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Abstract
Domain-to-domain translation methods map images from a source domain to corresponding images from a target domain.

The two domains contain images from the same classes, but these images look different. Recent approaches use generative

adversarial networks in various configurations and architectures to perform the translation. By using GANs, they inevitably

inherit their problems like training instability and mode collapse. We propose a novel approach to the problem that does not

use a GAN. Instead, it relies on an hierarchical architecture that encapsulates information of the target domain by using

individually trained networks. This hierarchical architecture is then trained as one unified deep network. Using this

approach, we show that images from the original domain are translated to the target domain both for the case when there is

a one-to-one correspondence between the images of the two domains and for the case that such correspondence information

is absent. We visualize and evaluate the translation from one information domain to the other and discuss the proposed

model’s relation to the conditional generative adversarial networks. We further argue that deep learning can benefit from

the proposed hierarchical architecture.

Keywords Unsupervised learning � Auto-encoder � Feature mapping � Neural networks

1 Introduction

Domain translation aims at producing a pattern according to

the way data is represented in the target domain, based on an

input pattern coming from a source domain. The two

domains contain instances of the same classes but are

comprised of images that are generated in different ways

and look different. Assuming a source domain Z and a target

domain X, we need to find a mapping M: Z ! bX such that

the output bx ¼ M zð Þ; z 2 Z matches the distribution of X,

An optimal mapping M translates Z to a domain bX that

contains images similar to the images in X. Figure 1 shows

a domain translation example where patterns of the Street

View Home Numbers dataset [1] are translated to corre-

sponding patterns from the MNIST dataset [2].

Domain translation is important in many application

fields: artistic style image translation (converting an input

image into an image that exhibits a certain drawing style),

rendering images to a similar context and producing

counterpart patterns for a given input. Besides such

applications, domain translation is an interesting research

field: Humans easily identify when the same data are rep-

resented in different ways, but the task proves very chal-

lenging to achieve in the machine learning framework. For

example, humans can effortlessly identify a digit regardless

whether it is handwritten on a paper or engraved on sand.

On the contrary, machine learning algorithms are ineffi-

cient when tested on data that look different from the

training data. Accomplishing near human performance on

the domain translation task and promoting understanding

of its underlying mechanisms may shed some light to

human cognitive abilities like visual semantic under-

standing, imagination and concept transferring.

Several approaches for domain translation were devel-

oped in the recent years, and the great majority of them
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uses generative adversarial networks (GANs) [3]. For

example, Kim et al. [4] use two generators, one for each of

the domains. These generators learn the mappings from one

domain to the other. This means that the model also learns

the inverse mapping for reconstructing the input image

from an image in the target domain. The input data and

their mappings are fed to a discriminator that applies the

adversarial loss. This coupled model based on two GANs is

called DiscoGAN and is able to discover relations between

two unpaired and unlabeled datasets.

Benaim and Wolf [5] proposed a method that does not

require any inverse mapping for reconstructing the data of

the input domain. Instead, their model learns a mapping

that maintains the distance between a pair of samples.

Their approach is named one-sided unsupervised domain

mapping due to the absence of inverse mapping in their

model. Benaim and Wolf [6] also proposed a method for

translating an image from a previously unseen domain to a

target domain. Interestingly, their approach considers only

a single image from the source domain and is called one-

shot domain translation. More specifically, they train a

variational auto-encoder for the target domain. Another

variational auto-encoder for the source domain is trained

by only adapting the layers that are representationally

closer to the source domain image.

A different approach for discovering the relations

between two domains was proposed by Liu and Tuzel [7].

Their strategy is to learn a joint distribution of multi-do-

main images by enforcing a weight-sharing constraint on a

pair of GANs that each generate images from one of the

considered domains. The weight-sharing constraint allows

the model to learn a joint distribution for the two domains

without requiring tuples of corresponding image pairs. The

model is called coupled GAN (CoGAN).

