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Ryan J. Marshman ,1 Anupam Mazumdar,2 and Sougato Bose1

1Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
2Van Swinderen Institute, University of Groningen, 9747 AG Groningen, The Netherlands
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This paper points out the importance of the assumption of locality of physical interactions, and the
concomitant necessity of propagation of an entity (in this case, off-shell quanta—virtual gravitons) between two
nonrelativistic test masses in unveiling the quantum nature of linearized gravity through a laboratory experiment.
At the outset, we will argue that observing the quantum nature of a system is not limited to evidencing O(h̄)
corrections to a classical theory: it instead hinges upon verifying tasks that a classical system cannot accomplish.
We explain the background concepts needed from quantum field theory and quantum information theory to
fully appreciate the previously proposed table-top experiments, namely forces arising through the exchange of
virtual (off-shell) quanta, as well as local operations and classical communication (LOCC) and entanglement
witnesses. We clarify the key assumption inherent in our evidencing experiment, namely the locality of physical
interactions, which is a generic feature of interacting systems of quantum fields around us, and naturally
incorporate microcausality in the description of our experiment. We also present the types of states the matter
field must inhabit, putting the experiment on firm relativistic quantum-field-theoretic grounds. At the end, we
use a nonlocal theory of gravity to illustrate how our mechanism may still be used to detect the qualitatively
quantum nature of a force when the scale of nonlocality is finite. We find that the scale of nonlocality, including
the entanglement entropy production in local and nonlocal gravity, may be revealed from the results of our
experiment.

DOI: 10.1103/PhysRevA.101.052110

I. INTRODUCTION

Recently, two papers [1,2] have discussed the possibility
of detecting quantum behavior of a linearized gravitational
field in a table-top experiment. The proposal crucially relies
on local quantum interactions between matter and the gravita-
tional field leading to the generation of entanglement between
the two nonrelativistic test masses, each initially prepared in
a superposition of distinct spatial states. This entanglement
is a proof of the quantumness of the mediating gravitational
field and can be witnessed by measuring the correlations
between individual spins which have been embedded in the
test masses [1]. The witness can be measured in a few runs
of the experiment if the entanglement generating phase due
to this gravitational potential between the two superposed
quantum systems is roughly of order 1. While the proposed
experiment had been couched in terms of Stern-Gerlach in-
terferometry [3,4], which enabled its formulation in terms of
a spin entanglement witness, it is possible that other settings
in which macroscopic superpositions are generated will work
just as well [5–12].

For the conclusion about the quantum nature of gravity
to follow from the aforementioned entanglement, it is very
important that “something” is exchanged between the test
masses when they interact mutually through their Newtonian
interaction. This point is often unclear when the proposed
entanglement generation experiment is presented in terms
of a direct Newtonian interaction between the test masses,
resulting in appropriate phase evolutions in their states which
entangle the masses. In fact, that approach is adopted purely

for convenience and we highlight here that there is a very
well-defined quantum mechanism for the Newtonian inter-
action where the entity which acts as a mediator of the
interaction is an off-shell (virtual) graviton. This is exchanged
between the test masses, and through a tree-level diagram
leads to the Newtonian interaction. Fundamentally, according
to quantum field theory, forces between two sources (say
two static charges) can be understood from the exchange of
virtual particles between them—photons, W ±, Z bosons, and
gluons—which are uncontroversially (by definition) quantum
mechanical [13]. Similarly, in the low-curvature regime, grav-
ity can be regarded as perturbations on a background, and
these perturbations can be regarded as a field. Within this
setting, the Newtonian interaction between two masses can
be considered as originating from the exchange of virtual
gravitons [14], which puts gravity, at least in this regime,
in exactly the same quantum footing as the other known
fundamental forces of nature.

However, the mere theoretical existence of a quantum
mechanism for the origin of the Newtonian force does not
prove that it is indeed that quantum mechanism that nature
has decided to adopt; only experiments can do that. As far as
current experimental evidences are concerned, it could equally
well be a classical field generated by a source mass which
affects a probe mass placed in that field—indeed there are
several proposed classical and semiclassical mechanisms to
generate a force with the same features as the Newtonian
force [15–23]. How do we know whether any of these other
mechanisms are adopted by nature or whether it is indeed the
exchange of quantum off-shell gravitons?

2469-9926/2020/101(5)/052110(13) 052110-1 ©2020 American Physical Society

https://orcid.org/0000-0001-8860-1510
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.052110&domain=pdf&date_stamp=2020-05-18
https://doi.org/10.1103/PhysRevA.101.052110


MARSHMAN, MAZUMDAR, AND BOSE PHYSICAL REVIEW A 101, 052110 (2020)

Detecting the quantum nature of an entity has historically
been through radical “qualitative” departures (such as the
photoelectric effect detecting energy quantization) or through
“quantitative” O(h̄) quantum corrections to energies and inter-
action potentials. However, the above strategies hardly seem
to be adaptable readily to the case of a laboratory test for
the quantum nature of gravity. Its on-shell quantum wave
packets, the gravitons (say, of a gravitational wave), carry
too little energy, while any O(h̄) quantum modifications of
the Newtonian potential are too small to witness for currently
available systems. Thus, the question arises: Could one clev-
erly design a laboratory experiment to reveal an underlying
quantum mechanism of the Newtonian gravitational force
itself? Unfortunately, this underlying quantum character is
completely hidden in the subset of experiments done so far;
these look solely at the classical effects of the force field.
Examples of this include the displacement of an object in
a Newtonian potential or the phase development of a wave
function of a quantum object in that classical field [24].
Furthermore, previous suggestions regarding observation of
gravitational effects cannot unambiguously falsify quantum
gravity [25].

Thus, the recent papers have had to propose an indirect
strategy [1,2]. If an agent entangles two quantum entities, the
agent must be performing quantum communication between
them; i.e., it must itself be a quantum entity. Through this idea,
the generation of entanglement between two masses is used to
witness the quantum nature of the agent acting between them.
Note that here we are testing a quantum feature of gravity in
a similar spirit to a Bell-inequality test on quantum systems
[26], which is an effect that does not go away when h̄ → 0,
as was shown a long time ago using two entangled large
spins [27,28], although it might become more challenging to
detect. Other similar quantum effects that survive as h̄ → 0
have recently been proposed in the context of the violation of
macrorealism by large spins and large masses [29,30]. Simi-
larly, the effect we suggest is a quantum effect that remains in
the h̄ → 0 limit, and while it is difficult to detect, we have
suggested, in Ref. [1], a domain in which it is feasible to
be observed. Several viewpoints have been presented regard-
ing the interpretation and applications of this idea: Ref. [1]
(supplementary material) and Refs. [2,20,31–37]. There have
also been noise analysis [38], as well as related independent
suggestions [39,40] and paradox resolutions [41,42] which
point toward the necessity of gravity to be quantum in nature.

