ S , Ẍ�
s
⪰s X̃s . In particular Ẍ�

s⋆
⪰s⋆ X̃s⋆ 

and with strategyproofness of QRDA� , student s⋆ is also assigned to c� by QRDA� under 
profile ≻′

S
 . Moreover, resource monotonicity and relation (a) imply that for all s ∈ S ⧵ {s⋆} , 

Ẍ�
s
⪰s Ẍs , and in particular, Ẍ�

s
⪰s c

� . Thus, under profile ≻′
S
 , s⋆ cannot participate in any 

trading cycles since no student is willing to join c� , and thus s⋆ is assigned to c� also in Ẋ′ . 
Thus, when s⋆ ’s true preference is ≻′

s⋆
 , s⋆ can misreport with ≻s⋆ and improve her school, 

from c� to c⋆ , which contradicts the fact that � is strategyproof. 	�  ◻

Finally, we examine the time complexity of QRDA. We assume an alternative DA’s 
execution in each stage used in the proof of Theorem 4: for stage k, instead of running DA 
from scratch, we start from the matching obtained in stage k − 1 , and continue the execu-
tion when a student is rejected.

Theorem 8  The time complexity of QRDA is O(mn).

Proof  QRDA repeatedly applies the standard DA. Since a student is rejected by each 
school at most once, each step in DA is executed at most mn times in total. Additionally, 
school-feasibility can be checked in constant time. Thus, the time complexity of QRDA is 
O(mn). 	�  ◻

3.3 � Comparison with baseline mechanism

To the best of our knowledge, no mechanism exists that is fair, strategyproof, and can han-
dle ratio constraints. One way to handle ratio constraints is to use an indirect approach, 
i.e., to transform ratio constraints into other types of constraints by sacrificing flexibility to 
some extent. In this subsection, we present an indirect approach in which ratio constraints 
are transformed into standard maximum quotas, i.e., artificial maximum quotas are defined 
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such that the obtained matching by the standard DA is guaranteed to satisfy the ratio con-
straints. Such a mechanism is called artificial cap deferred acceptance (ACDA). ACDA is 
used in Japanese medical resident matching programs  [25] to handle regional maximum 
quotas as well as a baseline mechanism in many works related to distributional constraints 
[15, 17, 18].

Without loss of generality, assume qc1 ≤ qc2 ≤ ⋯ ≤ qcm holds. The following lemma 
holds:

Lemma 9  The matching obtained by the standard DA satisfies the ratio constraints � if qC 
satisfies the following condition:

Proof  Assume matching Ẍ is obtained in the following method. We first assign qcm stu-
dents to cm , qcm−1 students to cm−1 , and so on. Finally, n −

∑m

i=2
qci students are assigned to 

c1 (or no student is assigned to c1 if n −
∑m

i=2
qci is negative). Then for any matching Ẋ that 

is school-feasible in a standard market with quotas qC , r(Ẋ) ≥ r(Ẍ) holds. From Eq.  (2), 
r(Ẍ) ≥ 𝛼 holds. Thus, r(Ẋ) ≥ 𝛼 holds. 	�  ◻

If we knew beforehand which schools are popular/unpopular, we might be able to find 
qC that satisfies Eq. (2) to maximize the student welfare. Otherwise, one simple and rea-
sonable way for finding appropriate qC is using a quota reduction sequence, � . Similarly 
to QRDA, ACDA is defined given a specific sequence � , denoted by ACDA� . When not 
specified otherwise, we assume that � is the round-robin order c1, c2,… , cm . Similarly, we 
denote by qk

c
 the quota of school c at stage k of ACDA. ACDA is defined as follows:

Mechanism 3  (Artificial cap deferred acceptance (ACDA))
Initialization:

For all c ∈ C , q1
c
← qmax , k ← 1.