A more straightforward approach for image-to-image

translation was introduced more recently by Isola et al. [8]

and uses conditional GANs. While generating target-do-

main images conditioned on source domain images is not a

new idea for GANs, Isola et al. applied some architectural

modifications that enhance the model’s performance. More

specifically, they use a U-Net architecture [9] applying skip

connections between the encoder and the decoder of the

generator. They additionally use a Markovian discriminator

which they call PatchGAN that applies the loss function at

the scale of image patches. This approach mitigates the

weakness of L2 and L1 losses on neglecting high-frequency

crispness. Image-to-image translation with GANs produces

good results but deals with an admittedly easier problem

since every image pair carries very similar information.

The same problem is addressed by Zhu et al. [10]. Their

proposed model (CycleGAN) deals with the problem

without requiring aligned image pairs. This is done by

ensuring that the output lies in the same low-dimensional

embedding space. Such a property is achieved by the

introduction of two cycle consistency losses that in addi-

tion to the translation from the source domain to the target

domain, they also allow for the translation of the target-

domain image back to the original input image. Finally,

cross-domain image generation has been studied by Taig-

man et al. [11] by implementing a modified multiclass

GAN that they called domain transfer network to produce

an image that is relevant to an input image.

Apparently, state-of-the-art approaches implement

domain translation through the use of GANs. While GANs

are popular generative models due to their expressiveness,

they suffer from instability due to unstable gradients and

are often difficult to train. Mode collapse is another com-

mon problem occurring during training a GAN and results

in a generator that outputs a single data point for the dif-

ferent modes of the domain. In the extreme case, the

generator collapses to a single output mode which makes

the model practically useless since it can only generate

extremely similar patterns regardless the input. The prob-

lem becomes even greater when more than one GANs are

used in a single architecture, as most of the domain

translation state-of-the-art models do. Using multiple

GANs in a model requires a great deal of effort to syn-

chronize their training and tune them into cooperating in a

productive manner.

We propose an alternative approach for domain trans-

lation that does not rely on GANs and thus avoids the

problems accompanying their training. Our method inte-

grates the operation of distinct network structures in a

unified architecture that performs the task efficiently, while

dealing with both cases of having a 1:1 and 1:M corre-

spondence of input- and target-domain images. It also

Fig. 1 An example of translating images from one domain to another.

Both domains comprise of digits and have the same classes. The first

row shows patterns from the SVHN dataset, and the second row

shows corresponding patterns from the MNIST dataset. Each column

forms a translation pair and consists of images that have a different

appearance but belong to the same class
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applies the same representational space for both domains in

order to efficiently learn the mapping from the input

domain to the target domain.

The paper is structured as follows: Sect. 2 describes the

proposed model and its architecture, while Sect. 3 presents

the experimental results and the implementation details of

the architecture. Finally, Sect. 4 discusses the experimental

results and aspects of the model and Sect. 5 contains the

conclusions.

2 Proposed model

The proposed model aims at the translation of patterns

from a source domain to patterns belonging to a different

domain such that both domains share the same pattern

classes. For our experiments, we use two widely known

datasets, MNIST [2] and Street View Home Numbers

(SVHN) [1]. We also create three synthetic datasets from

the MNIST dataset: the noisy MNIST (MNIST_Noisy), the

rotated MNIST (MNIST_Rot) and the rotated plus back-

ground image MNIST (MNIST_Rot_Bck). The MNIST

dataset consists of gray-scale handwritten digits each cen-

tered in a 28 9 28 pixel bounding box having a black

background. The MNIST dataset contains 60,000 training

images and 10,000 testing images. The SVHN dataset

contains digits and numbers obtained from house numbers

in Google Street View images and contains more than

73,257 training images and 26,032 testing images. For our

model, the MNIST dataset represents the target domain,

while the source domain is either the SVHN dataset or one

of the distorted variants (synthetic datasets) of the MNIST

dataset. Having a well-performing classifier for the target

domain at hand is important for the proposed model

because, during training, it provides vital information for

performing the translation from one domain to the other.