In this paper, we seek to clarify the crucial assumptions
underlying the claim that the witnessing of entanglement in
the laboratory demonstrates the quantum nature of gravity.
Moreover, we will show that it all works consistently within
a quantum field theory context using a fully relativistically
covariant formalism for the propagator. This also naturally
clarifies how relativistic causality can be respected in the
treatment of the above experiments. We start by laying down
all our assumptions, the most important being the locality of
physical interactions, in the above evidencing of quantum-
ness. We clarify the manner in which the gravitational field
would entangle the spins via the energy momentum tensor of
the nonrelativistic mesoscopic superpositions. We will further
clarify the necessity of the interaction to be through a quantum
entity to allow such entanglement to form, by clarifying

why local operations and classical communications (LOCC)
cannot entangle the masses in our scenario. Specifically, as
the term “communication” may sound somewhat cryptic to
the physicist who thinks about interactions between fields,
we show the impossibility of a classical gravitational field
to create entanglement. The notion of classical field here is
kept very general and automatically includes situations such
as semiclassical gravity (quantum matter sourcing a classi-
cal gravitational field) and where the matter is not strictly
quantum mechanical in the usual sense—i.e., it has stochastic
evolutions beyond standard quantum mechanics (e.g., when
they are subject to fundamental collapse models) so that the
gravitational field generated is also stochastic. As far as the
experimental aspects are concerned, we emphasize why we
seek the simplest statistical procedure to witness the entangle-
ment rather than trying to estimate an entanglement measure.
Given the fundamentally quantum field theoretic nature of all
systems, one should also treat the test masses as described
by quantum fields. In this context, we present the type of
states the matter field must be assumed to inhabit for a simple
“bipartite” witnessing of the entanglement. Finally, adopting
the example of a nonlocal theory of gravity, where there is a
valid quantum propagator, we provide an example where our
method can still be used to witness the underlying quantum
nature of the field even though the theory is fundamentally
nonlocal at some scale. In fact, this example illustrates that as
long as the length scale of nonlocality is finite, our mechanism
is a valid approach as there is the need for entities to propagate
from point to point to convey an interaction. Interestingly
enough, our experiment can also be used to reveal the length
scale of nonlocality, if present.

II. UNDERLYING ASSUMPTIONS

To begin with, it is worth highlighting the key assumptions
underlying the inference of the quantum nature of gravity
from our tabletop experiment on gravitationally mediated
entanglement.

(1) Locality of physical interactions: One of the pillars of
quantum field theory is the assumption of locality. All the
interactions are assumed to be local at both classical and
quantum levels. Locality also ensures microcausality.1 In the
context of gravity, the local interaction is given by

κ2hμν (�r, t )T μν (�r, t ), (1)

where κ2 = (8πG)−1, G = h̄/M2
p is Newton’s constant, Mp ∼

1019 GeV, μ, ν = 0, 1, 2, 3, and we are working with signa-
ture (−,+,+,+). The energy momentum tensor of matter
is given by Tμν . The metric perturbation around Minkowski
background is

gμν = ημν + κhμν , (2)

1Specifically, the field operators for two masses φ̂1(xa ) and φ̂2(xb),
where xi are the four vectors for masses, minimally coupled through
the gravitational field, can be considered. When the two masses
are spacelike separated �s2(xa − xb) > 0 and [φ̂1(xa), φ̂2(xb)] = 0
and as such we have no faster than light signaling. Now, of course,
when �s2(xa − xb) < 0 and [φ̂1(xa), φ̂2(xb)] �= 0 and so all causal
relationships will behave as expected.
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where ημν is the Minkowski metric, and |κhμν | � 1, in order
to maintain the linearity. A priori hμν need not be quantum
at all, though the matter part of the energy momentum tensor
could be a quantum entity.

The concept of locality is also an important criteria from
the perspective of quantum information and quantum entan-
glement. In particular, under LOCC, two particles exchanging
only classical energy momentum will not lead to enhancement
in entanglement. Note that while LOCC is used as a principle
to define mixed-state entanglement [43,44], it can be easily
proved when we start from an unentangled state of two objects
as in the case of the experiments described in Refs. [1,2]. In
fact, in these experiments, the two applications of locality,
i.e., in defining local quantum field theories and in prohibiting
entanglement generation at a distance without quantum com-
munication, are brought together. It is very important to note
that the locality is not proven through our experiment—that
is not its purpose—locality is assumed from our knowledge
of physical interactions in the observed regimes. It is the
quantum aspect which we prove after assuming the locality.

Of course, as opposed to a local quantum theory, nonlocal
field theories have also been developed since the days of
Yukawa [45], and Pais and Uhlenbeck [46]. There has been a
recent resurgent in understanding them as well in the context
of field theory [47–50] and in quantum mechanics [51–53].
Note these are, however, not “action at a distance” theories.
One of the features of a nonlocal theory is that it does not
have a point support [49,54,55]; therefore it is very helpful for
ameliorating some of the singularities in nature, such as point
singularity, due to gravitational 1/r potential.2

In this paper, as an alternative to local gravitational interac-
tion, we will also study a nonlocal theory of gravity [50], and
show that, although nonlocal, its quantum nature can still be
evidenced. This means that the type of locality assumption we

2Infinite derivatives acting on δ Dirac source do not have point
support. Let us consider a one-dimensional problem,

eα∇2
x δ(x) = 1√

2π

∫
dke−αk2

eikẋ = 1√
2α

e−x2/4α , (3)

Note that the left-hand side is a nonlocal operator acting on a δ Dirac
source, with a scale of nonlocality given by α−1. The result is a
Gaussian distribution. In a very similar fashion one, can also resolve
the singularity present in a rotating metric in general relativity [56]
and the singularity due to a charged electron [57]. The nonlocal
theories arise in many contexts in quantum gravity; in string theory,
the notion of point objects are replaced by strings and branes [58],
dynamical triangulation [59], and loop quantum gravity [60], and
a casual set approach [61] exploits Wilson operators which are
inherently nonlocal. The string field theory introduces nonlocality
at the string scale, for a review see Ref. [62], and infinite derivative
ghost-free theory of gravity (IDG) [50], which does not introduce any
instability around a given background, is motivated by string field
theory [63–65]. In particular, in string field theory and in IDG the
nonlocality appears only at the level of interactions. Note that loss of
locality will also give rise to violation of microcausality. However, it
has been shown that for the specific class of nonlocal theories we are
interested in here, the violation of causality is limited to the scale of
nonlocality [47,48,66,67].

require in our experiment is not prohibitively restrictive and
depends on the scale of nonlocality of the theory.

(2) Linearized gravity: Note that we are always working
in a regime of weak field gravity, linearized around the
Minkowski background. In this way, we avoid highly nontriv-
ial space-times as the background (the experiment is to be car-
ried out on Earth or a satellite in space). This also means that
the gravitational potential is always bounded below unity. In
fact, below the millimeter scale, we have no direct constraint
on Newtonian 1/r potential [68].3 We are working in a regime
of roughly >100 μm, and for the masses under consideration,
the gravitational interaction is indeed weak and justifies the
treatment of linearized gravity. At distances >100 μm, the
Casimir interaction is weaker than that of the gravitational
interaction; see Ref. [1]. We have also outlined in Ref. [1]
how to get rid of all the competing electromagnetic forces; so
that the only force is gravitational, we have to also ensure that
no as yet unknown “fifth force” acts here which essentially
can also entangle the masses as a Newtonian force would do.
This again is easy to ensure for separations >100 μm for
which Newtonian gravity has been very well tested. Similarly,
the velocities of the masses are firmly in the nonrelativistic
regime so that the physics is well described by the Newtonian
regime.