Stage k ( ≥ 1):

Step 1 If qk
C
 satisfies Eq. (2), then run the standard DA in market (S,C,≻S , ≻C, q

k
C
) and 

return the obtained matching.
Step 2 Otherwise, for school c� = �(k) , qk+1

c�
← qk

c�
− 1 , and for c ( ≠ c′ ), qk+1

c
← qk

c
 . Go 

to Stage k + 1.

Theorem 9  ACDA is strategyproof and returns a feasible and fair matching.

Proof  ACDA terminates when Eq. (2) holds. Assume ACDA continues to reduce the maxi-
mum quotas since Eq. (2) does not hold. Similarly to the Proof of Theorem 3, eventually, 
there will be stage k such that the following conditions hold: 

∑
c∈C q

k
c
= n and for all c ∈ C , 

⌊n∕m⌋ ≤ qc ≤ ⌈n∕m⌉ . In this case, n −
∑m

i=2
qci = ⌊n∕m⌋ , and qcm = ⌈n∕m⌉ . Thus, Eq.  (2) 

holds. Then ACDA must terminate at stage k′ ( ≤ k ) and the obtained matching satisfies the 
ratio constraints. The result is identical to the matching obtained by the standard DA for 
the market (S,C,≻S,≻C, q

k�

C
) . Since DA is fair [16], ACDA is also guaranteed to be fair. 

(2)� ≤
n −

∑m

i=2
qci

qcm

.
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Furthermore, since stage k where ACDA terminates is determined independently from ≻S 
and the standard DA is strategyproof, ACDA is also strategyproof. 	�  ◻

Theorem  10  Given a balanced � , all students weakly prefer the matching obtained by 
QRDA� over that of ACDA�.

Proof  If ACDA terminates at stage k, the matching obtained by the standard DA for the 
market (S,C,≻S,≻C, qkC) satisfies the ratio constraints. Since ACDA and QRDA use the 
same quota reduction sequence � , QRDA also terminates if it reaches stage k. Thus, QRDA 
must terminate at stage k′ ( ≤ k ), i.e., QRDA terminates until stage k at the latest. Since we 
have qk′

c
≥ qk

c
 for any c ∈ C and DA satisfies resource monotonicity, as described in the 

second paragraph of the Proof of Theorem  4, each student weakly prefers the matching 
obtained by QRDA over that of ACDA. 	�  ◻

Since QRDA always obtains a (weakly) better matching for students than ACDA, it is 
natural to assume that QRDA will be less wasteful than ACDA, i.e., more students claim 
empty seats in ACDA compared to QRDA. However, we cannot guarantee this property 
as Theorem 11 holds. For its proof, we use the following example:

Example 4  S = {s1, s2, s3, s4, s5} , C = {c1, c2, c3, c4} , � = 1∕2 . Preferences of students and 
schools are as follows:

Theorem 11  Given a balanced � , a case exists where the number of students who claim 
empty seats in QRDA� is larger than that of ACDA�.

Proof  Consider Example 4 and the sequence � based on the round-robin order c1, c2,… , cm . 
QRDA sets qmax = 2 , which satisfies Eq. (1). In stage 1, s1 and s4 are assigned to c1 , s2 and 
s5 are assigned to c2 , and s3 is assigned to c4 . Since no student is assigned to c3 , this match-
ing is not school-feasible. Thus, qc1 is reduced by one. Then in stage 2, the obtained feasible 
matching is as follows:

Here students s4 and s5 claims an empty seat in school c1 . The number of students who 
claim empty seats in QRDA  is two.