Domain-to-domain translation may deal with two

scenarios:

1. Cross-domain pattern correspondence is the case of

having the same information expressed by very similar

but still different domains (patterns have a 1:1

correspondence). For example, for a target-domain

pattern x, the input domain may contain a modified

version of this pattern x0 which is obtained after x has

been altered by a transformation t or distorted by a

signal n, that is, z ¼ x0 ¼ t xð Þ þ n.

2. Cross-domain categorical correspondence is the case of

having samples from two quite different domains

having the same pattern classes. This kind of relation

will be referred to as 1:M correspondence because one

sample from the target domain is related to many

samples of the input domain because of class

resemblance.

The 1:1 correspondence is identified in the case of

having the MNIST domain as the target domain and a

distorted variant of MNIST (e.g., rotated MNIST) as the

input domain. An example of the 1:M correspondence is

the case of using the SVHN as the input domain because

the images of this specific dataset are quite different from

the images of the MNIST domain in the sense that the

digits to be recognized are accompanied with other digits

placed on their sides, there is color information and there is

a lot of distortion, blurring, spatial shifting etc. Still, the

pattern classes are the same for both datasets.

2.1 Modular domain-to-domain translation
architecture

We propose a model that is comprised of three distinct

components: the input-domain to target-domain mapping

network, the decoding of this representation to the target

domain and a well-performing target-domain classifier. All

these stages (representation, decoding and classifier) are

embedded into a deep architecture that is trained with

backpropagation to produce a translation network from the

input domain to the target domain. However, the three

distinct stages must be trained before being embedded in

the final deep architecture. This pre-training strategy places

the unified architecture in the vicinity of a good initial

training state that maintains the objective function and

prevents overfitting due to the increased number of model

parameters. It also prevents underfitting caused by the

vanishing gradients phenomenon caused by the deep

architecture. The detailed steps for the construction of the

model are shown in Tables 1 and 2. Figure 2 shows the

model architecture and the distinguishable stages that we

train before their unification into a deep network

architecture.

Every distinct stage of the model is not restricted to a

specific architecture and can be shallow or deep according

to the application’s complexity. However, the width and

depth of every stage affects the final model size accord-

ingly. As soon as we construct the individual networks, we

embed them into a deep architecture and further train them

as a unified network with tiny learning rates for the final two

stages in order to preserve the information transferred from

the pre-training procedure. If we train the target-domain-

dependent stages with anything but tiny learning rates, then

the network will not necessarily maintain its prior knowl-

edge. During the experiments, we assigned these learning

rates a value of 1e�8: Since we initialize the last stage to be

a well-performing target-domain classifier allowed to

undergo only slight changes due to a very small learning
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rate, we expect it to maintain a great portion of this ability

after the training of the model is over. Furthermore, we

expect it to guide (through the backpropagation of its gra-

dient information) the early stages of the unified architec-

ture in adapting their feature mapping in such a way that the

constructed features are a match for the last stage feature

space. Consequently, this drives the early stages of the

architecture to figure out a way to construct features that are

related to the target domain. We did not apply batch nor-

malization in the final model because this could destroy the

pre-training and provoke the loss of the target-domain

information encapsulated in the network. Training the

stages provided by the target domain with learning rates that

are not tiny can have the same effect. In turn, we trained the

first three hidden layers with a small learning rate and the

next layers with a tiny learning rate. The final domain

Table 1 Steps for constructing the deep domain-to-domain translation network

Table 2 Training algorithm for the representation network
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translation model’s performance could be enhanced by

adding the available target-domain auto-encoder as an extra

stage at the output of the model. This approach produces

sharper and more detailed images, but we did not use it in

the experimental results because the main purpose is to

evaluate the proposed model in its basic form. Performance

enhancements and output image improvements may be

explored and implemented in future work.