(3) Definition of a classical field: Note that here we are
not defining what makes something quantum, but rather we
clarify at the outset what we mean by a “classical” field. We
simply take a classical field to be an entity which with general
probabilities Pj has fixed (unique) values h j

μν at each point of
space-time (here we have used a tensor field in the definition,
but it could be scalar, spinor, etc.). Of course, a special case
of that is when there are no probabilities at all—the field
just has a value hμν . There is a reason that we are using a
much broader definition than simply a unique value—namely
we are allowing also the probability of the field statistically
having different values with different probabilities. This is just
to carefully emphasize that the statistical nature of something
does not make it quantum (think of a classical die)—quantum
comes with the possibility of going beyond statistical mixtures
of field configurations to coherent superpositions of field
configurations. Additionally, we demand that a classical field
means that we are not even allowed to think of a Hilbert
space for the field, i.e., even joint quantum states of fields
with other (say, matter) systems is disallowed; i.e., states of
the form

∑
j

√
Pj | j〉|h j

μν〉 are not allowed. The only allowed
joint states of quantized matter and classical field are the
probability distributions Pj of configurations {| j〉〈 j|, h j

μν},
where h j

μν is a tensor for each point in space time but not
an operator-valued quantity. Our definition of classical field,
and the consequences which follow from it (cf. Sec. IV) are
very standard (if one expands significantly the definition of
what is meant by classical, one will, of course, get other
consequences [32]). Here we are defining a classical field

3Recently, the bound on short-distance gravitational potential has
been improved but the constraints are for the Yukawa-type gravita-
tional potential, which depends also on the strength of the Yukawa
interaction [68–70].
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as, for example, used by Feynman during his 1957 debate
with other researchers on the quantum nature of gravity [71]:
“... if I have an amplitude for a field, that’s what I would
define as a quantized field.” So a classical field is one which
has probabilities for various field configurations rather than
amplitudes for various field configurations.

III. A QUANTUM ORIGIN OF THE NEWTONIAN
POTENTIAL IN LINEARIZED QUANTUM GRAVITY

The Einstein-Hilbert equation around the Minkowski back-
ground is given by

SEH = 1

4

∫
d4x hμν Oμνρσ hρσ + O(κh3), (4)

where O(κh3) takes into account of higher order terms in the
perturbation, while the four-rank operator Oμνρσ is totally
symmetric in all its indices and defined as

Oμνρσ := 1
4 (ημρηνσ + ημσηνρ )� − 1

2ημνηρσ�
+ 1

2 (ημν∂ρ∂σ + ηρσ ∂μ∂ν − ημρ∂ν∂σ − ημσ ∂ν∂ρ ),

(5)

for � = ημν∇μ∇ν . By inverting the kinetic operator, we
obtain the graviton propagator around the Minkowski back-
ground. It is saturated between two conserved currents [in our
case these are energy momentum tensors; see Eq. (8)] and the
gauge-independent part is given by [72,73]4

μνρσ (k) =
(
P2

μνρσ

k2
− P0

s, μνρσ

2k2

)
, (6)

where P2 and P0
s are two spin projection operators projecting

along the spin-2 and spin-0 components, respectively; see
Refs. [72–74] for further details. The Newtonian potential
between the two masses, T μν

1 ∼ mδ
μ
0 δν

0δ(3)(�r) and the unit
mass T μν

2 ∼ δ
μ
0 δν

0δ(3)(0) can be computed via a scattering
diagram in quantum field theory. This can be envisaged by
a transition amplitude in quantum mechanics, which we will
discuss briefly. In fact, this part of the discussion is common
to any quantum field theory, which has well defined initial and
final states. Various examples will be Coulomb interaction via
an exchange of a photon, or Yukawa potential via an exchange
of a meson field; see Ref. [75].

4By definition, off-shell graviton does not obey the classi-
cal equations of motion; see this discussion below. The gravi-
ton propagator in general relativity can be recast as μνρσ (�k) =

1
2�k2 (ημρηνσ + ηνρημσ − ημνηρσ ). This propagator can be obtained
either in a particular gauge known as harmonic gauge, or it can
be obtained by using the projection operator technique defined
in Appendix A. For the details of the projection operator, see
Refs. [72–74].

Note that in quantum mechanics the transition matrix ele-
ment is given by the perturbation expansion:5

Tfi = 〈 f |V |i〉 +
∑
j �=i

〈 f |V | j〉〈 j|V |i〉
Ei − Ej

+ · · · . (7)

The transition matrix element determines the transition rate
of any process going from initial state i to final f . The first
term in the perturbation series, 〈 f |V |i〉, can be imagined as
scattering in a fixed potential. Such a scattering is considered
unsatisfactory because the transfer of momenta happens with-
out any mediating field. Also, the force obtained from such a
potential will lead to violation of special theory of relativity,
immediate action at a distance. Nevertheless, this is purely
a classical scattering in a fixed potential. The potential here
could be Coulomb or gravitational or Yukawa potential. In
this sense, the potential here is purely a classical concept.
The transition matrix is Tfi = 〈ψ f |V (r)|ψi〉, where V (r) is the
static potential for Coulomb, Yukawa, or gravitational.

The second term in the series can be viewed as scattering
via an intermediate state j. In quantum field theory, inter-
actions between particles always happen via an exchange of
a mediator, which can be understood in time-ordered pertur-
bation theory. For a process a + b → c + d via an exchange
of quanta, X will have two time ordered diagrams. Summing
the matrix element for both the time-ordered diagrams yields
a Feynman propagator; see Ref. [75]. An off-shell/virtual
exchange of the mediator X satisfies the conserved energy
momentum tensor at the two vertices, but does not satisfy
the classical on-shell equations of motion. By this, we mean
that the propagator does not satisfy the Einstein energy-
momentum relationship and it is termed as off mass-shell,
off-shell, or virtual. By definition, a graviton propagator, see
Eq. (6), is a nonclassical entity, precisely because k2 �= 0,
and in order to find the potential, we are integrating over all
possible values of k; see the derivation below in Eq. (8). The
forces between particles now result from the transfer of the
momentum carried by the exchanged spin-2 graviton, which
has two off-shell propagating degrees of freedom as shown in
Eq. (6).

For a nonrelativistic setup, we are only interested in
00 components. The two conserved vertices will be the
two masses, T μν

1 ∼ mδ
μ
0 δν

0δ(3)(�r), and the unit mass T μν
2 ∼

δ
μ
0 δν

0δ(3)(0). The nonrelativistic potential will be given
by integrating all the momenta of the off-shell graviton
propagator 0000:

�(r) = − κ2
∫

d3|�k|
(2π )3

T 00
1 (k)0000(k)T 00

2 (−k)ei�k·�r

= − κ2m

2

∫
d3|�k|
(2π )3

1

�k2
ei�k·(�r) = −Gm

r
, (8)

which recovers the Newtonian potential. The above potential
has been obtained in a scattering theory.6 Note that we are

5There are many textbooks on quantum field theory to which the
readers can refer. Here we have provided a lucid discussion in
Ref. [75]; see Secs. 5.1 and 5.2.