On the other hand, in ACDA  , the maximum quotas of c1, c2 , c3 are set to one, and c4 is 
set to two. The obtained matching is as follows:

Here only student s1 claims an empty seat (in school c1 ). Other students, for example, s3 , 
can no longer claim an empty seat since by moving her from c2 , the obtained matching is 

s1 ∶ c1 ≻ c4 ≻ c2 ≻ c3
s2 ∶ c2 ≻ c3 ≻ c1 ≻ c4
s3 ∶ c4 ≻ c1 ≻ c3 ≻ c2

s4, s5 ∶ c1 ≻ c2 ≻ c3 ≻ c4

c1 ∶ s2 ≻ s3 ≻ s1 ≻ s4 ≻ s5
c2 ∶ s3 ≻ s4 ≻ s5 ≻ s1 ≻ s2
c3 ∶ s1 ≻ s5 ≻ s4 ≻ s2 ≻ s3
c4 ∶ s5 ≻ s2 ≻ s4 ≻ s3 ≻ s1

(
c1 c2 c3 c4
{s1} {s4, s5} {s2} {s3}

)
.

(
c1 c2 c3 c4
{s2} {s4} {s5} {s1, s3}

)
.
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not school-feasible. By permutation of the schools, the proof adapts to any other sequence 
� . 	�  ◻

This result is slightly in favor of ACDA because claiming more seats leads to the waste-
ful matching and implies that QRDA has still room for improvement by mitigating stu-
dents’ claim, but it is counterbalanced by the fact that when ACDA returns a nonwasteful 
matching, QRDA returns the same matching, which is shown by Theorem 12.

Theorem 12  Given a balanced � , when ACDA� returns a nonwasteful matching, QRDA� 
and ACDA� return the same matching.

Proof  In market (S,C,≻S,≻C, 𝛼) with sequence � , assume that QRDA� returns matching Ẍ 
and that ACDA� returns matching Ẋ which differs from Ẍ . By contradiction assume also 
that Ẋ contains no claiming student. Given a matching X′ , let X′

min
 (resp. X′

max
 ) denote the 

set of contracts of a school with a minimum (resp. maximum) number of students in X′.
Consider the procedure which starts with matching Ẍ and keeps on applying the stages 

of QRDA� , i.e., reducing quotas and applying DA (even though Ẍ is feasible) until the 
quotas reach the same quotas as in ACDA� and the procedure returns Ẋ . Notice that, since 
QRDA� finishes at an earlier stage than ACDA� , |Ẍmax| ≥ |Ẋmax| and |Ẍmin| ≤ |Ẋmin| hold, 
and moreover, in any matching returned during this procedure, each school has at least 
|Ẍmin| students, and at most |Ẍmax| students. During this procedure, since Ẋ differs from 
Ẍ , some rejection chains must occur, and consider the last rejection chain, denoted by 
r, that occurs. We prove that one student involved in the rejection chain r is a claiming 
student in Ẋ , by considering three cases: (i) |Ẍmax| > |Ẋmax| , (ii) |Ẍmin| < |Ẋmin| , and (iii) 
|Ẍmax| = |Ẋmax| and |Ẍmin| = |Ẋmin| . 

	 (i)	 Consider the last rejection in rejection chain r, and consider sr , the student 
rejected from a school cr and accepted in a school ca in this last rejection. Since 
|Ẍmax| > |Ẋmax| , it holds |Ẋcr | ≤ |Ẍmax| − 1 . Moreover, since school ca accepts an 
additional student, it holds |Ẋca | ≥ |Ẍmin| + 1 . Therefore, since Ẋ is feasible, the 
matching (Ẋ ⧵ {(sr, ca)}) ∪ {(sr, cr)} is also feasible. Thus sr claims a seat in school 
cr in matching Ẋ , which is a contradiction.

	 (ii)	 Consider the first rejection in rejection chain r, and consider sr , the student 
rejected from a school cr and accepted in a school ca in this first rejection. Since 
|Ẍmin| < |Ẋmin| , it holds |Ẋca | ≥ |Ẍmin| + 1 . Moreover, since school cr rejection is due 
to its quota being reduced, it holds |Ẋcr | ≤ |Ẍmax| − 1 . Therefore, since Ẋ is feasible, 
the matching (Ẋ ⧵ {(sr, ca)}) ∪ {(sr, cr)} is also feasible. Thus sr claims a seat in 
school cr in matching Ẋ , which is a contradiction.