Fig. 2 The proposed model architecture. Three distinct networks are

pre-trained and then placed into the final deep architecture: a a target-

domain auto-encoder, b an input-domain to target-domain represen-

tation network trained on cross-entropy loss of sampled binary values

from the latent variables of the target-domain auto-encoder and c a

well-performing pre-trained classifier of the target domain. After

these stages are placed as shown in the final deep architecture model,

they are trained with very small learning rates in stages (a), (c) in

order to avoid destruction of the knowledge transferred from the

target domain. The final model effectively consists of the domain

translation network formed by stages (a), (b). At the output of the

domain translation network, just before the final classifier, it is

expected to observe patterns belonging to the target domain
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2.2 The input-domain representation network

For the construction of the representation network (Fig. 2b)

which is the first stage of the deep unified model, a target-

domain auto-encoder must be trained first (Fig. 2a). This

auto-encoder has an encoder and a decoder stage. The

output of the encoder provides the latent variables of the

target domain’s patterns. We used these representations as

probabilistic targets to train the input-domain representa-

tion network. More specifically, we used the latent repre-

sentations produced by the target-domain auto-encoder to

sample binary targets in order to train a model to map the

input domain to the desired target-domain features. Sam-

pling the targets of the mapping model from the latent

representations of the target domain enables the represen-

tation network to learn the most essential elements required

to reconstruct the target domain. In essence, the input

representation network translates the source domain to the

fundamental structures that make up the target domain. In

other words, this approach trains the representation

network into a state in which it processes knowledge of the

target-domain data manifold. After we trained the repre-

sentation network, we placed it in the final architecture.

Starting the training of the deep model from the point that

the initial stage of the architecture lies around the target-

domain manifold highly promotes learning of the domain

translation task. However, for the latent representations to

provide quality information for the input-domain repre-

sentation network they should be free of constant values.

Some of the target-domain latent codes are always 1 or 0

for all the target-domain patterns. In practice, we consid-

ered two threshold values, 0.99 and 0.01. Any neuron

having an output greater than 0.99 or smaller than 0.01 for

all input patterns is considered to have a constant output.

Maintaining these constant values is of course useful for

decoding the digits through the decoder stage of the auto-

encoder but conveys no special information in terms of

training a model that maps the input-domain patterns to the

latent representations of the target domain. On the contrary,

these always switched on or off neurons will constantly

provide the same output target values after latent code

sampling (either 1s or 0s). We discovered that this reduces

the quality of the representation network by compromising

the impact of other meaningful latent representations that

provide different target values through sampling. It is

important for the input representation network to stay in the

vicinity of the target-domain manifold. This means that the

latent constant-valued variables must be exempted from

these representation codes but the decoder stage should

keep their effect in order to sustain its data reconstruction

Fig. 3 Latent variables of the target-domain auto-encoder that are

always 1 or 0 are omitted. The case of constant 0 neuron output is

trivially omitted since the neuron has no effect on the model’s

functionality. The effect caused by the neurons that have constant

output 1 over all target-domain patterns may be embedded in the bias

terms of the next layer neurons and thus the decoder’s functionality is

kept intact. This is accomplished by adding the weights of the

corresponding neurons to the bias weight of the affected output

neurons which results in an equivalent model function

Fig. 4 Aggregating the auto-encoder’s latent variables l
j
i for various

instances of digit ‘‘1’’ in the dataset. The index of each digit instance

is represented by i, while each element of the latent representation is

indexed by j. Different writing styles produce different latent vectors

whose elements are averaged in order to calculate a mean represen-

tation for the specific class. This representation is interpreted as a

vector of probabilities and each corresponding element is sampled to

form binary targets for the input-domain representation network
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ability. It turns out that these constant-valued variables can

be safely removed from the latent representations, while

their effect in the calculation of the output activations is

maintained and thus the decoder function is preserved

intact. To achieve this, the latent variables that are always 1

have their output weights added to the bias input of the

affected neuron in the next layer, while constant 0 latent

variables are just ignored since they have no impact to the

calculation of the output activation. This concept is shown

in Fig. 3. The specific modification yielded faster and

better training for the input-domain representation network.