6The above potential result could have been obtained following
real-time formalism, or Schwinger-Keldysh formalism [76,77]. This
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FIG. 1. T-channel scattering Feynman diagram which is read
with time in the vertical direction and space in the horizontal di-
rection with zero momentum transfer. The dashed rectangle shows
the local operation (LO) region during the interaction, where the
particles A and B interact locally with the off-shell graviton. The
curved line represents the exchange of off-shell gravitons, which acts
as a mediating quantum channel (QC).

integrating over the off-shell or virtual massless graviton as
depicted in Fig. 1. A virtual or off-shell particle is a mathe-
matical construction, which represents the effect of summing
over all possible time-ordered diagrams. By definition, such a
process [summing over intermediate states | j〉 as in Eq. (7)]
involves quantum superposition of different off-shell graviton
states, making it a entirely quantum process. An off-shell
particle does not satisfy the classical equations of motion, and
therefore it is considered to be nonclassical.

For different modifications of the graviton propagator the
potential will be different; for instance, if there is an extra
scalar degree of freedom propagating, then potential will be of
Yukawa type.7 We will consider one such modification in the
nonlocal setup. The analysis of this section, however, provides
the quantum mechanism necessary to make sense of the result
that the observation of entanglement generation mediated by
gravity implies the quantum nature of linearized gravity. In
other words, if and only if gravity is quantum, then this would
inevitably lead to entanglement between two or more, generic,
matter states.

IV. IMPOSSIBILITY OF ENTANGLEMENT THROUGH
A CLASSICAL FIELD

The aim here is to test whether 1/r potential is being
mediated by a classical or a quantum channel. One can also
obtain 1/r potential without a mediator, where there is no
need to invoke a graviton as a propagator or a mediator. In
this case, the particles act as sources for field which gives rise
a potential in which other particles scatter. This is precisely
the classical scenario. This classical mediator could be a
potential V as presented by the first term in note 7. We will
here show that with such a setup it is impossible to develop
entanglement as this may not be immediately clear to all
readers. Those familiar with the topic will recognize this as
the well-established entanglement nonincreasing property of

method is more powerful for doing out-of-equilibrium, or one- (and
higher-) loop computations as well, but here we are interested in the
tree-level, nonrelativistic, scattering diagram, for which the answer
would be exactly the same as that of Schwinger-Keldysh formalism;
see Ref. [78].

7Original Yukawa potential was also obtained by the scattering
amplitude of an exchange of a meson field between the two fermions.

local operations and classical communication (LOCC) [79].
Consider the two quantum bodies A and B to be initially in the
separable state |ψ〉A ⊗ |φ〉B. These are acted on by the set of
local operators {Âi, j} and {B̂ j,k} respectively. These could be
enacted by experimentalists Alice and Bob, and can occur due
to natural evolution of the systems in isolation or as a direct
result of interacting with the shared classical channel (field).
Here the labels i and k allow for multiple operators acting on
each body, while we allow for a classical channel to transmit
arbitrary classical information, here encoded in the parameter
j.8 In the case of a classical gravitational field, this could be
some function of the average over the position distributions of
|ψ〉A and |φ〉B as used in the Schroedinger-Newton equation,
or it could encode the result of the stochastic collapse of the
wave functions |ψ〉A and |φ〉B or something else entirely. To
account for this generality, it is necessary to use the density
matrix formalism to describe the evolution of the masses.
Furthermore, we can write the evolution of each quantum state
by some total evolution operator Âi, j (t ) ⊗ B̂ j,k (t ). In this way,
we can write the arbitrary evolution of the local operations
acting on the two quantum masses with arbitrary classical
information shared between them as

ρ(t ) =
∑

i

∑
j

∑
k

p(i)p( j)p(k)

× Âi, j (t )|ψ〉A〈ψ |AÂ†
i, j (t ) ⊗ B̂ j,k (t )|φ〉B〈φ|BB̂†

j,k (t ),
(9)

where p(i) and p(k) encode probabilities for various operators
acting on the matter states and p( j) can encode the classical
probabilities corresponding to different classical field con-
figurations h j

μν present (multiple field configurations leading
to different values of the parameter j can occur if there are
any stochastic collapses of the gravitational field due to any
stochastic collapses of the matter states). Equation (9) can
reproduce arbitrary local evolution of both quantum masses
and arbitrary classical correlations between the two masses.
It is, however, trivial to see that regardless of this the total
state remains separable, that is, unentangled. The use of the
total evolution operators hides much of the details of how the
quantum states evolve; for example, for physically realistic
evolutions one should expect them to include the necessary
provisions to maintain causality. This hidden detail, however,
cannot change the final conclusion that the exchange of clas-
sical information, be it via a gravitational field or telephone
wire, coupled with arbitrary local operations, will not entangle
two quantum systems.

Because of the generality of the above treatment, it follows
that starting from a separable state of two systems A and
B, quantum entanglement cannot be generated by any model

8The parameter j can encode any classical information, for ex-
ample, a classical metric perturbation hμν as created by the mass
distributions of A and B acting as sources. In the case of semiclassical
gravity, this hμν could be a function of the expectation value of the
source stress energy tensor, i.e., 〈Tμν〉, such as in the Schroedinger-
Newton equation, or due to the source mass after its been localized by
stochastic, spontaneous collapse as is predicted by collapse models
[21] or something else entirely.
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(a) (b)

FIG. 2. Experiment setup showing the two interferometers, the
two particles (A and B), their trajectories (dotted blue path), and their
corresponding position and equivalently spin state, and the quantum
channel (QC) mediating the interactions between the four position
states. The dashed rectangle encompasses the local operations (LO)
regions for particles A and B. The solid gray lines show the gravita-
tional interactions which lead to entanglement, while the dashed red
lines are examples of some of the unwanted interactions which could
occur for non-Fock mass states.

in which gravity is a classical field (classical according to
the standard definition given in Sec. II). This automatically
encompasses all specific models such as the Moller-Rosenfeld
semiclassical gravity model and models where the matter
field undergoes collapses and sources a stochastic classical
gravitational field [80,81].

V. ENTANGLEMENT IN GRAVITATIONALLY
INTERACTING INTERFEROMETER

For completeness, in this section we will provide an
overview of the experiment being discussed throughout this
paper. The setup, shown in Fig. 2, consists of two meso-
scopic mass (≈10−14 kg) microspheres with embedded spins
traversing two Stern-Gerlach interferometers in close prox-
imity to one another. The two masses become entangled
due to the varying gravitational interaction between them
due to the differing separations of the interferometer arms.
The interferometric process is completed by bringing to-
gether the two spatial wave packets, which leads to the path
phase differences being imprinted into the particles spin state,
with any entanglement measured by their spin correlations
(cf. Sec. VI).