	 (iii)	 In this case, it could be that neither the first nor the last rejection in rejection chain 
r concerns a claiming student in Ẋ . Then we have a closer look to rejection chain 
r. Rejection chain r starts by a quota reduction of a school, denoted by cr , which 
rejects a student, sr , which is then assigned to a school, ca , in Ẋ . If school ca is not 
minimum in Ẋ , it holds |Ẋca | ≥ |Ẍmin| + 1 , and similarly to case (ii), sr claims a seat 
in school cr in Ẋ . Assume that ca is minimum in Ẋ . Since |Ẍmin| = |Ẋmin| , when 
school ca accepts student sr , ca also rejects another student, otherwise ca cannot be 
minimum in Ẋ . From school ca , rejection chain r continues and eventually ends 
when a school, cl , accepts an additional student (without rejecting one) and then 
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|Ẋcl | > |Ẍmin| = |Ẋmin| = |Ẋca | . Thus, excluding student sr , rejection chain r must 
include a student, s′ , who is rejected from a school, c′ (which may be ca ), and finally 
(maybe after several rejections) accepted to a school, c′′ (which may be cl ), such 
that |Ẋc′ | < |Ẋc′′ | . Thus it holds that |Ẋc� | ≤ |Ẋmax| − 1 , and that |Ẋc�� | ≥ |Ẋmin| + 1 . 
Therefore, since Ẋ is feasible, the matching (Ẋ ⧵ {(s�, c��)}) ∪ {(s�, c�)} is feasible and 
s′ claims a seat in school c′ in matching Ẋ.

	�  ◻

4 � Experimental evaluation

In terms of student welfare, Theorem  10 guarantees that students weakly prefer QRDA 
over ACDA. We perform computer simulations to quantitatively explore the differences 
between QRDA and existing mechanisms. On the other hand, Theorem 11 shows that we 
cannot guarantee that QRDA is always better than ACDA in terms of nonwastefulness. 
However, we expect that a situation like Example 4 is rather extreme and would not hap-
pen very often; QRDA outperforms ACDA on average. We also confirm this conjecture by 
computer simulation.

Furthermore, we examine another indirect approach in which ratio constraints are trans-
formed into individual minimum and maximum constraints. Here, each school c has its 
minimum quota pc as well as its maximum quota qc . At least pc and at most qc students 
have to be assigned to school c. Fragiadakis et  al. [15] present a strategyproof and fair 
mechanism called Extended Seat Deferred Acceptance (ESDA) to handle these constraints. 
We examine how to transform ratio constraints into individual minimum and maximum 
quotas. Assume all schools have the same minimum and maximum quotas p̂ and q̂ . If 
p̂∕q̂ ≥ 𝛼 holds, the ratio constraints are clearly satisfied. The next question is how to deter-
mine q̂ and p̂ appropriately. We use the following method: choose q̂ and p̂ = ⌈𝛼 ⋅ q̂⌉ as the 
maximum values that satisfy n ≥ q̂ + (m − 1)p̂ . In other words, we choose q̂ to the larg-
est value such that the ratio constraints are satisfied and enough students exist to satisfy 
minimum quotas p̂ . By choosing a large maximum quota, we can allocate more students to 
popular schools.7

We considered two markets, A and B, which have different sizes. Market A has n = 800 
students and m = 20 schools and market B has n = 2000 students and m = 40 schools. Stu-
dent preferences are generated with the Mallows model8 [10, 32, 33, 44]. In this model, a 
strict preference ≻s of student s is drawn with probability Pr(≻s):

Here � ∈ ℝ denotes spread parameter, ≻�s is a central preference (uniformly randomly cho-
sen from all possible preferences in our experiment), and d(≻s,≻�s) represents the Kendall 
tau distance , which is the number of pairwise inversions between ≻s and ≻�s . When � = 0 , 

Pr(≻s) =
exp(−𝜃 ⋅ d(≻s,≻�s))∑
≻�
s
exp(−𝜃 ⋅ d(≻�

s
,≻�s))

.