Each mass will initially be in a spatial superposition of
being both “left” and “right” with the two particle joint state
as a function of the form |ab〉 where a ∈ {l, r}, b ∈ {L, R}, as
shown in Fig. 2. The two masses are treated as nonrelativistic
(stationary) point particles, both with mass m such that the
only nonzero component of the stress energy tensor will be

T 00 = mδ3(�x − �xa) + mδ3(�x − �xb). (10)

To model the results of interactions between two particles,
both in superposition states, we employ the Feynman style
logic treating the resulting total state as the sum of four
individual amplitudes, each belonging to the separate field
configurations created by each possible joint state for the
matter, with each component evolving as9

|ab〉 → e−i Gm2τ
h̄rab |ab〉, (11)

where this evolution is derived from Eq. (8) and τ is the
interaction time, implicitly assuming each mass is within the
light cone of the other situated with its origin at the point in
which the superposition is created (t = 0). Using Eq. (11) and
considering the four interactions shown as solid gray lines in
Fig. 2 give

|ψ (0 � t < δt )〉 = 1√
2

(|l〉 + |r〉) ⊗ 1√
2

(|L〉 + |R〉), (12)

|ψ (t = τ + δt )〉 = 1

2

(
e−i Gm2τ

h̄rlL |lL〉 + e−i Gm2τ
h̄rlR |lR〉

+ e−i Gm2τ
h̄rrL |rL〉 + e−i Gm2τ

h̄rrR |rR〉), (13)

giving the entanglement between the two masses as found
as in Ref. [1], where rab = |�xa − �xb| is the distance between
the two masses. As such, we have the standard Newtonian
potential appearing to mediate the interaction between the two
masses.

NOON states

In quantum field theory, the masses should be considered
as excitations of a quantum field [82], such as a Fock state of
fields φ̂1 and φ̂2 where

|ab〉 = (φ̂†
1 (a)φ̂†

2 (b))|0〉. (14)

Here φ̂
†
i (x) is the creation operator which creates a mass cen-

tered at x and where each object is in a spatial superposition

1√
2

[φ̂†
1 (l ) + φ̂

†
1 (r)]|0〉 (15)

such that there cannot be any interaction between the two
arms within an interferometer of the form shown in Fig. 2
by Ulr . For each mass, the mass field must be in a state
qualitatively similar to Eq. (15). In the proposals, the mass
states are taken to be in this exact state. One can also identify
each mass as fundamental or composite. Rather than a single
object, a collection of fundamental particles is a NOON state
(|n, 0〉 + |0, n〉 in the Fock basis), which corresponds to a
superposition of n fundamental particles (nucleons, electrons,
etc.) in the first arm of the interferometer and 0 in the second
and vice versa. Furthermore, it is sufficient to consider a single
excitation of a large (10−14 kg) mass field as there is (a)
not enough energy to create a second 10−14 kg excitation

9It is perhaps worth clarifying that when the mass exists in a
spatial superposition of being in two locations (i.e., superposition
of �xa = �xl and �xa = �xr and similar for �xb), we do not have T 00 =
1
2 [mδ3(�x − �xl ) + mδ3(�x − �xr )] + 1

2 [mδ3(�x − �xL ) + mδ3(�x − �xR )].
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of the mass, and (b) not enough energy to disassociate the
mass into its individual components. As such, the internal
dynamics of the mass is unimportant here. Also, if a co-
herent state in each arm of the interferometer of the form
e

|αl |2
2 e

|αr |2
2 eαl φ̂

†
1 (l )eαr φ̂

†
1 (r)|0〉 was used, as one would expect in

a noninteracting or weakly interacting Bose-Einstein conden-
sate (BEC), this would create interactions of the form Ulr

which will not result in entanglement of the form necessary
to demonstrate the quantum nature of gravity.

If a continuous stream of particles were used, such inter-
actions (Uaa′/bb′ and Ulr/LR) could dominate any signal from
the interarm interactions (UaB), effectively overwhelming the
entangling signal in the noise of these other interactions. For
this reason, NOON states of BECs would have to be used
[83]. For example, consider that if the mass state employed
was |ψ (0 � t < δt )〉 = φ̂

†
1 (l )φ̂†

1 (r)φ̂†
2 (L)φ̂†

2 (R)|0〉 then inter-
actions of the form Ulr would be allowed, and Eq. (13) would
become

|ψ (t = τ + δt )〉 = e−i Gm2τ
h̄ ( 1

rlL
+ 1

rlR
+ 1

rrL
+ 1

rrR
+ 1

rlr
+ 1

rLR
)

×φ̂
†
1 (l )φ̂†

1 (r)φ̂†
2 (L)φ̂†

2 (R)|0〉, (16)

which is not an entangled state. Thus, is it necessary to prepare
the matter states in NOON states of a quantum field during the
initialization of the experiment.

VI. WITNESSING ENTANGLEMENT THROUGH
MEASUREMENT STATISTICS

The experimental proposal [1] will result in an output state
consisting of two entangled spin qubits (that is, of course,
assuming gravity is quantum). To understand how such en-
tanglement is verified, it is worth discussing what quantum
entanglement is. For a bipartite state to be entangled means
the state cannot be written as the tensor product of the states of
each particles, that is, a state is not entangled (it is separable)
if it can be written

ρ =
∑

j

p( j)ρA, j ⊗ ρB, j, (17)

where |φ〉A and |χ〉B are arbitrary states belonging to the
Hilbert space of particles A and B respectively and

∑
j p( j) =

1. If we restrict ourselves to bipartite, pure qubit states, then
we can understand and quantify entanglement by the von
Neumann entropy of the reduced density matrix, defined as

S (ρ̂A) = −Tr[ρ̂A log2 (ρ̂A)]. (18)

Take, for example, the maximally entangled, product state

|ψ〉 = 1√
2

(|00〉 + |11〉); (19)

then we have a corresponding density matrix ρ̂ = |ψ〉〈ψ |.
Tracing out one of the particles leaves a reduced density
matrix

ρ̂A = TrB(ρ̂ ) ∝ IA, (20)

which corresponds to a maximal entropy state, where S (ρ̂A) =
1. This can be understood as the idea that fully entangled
particles will contain information about the other particle too,

and by throwing away the information held by only one of
the particles (tracing it out), the result contains no useful
information. If the initial state was instead separable, then
the reduced density matrix would correspond to that for a
completely ordered state. In view of the above, one might
expect witnessing the masses initially in pure states (low
entropy) evolving into mixed states (high entropy) would
prove entanglement; however, this is not the case. In a realistic
experiment, decoherence (such as entanglement with the envi-
ronment) which creates a mixed state, and so also maximizes
entropy, cannot be ruled out. As such, no conclusion could be
drawn from actual measurements of the entropy.

Alternatively, entanglement measures which are compati-
ble with mixed states can be used; for example, concurrence
or an entanglement witness can be used. The concurrence can
be calculated for a general (pure or mixed) two qubit state,
which the two spin states can be thought of as, using

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (21)

where λi is the square root of the eigenvalues of the matrix ρρ̃

arranged in decreasing order, for ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).
Again, this is maximized by maximally entangled states
such as Eq. (19), which gives C(ρ) = 1. However, to cal-
culate the concurrence, the entire state’s density operator is
needed, which requires full state tomography, a measurement-
intensive process that requires six expectation and nine corre-
lation measurements. To avoid this, entanglement witnesses
can be used, which look at correlations between the two parti-
cles, and in this way any measured entanglement is confirmed
to be between the two particles and not between one particle
and its environment. Such an entanglement witness W (ρ̂) is
defined such that it has the property that it evaluates to greater
than 1 only if ρ̂ is entangled. It is important to note that the
converse is not true; that is, if it is not greater than 1, it does
not imply anything about ρ̂. Furthermore, such witnesses need
to be created to detect the specific entangled state, which can
be difficult in general, and will necessarily detect a different
state as entangled, even if it is maximally entangled. However,
due to the simple nature of the final state, a suitable witness
was found to be

W = ∣∣〈σ (1)
x ⊗ σ (2)

z

〉 − 〈
σ (1)

y ⊗ σ (2)
y

〉∣∣ , (22)

which is sufficient for discriminating the entanglement as it
is expected to develop in the tabletop experiment. It also only
requires two sets of measurements for each particle.

VII. NONLOCAL GRAVITY

The entanglement experiment protocol is also not limited
to probing the quantum nature of local gravitational models;
it could also be used to probe the quantum nature of gravity
which is nonlocal over a microscopic scale as well as mod-
ifications to the gravitational potential at short distances, for
instance, modifications of gravity in the ultraviolet. The most
general quadratic action in four dimensions, which is invariant
under parity and also torsion-free, is given by [50]

S = 1

16πG

∫
d4x

√−g{R + β(RF1(�s)R

+RμνF2(�s)Rμν + RμνρσF3(�s)Rμνρσ )}, (23)
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where �s = �/M2
s and Ms is considered as the fundamental

scale of nonlocality, which in the context of string theory
corresponds to the string scale. Within M−1

s the microcausality
is violated [47,48,66,67]. For � � M2

s , the theory becomes
that of a local theory with a low-energy limit given purely by
the Einstein-Hilbert action [50]. Furthermore, by considering
such a modified gravity, we are also demonstrating that our
local gravity assumption is not as strict as it might appear
provided the locality is violated at a microscopic level and the
time and length scales of our experimental setup are larger
than M−1

s . The three gravitational form factors Fi(�s) are
covariant functions of the d’Alembertian and can be uniquely
determined around the Minkowski background [50,84]. We
can set F3(�s) = 0, without loss of generality up to quadratic
order in the metric perturbation around the flat background,
and we can keep the massless spin-2 graviton as the only dy-
namical degree of freedom by imposing the following condi-
tion:10 2F1(�s) = −F2(�s) as shown in Ref. [50] around the
Minkowski background. By expanding around Minkowski,
gμν = ημν + κhμν, we obtain

S = 1

4

∫
d4x hμν (1 − F1(�s)�s)Oμνρσ hρσ + O(κh3), (24)

and the saturated and gauge-independent part of the propaga-
tor is given by [50,73]

μνρσ (k) = 1

1 + F1(k)k2/M2
s

(
P2

μνρσ

k2
− P0

s, μνρσ

2k2

)
, (25)

where P2/k2 − P0
s /2k2 is the graviton propagator of Ein-

stein’s general relativity (GR); see Eq. (6). Note that in order
to not introduce any extra dynamical degrees of freedom other
than the massless spin-2 graviton, we need to require that the
function 1 + F1(k)k2/M2

s does not have any zeros, i.e., that it
is an exponential of an entire function [50]:

1 + F1(k)
k2

M2
s

= eγ (k2/M2
s ), (26)

where the γ (k2/M2
s ) is an entire function. We will mainly

work with the simplest choice γ (k2) = k2/M2
s ; see also

Refs. [88,89] for other examples of entire functions. In all
these examples, the short-distance behavior becomes soft and
in the IR the gravitational potential matches that of Newtonian
prediction. Now we can compute the scattering diagram. The
key difference from a local gravitational theory is now the
existence of a new scale, Ms, which determines the interaction
at short distances. For k2 � M2

s , the nonlocal contribution
becomes exponentially small, or in length scale r > M−1

s , the
theory predicts the results of local Einstein-Hilbert action.

We can now compute the gravitational potential by inte-
grating all the momenta of the off-shell graviton, assuming
the two vertices are nonrelativistic. Essentially, taking the T 00

components only, and with modified graviton propagator, we

10In this paper, we will only consider analytic form factors. How-
ever, it is worth mentioning that nonlocal models with nonanalytic
differential operators have been investigated by many authors; see,
for example, Refs. [85–87].

FIG. 3. Potential energy per unit test mass as generated by a
m = 10−14 kg source mass for both the standard newtonian potential
(�N ) and the modified infinite derivative gravity potential (�IDG).
The nonlocal parameter for �IDG was set to Ms = 0.004 which
corresponds to a nonlocal range λ = 5×10−5 m; see Ref. [89].

obtain

�IDG(r) = −κ2
∫

d3|�k|
(2π )3

T 00
1 (k)0000(k)T 00

2 (−k)ei�k·(�r)

= −κ2m

2

∫
d3|�k|
(2π )3

e−�k2/M2
s

�k2
ei�k·(�r),

= −Gm

r
Erf

(
Msr

2

)
. (27)

Note that the gravitational potential is now modified.
In particular when r < 2/Ms, the error function increases

linearly with r, which cancels the denominator. Therefore,
at short distances, for r < 2/Ms, the gravitational potential
becomes constant and is given by

�IDG(r) ∼ GmMs√
π

, (28)

while for r > 2/Ms, the error function approaches ±1, and
therefore the potential recovers the standard Newtonian po-
tential, −Gm/r, as seen in Fig. 3.

One can compute various gravitational invariances, includ-
ing the Kretschmann invariance, which remains constant as
r → 0; see Ref. [90]. Indeed, note that this computation has
been performed in the linear theory. To be consistent here, the
gravitational singularity is ameliorated when the gravitational
potential is still within the linear regime:

2|�IDG(r)| < 1, mMs < M2
p . (29)

Since the entanglement phase depends on the potential,
at short distances (r < 2/Ms) the gravitational potential ap-
proaches constant as long as the interseparation distance is
well within the nonlocal region. It has also been shown
that nonlocality never exceeds beyond the nonlocal scale
of Ms; see, for instance, Refs. [46,47,66,67]. Therefore, if
all superposition components of the two masses are well
inside the radius of r = 2/Ms, the entanglement phase, which
is dependent on the potential varying for different spin
components, will linearly go to zero. This has indeed very
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intriguing repercussions for the entanglement phase, despite
the fact that the treatment of the linearized graviton remains
quantum. The nonlocal interaction weakens the gravitational
potential by smoothing out the spacetime. This serves as an
interesting example of how nonlocal interactions can alter
the quantum behavior of the many-body system. However,
for r > 2/Ms, the entanglement phase is the same as that of
general relativity, which is similar to our previous local case.