7  We tried several alternative methods for choosing q̂ and p̂ and we obtained similar results.
8  In this paper, we focus on a pure Mallows model. Indeed, a mixture of Mallows models better reflects 
real-life preferences but the corresponding matching problem is easier to solve as the preferences of stu-
dents become more diverse.
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Mallows model becomes identical to the uniform distribution (which is equivalent to the 
impartial culture in our setting) and, as � increases, quickly converges to the constant dis-
tribution returning ≻�s . In our simulations, we chose two realistic values for � which are 0.1 
and 0.3. The priority ranking of each school c is drawn uniformly at random. We created 
100 problem instances for each parameter setting.

We first compare QRDA and ACDA with Figs. 1, 2, and 3. In Fig. 1, we plot the ratio 
of students who strictly prefer QRDA over ACDA depending on � . Due to Theorem 10, 
no student strictly prefers ACDA, and thus, the students who do not strictly prefer QRDA 
over ACDA are indifferent between them. In market A and B, when � = 0.3 and � = 0.1 , 
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Fig. 3   Difference in the ratio of claiming students between QRDA and ACDA



Autonomous Agents and Multi-Agent Systems (2020) 34:23	

1 3

Page 25 of 29  23

approximately 38% of the students strictly prefer QRDA’s outcome. When � = 0.7 and 
� = 0.1 , approximately 8% of the students strictly prefer QRDA’s outcome. Therefore, 
we expect that policymakers will prefer QRDA over ACDA since it is never worse than 
ACDA and a non-negligible amount of students strictly prefer QRDA. Notice also that, as 
� becomes smaller, i.e., the set of school-feasible matchings expands, more students strictly 
prefer QRDA; indeed, there is more room for improvement in QRDA compared to ACDA. 
Finally, when � = 0.3 , student preferences are more similar and the competition among 
them becomes more severe. In such a case, the improvement obtained by QRDA is smaller 
than when student preferences are more diverse (i.e., � = 0.1).

To measure the difference of student welfare more quantitatively, we study the Borda 
score of students: when a student is assigned to her k-th favorite school, the corresponding 
Borda score is m − k + 1 . Figure 2 shows the difference between the average Borda score 
obtained by students in QRDA and in ACDA. For example, when � = 0.3 and � = 0.3 in 
market B, the average of difference is close to 1.0, which means that each student gets 
her next favorite school on average. This measure provides a further insight in market A. 
Recall that the ratio of students who strictly prefer QRDA is larger when the preferences 
are more diverse in Fig. 1. However, when � = 0.3 , the difference of Borda scores is greater 
with more similar preferences ( � = 0.3 ) than with diverse preferences ( � = 0.1 ). This result 
implies that the students who strictly prefer with QRDA improve greatly when � = 0.3.

Next, we show that QRDA is less wasteful than ACDA, by measuring the ratio of stu-
dents who claim empty seats in both mechanisms, i.e., we compute (|SACDA| − |SQRDA|)∕n , 
where SACDA (resp. SQRDA ) is the set of students who claimed empty seats in ACDA (resp. 
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QRDA). When this value is positive, more students claim empty seats in ACDA than 
in QRDA. We illustrate the results in Fig. 3. For all the instances that we generated, the 
number of claiming students in QRDA is weakly smaller than that of ACDA. Similarly to 
Figs. 1 and 2, as � becomes smaller, i.e., the set of school-feasible matchings expands, the 
difference becomes larger; there is more possibility to improve the matching with QRDA, 
but the trend is less definite compared to Figs. 1 and 2.

We continue our experimental evaluation by comparing QRDA and ESDA, with Figs. 4, 
5, and 6.

Figure 4 presents the ratio of students who strictly prefer QRDA over ESDA depending 
on � . We cannot theoretically guarantee that students always weakly prefer QRDA over 
ESDA. However, for all the instances that we generated, all students weakly prefer QRDA 
over ESDA. The trend is similar to Fig. 1. Actually, ESDA is worse than ACDA in terms 
of students welfare. Indeed, to satisfy minimum quotas, many students are assigned to less 
preferred schools.