The entanglement witness experiment results can be quan-
tified by the two parameters �φLR and �φRL, which we
can compare for the two gravitational potentials considered
here. For an experimental setup involving 10−14 kg masses,
2.5×10−4 m superpositions, and a minimum separation of
2×10−4 m, assuming standard Newtonian gravity, �φLR =
−0.125 rad and �φRL = 0.439 rad, whereas for IDG, �φLR =
−0.125 rad and �φRL = 0.435 rad, for Ms = 0.004 eV, which
corresponds to 5×10−6m. This translates to an expected en-
tanglement witness value W = 1.223 with IDG compared to
W = 1.224 for standard Newtonian gravity.

Given the power of entanglement entropy in fully quan-
tifying the amount of entanglement in pure states, and its
current importance in quantifying entanglement in quantum
field theories [91], it can also be insightful to consider it.
Furthermore, although incredibly difficult, if we could ensure
that the two-mass state, and eventually the two-spin state to
which the entanglement is mapped, remains pure, we can
measure the full density matrix for one of the qubits with only
three spin measurement settings and from that calculate the
entanglement entropy given by Eq. (18). The entanglement
entropy for the experiment, given by

S (ρ̂A) = −[λ− log2 (λ−) + λ+ log2 (λ+)], (30)

where

λ± = 1

2
± 1

2

{
1

2

[
1 + cos

(
mτ

h̄
[�(r0 − �x)

+ �(r0 + �x) − 2�(r0)]

)]}1/2

, (31)

and r0 and �x are the distance between the center of the
interferometers and superposition size respectively, is shown
in Fig. 4 for both gravitational potentials. See Appendix B
for more detail. In the experimental proposal, using time
τ ≈ 2.5 s, we can see, although it is small, that there is
a quantitative difference between the two gravitational po-
tentials with S (ρ̂A) = 0.054 for a Newtonian potential and
S (ρ̂A) = 0.053 for IDG. The figure also shows that there is
very little entanglement in the output state, which tends to
zero for increasing separations, and which is a result of the
weakness and spatial dependence of gravity. As such, there
would be slight changes (revealing the scale Ms) in the result;
however, as the experiment is conducted outside the nonlocal
region, all conclusions still hold, even in presence of nonlocal
gravitational interaction.

The above discussion provides also a way to probe short
distance nature of gravity. Just from the current constraints on
Newtonian 1/r potential, the direct experiments reveal that be-
low millimeter distances 1/r potential is not constrained at all
[69,92]. Even the Yukawa-type potential between two neutral
masses are constrained up to micrometers. These experiments

FIG. 4. Entropy growth with minimum interferometer separation
r0 − �x for both the standard Newtonian potential (�N ) and the
modified infinite derivative gravity potential (�IDG). The nonlocal
parameter for �IDG was set to Ms = 0.004 eV, which corresponds
to a nonlocal range λ = 5×10−5 m; see [89]. All other parameters
match those provided in the original experimental proposal [1].

can directly place a constraint on the scale of nonlocality to
be of the order of 0.004 eV [89]. Our experimental protocol
can in principle probe the nature of short-distance gravity and
the above example of nonlocal gravity illustrates an example
of that. Besides the experimental query, nonlocal gravity also
illustrates how entanglement entropy behaves in two distinct
classes of theories, one where the 1/r singularity is present
and the other where it is absent.

VIII. CONCLUSION

In this paper, we have highlighted the key assumptions
made in Ref. [1], in order to clarify what is meant by
the statement that witnessing entanglement in the proposed
experiment verifies the quantum nature of the gravitational
field. First, we have presented the manner in which general
relativity lends itself to be quantized in a linearized limit.
Doing so predicts the existence of gravitons and their mini-
mal coupling to matter, including the off-shell gravitons, the
exchange of which leads to the Newtonian gravitational force.
Moreover, to generate entanglement through the quantum
mediator, one also requires the linearity of superpositions as
highlighted in Eq. (13). It is only with the off-shell graviton
(quantum) source for the Newtonian potential interaction and
the matter itself in a superposition that entanglement can be
generated. Furthermore, through the premise of LOCC (as
clarified in Sec. IV, for quantum masses sourcing a classical
mediating field), we know that the mediating channel, i.e.,
the gravitational field, cannot be classical for the formation
of entanglement. Further, the fact that the matter states can
be described as a quantized field has been clarified, including
that in this case these are in superpositions of Fock states
and, more appropriately, when one considers the microscopic
constituents, in NOON states. As microcausality (cf. note 1
in Sec. II) is built into the standard relativistic quantization,
within which the virtual graviton exchange process acts, here
the question of whether the Newtonian force is fundamentally
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action at a distance does not arise. As long as the masses are
within each other’s light cone, the potential is given by Eq. (8)
and vanishes outside it.

We have also provided an example of nonlocal ghost-free
theory of gravity, where the gravitational potential is modified
drastically to resolve the 1/r singularity. In this scenario, the
gravitational interaction with matter becomes nonlocal and
provides a different prediction for the entanglement phase
inside the nonlocal regime. Since the experiment is always
conducted outside the nonlocal region, no significant change
would be expected and this highlights that all our conclusions
can still hold, even after breaking the local gravity assumption.
Also of interest is the fact that the entanglement entropy,
arising from local and nonlocal gravity, can be determined
by the proposed experiment through measurements of the
final spin states. A key observation of this paper is that if
gravity is quantized, the quantum matter degrees of freedom
are generically in entangled states. This fundamental and
universal entanglement is owed to the bare quantum nature
of gravity, which remains finite in spite of any other standard-
model-like interactions we can imagine.
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APPENDIX A: GRAVITON PROPAGATOR FROM SPIN
PROJECTION OPERATORS

We can expand Riemann tensor, Ricci tensor, and Ricci
scalar in up to order O(h):

Rμνλσ = 1
2 (∂[λ∂νhμσ ] − ∂[λ∂μhνσ ] ),

Rμν = 1
2 (∂σ ∂(ν∂

σ
μ) − ∂μ∂νh − �hμν )

R = ∂μ∂νhμν − �h. (A1)

Here we will study the full action Eq. (23), which can be
reduced to pure Einstein Hilbert action as a low-energy limit,
when we take Ms → ∞. In this regard, our treatment will be
very generic and can be used to finite derivative gravity as
well. Now expanding the action Eq. (23) around Minkowski
space up to terms containing O(h2) contributions will help us
to find the graviton propagator:

Sq = −
∫

d4x

[
1

2
hμν�a(�)hμν + hσ

μb(�)∂σ ∂νhμν

+ hc(�)∂μ∂νhμν + 1

2
h�d (�)h

+ hλσ f (�)

2� ∂σ ∂λ∂μ∂νhμν

]
. (A2)

The above equation and the form factors a(�), b(�), c(�),
d (�), and f (�) are the same as first derived in Refs. [50,73].
All the contractions are due to ημνη

μν , and the expressions for

a(�), b(�), c(�), d (�), and f (�) will now read as

a(�) = 1 − 1

2
F2(�)

�
M2

s

− 2F3(�)
�

M2
s

, (A3)

b(�) = −1 + 1

2
F2(�)

�
M2

s

+ 2F3(�)
�

M2
s

, (A4)

c(�) = 1 + 2F1(�)
�

M2
s

+ 1

2
F2(�)

�
M2

s

, (A5)

d (�) = −1 − 2F1(�)
�

M2
s

− 1

2
F2(�)

�
M2

s

, (A6)

f (�) = −2F1(�)
�

M2
s

− F2(�)
�

M2
s

− 2F3(�)
�

M2
s

. (A7)

From the above expression, we can easily see that when we
take Ms → ∞, it reduces to the local limit, which in our case
is pure GR, for which a(�) = c(�) = 1, b(�) = d (�) =
−1, f (�) = 0 in the linearized action Eq. (A2). From the
above we note that

a(�) + b(�) = 0 , (A8)

c(�) + d (�) = 0 , (A9)

b(�) + c(�) + f (�) = 0 , (A10)

which is a consequence of Bianchi identity as shown in
Refs. [50,73]:

∇μτμ
ν = 0 =(c + d )�∂νh + (a + b)�hμ

ν,μ

+ (b + c + f )hαβ

,αβν , (A11)

which verifies the constraints (A8)–(A10). Without loss of
generality, we can assume f (�) = 0, and then we obtain
a(�) = c(�), which we will show to be consistent with
the expectations of GR propagator. This condition further
constraints the original form factor,

2F1(�) + F2(�) + 2F3(�) = 0.

Now the spin projection operators for tensor of rank 2 can
be analyzed in arbitrary D dimensions. We can take the limit
D = 4 for the relevant case we are interested in here. Around
the Minkowski spacetime, we can write them as follows; see
Refs. [72–74]:

P2 = 1

2
(θμρθνσ + θμσ θνρ ) − 1

D − 1
θμνθρσ , (A12)

corresponding to the spin-2 component. The vector compo-
nent of the projection operator is given by

P1 = 1
2 (θμρωνσ + θμσωνρ + θνρωμσ + θνσ ωμρ ). (A13)
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There are two spin-0 operators,

P0
s = 1

D − 1
θμνθρσ , (A14)

P0
w = ωμνωρσ , (A15)

and the mixing between the two spin-0 operators,

P0
sw = 1√

D − 1
θμνωρσ , (A16)

P0
ws = 1√

D − 1
ωμνθρσ , (A17)

where

θμν = ημν − kμkν

k2
(A18)

and

ωμν = kμkν

k2
. (A19)

We can show that

a(�)hμν → a(−k2)
[
P2 + P1 + P0

s + P0
w

]
h, (A20)

b(�)∂σ ∂(νhσ
μ) → −b(−k2)k2

[
P1 + 2P0

w

]
h, (A21)

c(�)(ημν∂ρ∂σ hρσ + ∂μ∂νh)

→ −c(−k2)k2
[
2P0

w + √
D − 1

(
P0

sw + P0
ws

)]
h, (A22)

ημνd (�)h

→ d (−k2)
[
(D − 1)P0

s + P0
w + √

D − 1
(
P0

sw + P0
ws

)]
h,

(A23)

f (�)∂σ ∂ρ∂μ∂νhρσ → f (−k2)k4P0
wh. (A24)

Hence,

ak2P2h = κP2τ ⇒ P2h = κ

( P2

ak2

)
τ, (A25)

(a + b)k2P1h = κP1τ ⇒ P1τ = 0, (A26)

[a + (D − 1)d]k2P0
s h + (c + d )k2

√
D − 1P0

swh = κP0
s τ,

(A27)

(c + d )k2
√

D − 1P0
wsh + (a + 2b + 2c + d + f )k2P0

wh

= κP0
wτ. (A28)

So,

[a + (D − 1)d]k2P0
s h = κP0

s τ

⇒ P0
s h = κ

P0
s

[a + (D − 1)d]k2
τ, (A29)

(a + 2b + 2c + d + f )k2P0
wh = κP0

wτ

⇒ P0
wh = κ

P0
w

(a + 2b + 2c + d + f )k2
τ, (A30)

where we have used the constraints given by (A10)–(A12).
Note that the denominator corresponding to the P0

w spin

projector vanishes so that there is no w multiplet. The D-
dimensional graviton propagator is given by

(−k2) = P2

k2a(−k2)
+ P0

s

k2(a(−k2) − (D − 1)c(−k2))
.

(A31)

This is also known as the saturated or sandwiched propagator
between two conserved currents, i.e., J1J2, where Ji (i =
1, 2) are conserved currents, corresponding to the two ver-
tices. Note that propagator always contains a gauge-dependent
part, which is unphysical, and a gauge-independent part,
which is physical, namely the part of the propagator which
contributes to the scattering amplitude, which is physical. By
assuming f (�) = 0 ⇒ a(�) = c(�), which corresponds to
no scalar propagating degree of freedom in the propagator,
and the graviton propagator in any D dimensions is given by
[50,73]

 = 1

k2a(−k2)

(
P2 − 1

D − 2
P0

s

)
. (A32)

In D = 4 dimensions, we obtain the standard graviton prop-
agator for GR, when we take a(−k2) = 1, since a(�) = 1,
and we obtain the standard gauge-independent part of the
propagator, which is physical [72]:

 = 1

k2

(
P2 − 1

2
P0

s

)
. (A33)

The saturated graviton propagator is massless and carries
massless spin-0 and massless spin-2 components. Further note
that for IDG we will have to keep a(−k2), such that it does
not have any poles, which means it has to be exponential of an
entire function, which has no poles in the complex plane, i.e.,
eγ (k2 ), where γ (k2) is an entire function, and has no dynamical
degrees of freedom. Therefore, the IDG propagator has no
new dynamical degrees of freedom other than that of GR; see
for details Ref. [50].

APPENDIX B: ENTROPY CALCULATIONS

To calculate the entropy, we begin by considering the
entangled state

|ψ〉 = 1
2 (|↓↓〉 + ei�θ |↓↑〉 + ei�φ|↑↓〉 + |↑↑〉), (B1)

where �θ = mG
h̄ [�(r0 − �x) − �(r0)] and �φ =

mG
h̄ [�(r0 + �x) − �(r0)] for an average distance between

the interferometer arms r0 and superposition size �x.
The density matrix is defined as

ρ̂ = |ψ〉〈ψ | (B2)

and the reduced density matrix is then

ρ̂A = TrB[ρ̂]

= 1

4

[
2 ei�θ + e−i�φ

e−i�θ + ei�φ 2

]
. (B3)
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Now the eigenvalues of ρ̂A can be used to calculate
the entropy, and using the standard eigenvalue equation we
have

0 =|ρ̂A − λI|, (B4)

0 =
(

1

2
− λ

)2

− 1

4
(ei�θ + e−i�φ )

1

4
(e−i�θ + ei�φ ) (B5)

⇒ λ± = 1

2
± 1

2

{
1

2

[
1 + cos

(
mτ

h̄
[�(r0 − �x)

+ �(r0 + �x) − 2�(r0)]

)]}1/2

, (B6)

and so finally we have the entropy as

S (ρ̂A) = −[λ− log2 (λ−) + λ+ log2 (λ+)]. (B7)
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