Figure 5 shows that the average of the differences of Borda scores between QRDA and 
ESDA. The results are comparable to Fig. 2. Moreover, similar preferences lead to greater 
differences in Borda scores than diverse preferences when � = 0.3 but also 0.4 and 0.5.

In Figure 6, we plot the difference of the ratio of claiming students between QRDA and 
ESDA, similarly to Fig. 3. For all the instances that we generated, the number of claiming 
students in QRDA is weakly smaller than that of ESDA. The trend is variable but in a simi-
lar way as in Fig. 3.

5 � Conclusion

This paper introduced ratio constraints, which explicitly specify the required balance 
among schools in two-sided matching. Since they do not belong to a known well-behaved 
class of constraints (i.e., M-convex sets), we cannot use a general mechanism based on 
DA. We developed a fair and strategyproof mechanism, called QRDA, which is based on 
DA. We showed that QRDA inherits additional axiomatic properties from DA, such as 
weak group strategyproofness, weak Pareto optimality, and weak non-bossiness. In terms 
of student welfare, we proved that QRDA theoretically outperforms ACDA. Moreover, we 
experimentally showed that QRDA outperforms ACDA and ESDA in terms of student wel-
fare and nonwastefulness.
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Future works will (i) complete the axiomatic study of QRDA under constraints rep-
resented by union of symmetric M-convex  [46], and (ii) generalize our model such that 
schools are divided into different types (e.g., small/large schools) and different � values are 
imposed for different combinations of types (e.g., within small/large schools, � should be 
0.9, and between small and large schools, � should be 0.3).

Acknowledgements  This work was partially supported by JSPS KAKENHI Grant Number JP17H00761 
and JST Strategic International Collaborative Research Program, SICORP. We thank Ilan Nehama for valu-
able discussions on this subject.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Abdulkadiroğlu, A., Pathak, P. A., & Roth, A. E. (2009). Strategy-proofness versus efficiency in 
matching with indifferences: Redesigning the NYC high school match. American Economic Review, 
99(5), 1954–78.

	 2.	 Azevedo, E. M., & Leshno, J. D. (2016). A supply and demand framework for two-sided matching 
markets. Journal of Political Economy, 124(5), 1235–1268.

	 3.	 Aziz, H., Biró, P., Fleiner, T., Gaspers, S., de Haan, R., Mattei, N., & Rastegari, B, (2017). Stable 
matching with uncertain pairwise preferences. In Proceedings of the 16th international conference on 
autonomous agents and multiagent systems (AAMAS-17), pp. 344–352.

	 4.	 Aziz, H., Chen, J., Gaspers, S., & Sun, Z. (2018). Stability and pareto optimality in refugee allocation 
matchings. In Proceedings of the 17th international conference on autonomous agents and multiagent 
systems (AAMAS-18), pp. 964–972.

	 5.	 Aziz, H., Gaspers, S., Sun, Z., & Walsh, T. (2019). From matching with diversity constraints to match-
ing with regional quotas. In Proceedings of the 18th international conference on autonomous agents 
and multiagent systems (AAMAS-19), pp. 377–385.

	 6.	 Barberà, S., Berga, D., & Moreno, B. (2016). Group strategy-proofness in private good economies. 
American Economic Review, 106(4), 1073–99.

	 7.	 Biro, P., Fleiner, T., Irving, R. W., & Manlove, D. F. (2010). The college admissions problem with 
lower and common quotas. Theoretical Computer Science, 411(34–36), 3136–3153.

	 8.	 Cechlárová, K., & Fleiner, T. (2017). Pareto optimal matchings with lower quotas. Mathematical 
Social Sciences, 88, 3–10.

	 9.	 Cechlárová, K., Klaus, B., & Manlove, D. F. (2018). Pareto optimal matchings of students to courses in 
the presence of prerequisites. Discrete Optimization, 29, 174–195.

	10.	 Drummond, J., & Boutilier, C. (2013). Elicitation and approximately stable matching with partial pref-
erences. In Proceedings of the 23rd international joint conference on artificial intelligence (IJCAI-13), 
pp. 97–105.

	11.	 Dubins, L. E., & Freedman, D. A. (1981). Machiavelli and the Gale–Shapley algorithm. The American 
Mathematical Monthly, 88(7), 485–494.

	12.	 Ehlers, L., & Klaus, B. (2016). Object allocation via deferred-acceptance: Strategy-proofness and 
comparative statics. Games and Economic Behavior, 97, 128–146.

	13.	 Ehlers, L., Hafalir, I. E., Yenmez, M. B., & Yildirim, M. A. (2014). School choice with controlled 
choice constraints: Hard bounds versus soft bounds. Journal of Economic Theory, 153, 648–683.

	14.	 Fragiadakis, D., & Troyan, P. (2017). Improving matching under hard distributional constraints. Theo-
retical Economics, 12(2), 863–908.

	15.	 Fragiadakis, D., Iwasaki, A., Troyan, P., Ueda, S., & Yokoo, M. (2016). Strategyproof matching with 
minimum quotas. ACM Transactions on Economics and Computation, 4(1), 6:1–6:40.

http://creativecommons.org/licenses/by/4.0/


	 Autonomous Agents and Multi-Agent Systems (2020) 34:23

1 3

23  Page 28 of 29

	16.	 Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. The American 
Mathematical Monthly, 69(1), 9–15.

	17.	 Goto, M., Iwasaki, A., Kawasaki, Y., Kurata, R., Yasuda, Y., & Yokoo, M. (2016). Strategyproof 
matching with regional minimum and maximum quotas. Artificial Intelligence, 235, 40–57.

	18.	 Goto, M., Kojima, F., Kurata, R., Tamura, A., & Yokoo, M. (2017). Designing matching mechanisms 
under general distributional constraints. American Economic Journal: Microeconomics, 9(2), 226–62.

	19.	 Hafalir, I. E., Yenmez, M. B., & Yildirim, M. A. (2013). Effective affirmative action in school choice. 
Theoretical Economics, 8(2), 325–363.

	20.	 Hamada, N., Hsu, C., Kurata, R., Suzuki, T., Ueda, S., & Yokoo, M. (2017). Strategy-proof school 
choice mechanisms with minimum quotas and initial endowments. Artificial Intelligence, 249, 47–71.

	21.	 Hatfield, J. W., & Milgrom, P. R. (2005). Matching with contracts. American Economic Review, 95(4), 
913–935.

	22.	 Hosseini, H., & Larson, K. (2019). Multiple assignment problems under lexicographic preferences. 
In Proceedings of the 18th international conference on autonomous agents and multiagent systems 
(AAMAS-19), pp. 837–845.

	23.	 Hosseini, H., Larson, K., & Cohen, R. (2015). On manipulablity of random serial dictatorship in 
sequential matching with dynamic preferences. In Proceedings of the 29th AAAI conference on artifi-
cial intelligence (AAAI-15), pp. 4168–4169.

	24.	 Ismaili, A., Hamada, N., Zhang, Y., Suzuki, T., & Yokoo, M. (2019). Weighted matching markets with 
budget constraints. Journal of Artificial Intelligence Research, 65, 393–421.

	25.	 Kamada, Y., & Kojima, F. (2015). Efficient matching under distributional constraints: Theory and 
applications. American Economic Review, 105(1), 67–99.

	26.	 Kamada, Y., & Kojima, F. (2019). Fair matching under constraints: Theory and applications. Working 
Paper, Retrieved February 13, 2020, from http://ykama​da.com/paper​s/.

	27.	 Kawase, Y., & Iwasaki, A. (2017). Near-feasible stable matchings with budget constraints. In Proceed-
ings of the 26th international joint conference on artificial intelligence (IJCAI-17), pp. 242–248.

	28.	 Kojima, F. (2012). School choice: Impossibilities for affirmative action. Games and Economic Behav-
ior, 75(2), 685–693.

	29.	 Kojima, F., & Manea, M. (2010). Axioms for deferred acceptance. Econometrica, 78(2), 633–653.
	30.	 Kojima, F., Tamura, A., & Yokoo, M. (2018). Designing matching mechanisms under constraints: An 

approach from discrete convex analysis. Journal of Economic Theory, 176, 803–833.
	31.	 Kurata, R., Hamada, N., Iwasaki, A., & Yokoo, M. (2017). Controlled school choice with soft bounds 

and overlapping types. Journal of Artificial Intelligence Research, 58, 153–184.
	32.	 Lu, T., & Boutilier, C. (2014). Effective sampling and learning for mallows models with pairwise-

preference data. Journal of Machine Learning Research, 15, 3963–4009.
	33.	 Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44(1–2), 114–130.
	34.	 Murota, K. (1996). Convexity and steinitz’s exchange property. Advances in Mathematics, 124(2), 

272–310.
	35.	 Murota, K. (2003). Discrete convex analysis. Philadelphia: Society for Industrial and Applied 

Mathematics.
	36.	 Nguyen, T., & Vohra, R. (2017). Stable matching with proportionality constraints. In Proceedings of 

the 18th ACM conference on economics and computation (EC-17), pp. 675–676.
	37.	 Pápai, S. (2001). Strategyproof and nonbossy multiple assignments. Journal of Public Economic The-

ory, 3(3), 257–271.
	38.	 Roth, A. E. (1982). The economics of matching: Stability and incentives. Mathematics of Operations 

Research, 7(4), 617–628.
	39.	 Roth, A. E., & Sotomayor, M. A. O. (1990). Two-sided matching: A study in game-theoretic modeling 

and analysis. Cambridge: Econometric Society Monographs.
	40.	 Shapley, L. S., & Scarf, H. (1974). On cores and indivisibility. Journal of Mathematical Economics, 1, 

23–28.
	41.	 Sönmez, T. (2013). Bidding for army career specialties: Improving the ROTC branching mechanism. 

Journal of Political Economy, 121(1), 186–219.
	42.	 Sönmez, T., & Switzer, T. B. (2013). Matching with (branch-of-choice) contracts at the United States 

military academy. Econometrica, 81(2), 451–488.
	43.	 Tomoeda, K. (2018). Finding a stable matching under type-specific minimum quotas. Journal of Eco-

nomic Theory, 176, 81–117.
	44.	 Tubbs, J. (1992). Distance based binary matching. In C. Page, & R. LePage (Eds.), Computing science 

and statistics (pp. 548–550). Springer.

http://ykamada.com/papers/


Autonomous Agents and Multi-Agent Systems (2020) 34:23	

1 3

Page 29 of 29  23

	45.	 Yahiro, K., Zhang, Y., Barrot, N., & Yokoo, M. (2018). Strategyproof and fair matching mechanism 
for ratio constraints. In Proceedings of the 17th international conference on autonomous agents and 
multiagent systems (AAMAS-18), pp. 59–67.

	46.	 Zhang, Y., Yahiro, K., Barrot, N., & Yokoo, M. (2018). Strategyproof and fair matching mechanism for 
union of symmetric M-convex constraints. In Proceedings of the 27th international joint conference on 
artificial intelligence (IJCAI-18), pp. 590–596.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Strategyproof and fair matching mechanism for ratio constraints
	Abstract
	1 Introduction
	1.1 Related work

	2 Model
	3 Quota reduction deferred acceptance
	3.1 Mechanism description
	3.2 Mechanism properties
	3.3 Comparison with baseline mechanism

	4 Experimental evaluation
	5 Conclusion
	Acknowledgements 
	References