Once the latent variables that maintain a constant value

for all input patterns are removed, the remaining variables

provide the probabilistic target-domain representations.

More specifically, we sample these variables for obtaining

binary targets for the input-domain representation network.

For the cases when there is 1:1 correspondence between

target-domain examples and input-domain examples, the

training of the representation network is straight forward:

just sample the latent variables’ vector l~m of each target-

domain example x
*

m and create binary targets

r
*

m � p l
*

m

� �

; rm 2 0; 1f g for the corresponding input-do-

main example in each mini-batch. In the case that the input

domain and the target domain are not related with a 1:1

pattern correspondence, the probabilistic target-domain

representations require a further processing step to be

finalized. This further step is necessary because under the

1:1 pattern correspondence regime, the same information is

just expressed in different but similar domains, also viewed

as ‘information channels’ that are linked by simple trans-

formations or domain-transition operations. This means

that same-source information mappings are also linked in a

pairwise (input to target domain) fashion. That is why

sampling the latent representations of the target domain is

sufficient to construct the feature vectors of the represen-

tation network. On the contrary, when a 1:1 pattern cor-

respondence does not exist between the two domains of the

ongoing translation, using latent representation statistics in

a pairwise fashion may be misleading and difficult. First of

all, there is no easy way for deciding an appropriate cross-

domain pairing between the patterns, since cross-domain

similarity metric construction is itself a problem of its own

merit.

Under these circumstances, we use a more general

association: the mean of the target-domain latent variable

vectors belonging to the same class. In other words, the

latent representations of the target-domain examples are

aggregated based on their class and a mean representation

is calculated for each class. These mean representations

define the probabilistic targets for training the input-do-

main representation network. For example, assuming the

MNIST to be the target domain and SVHN to be the input

domain, the 1:1 correspondence between the patterns is

absent. In order to create a more general correspondence,

namely 1:M, we aggregate the latent representations of the

target-domain patterns per problem class and calculate

their mean value. The mean value represents the latent

probabilities for each problem class, and we use these

probabilities to sample the binary target values for the

input-domain patterns according to their class during

training of the representation network. The aggregation of

the latent representations for the specific class ‘‘1’’ in

MNIST is demonstrated in Fig. 4.

Assuming there are M target-domain examples belong-

ing to a certain problem class C and the auto-encoder

calculates a K number of latent variables l, then the binary

Fig. 5 Samples of images from which some 28 9 28 patches are extracted to use as background texture for the MNIST_Rot_Bck dataset

Fig. 6 Samples from the SVHN, MNIST, MNIST_Rot, MNIST_-

Noisy and MNIST_Rot_Back datasets. The arrows represent a 1:1

correspondence between the patterns of MNIST and its variants. This

correspondence is not applicable when a domain translation from

SVHN-to-MNIST domain is applied or vice versa
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target’s sampling probability y for a specific latent variable

k for the input-domain representation network is

pðykjCÞ ¼ 1

M

X
M

m¼1

lkm ¼ lk

After we calculate these mean representations, we

sample them for each mini-batch of the training procedure

of the input-domain representation network. This general

mapping surprisingly works better than expected and per-

forms similarly to the more informative 1:1 correspon-

dence. Matching a target-domain example to an input-

domain example provides information that should promote

learning. However, for the specific translation model it

suffices to initialize the input-domain representation net-

work with a mapping function which lies at the vicinity of

the target-domain manifold. Consequently, the more gen-

eral 1:M mapping between input-domain and target-do-

main patterns performs equally well.

3 Results

3.1 Datasets

Having two forms of information describing the same or

similar observations is not a rare situation. For example, a

digit recognition problem is described by two datasets, the

MNIST and the SVHN (Street View Home Numbers). In

the case of the SVHN-MNIST pair, every example in one

of the datasets can be associated with many examples in the

other dataset linked by their common class label. Thus,

their correspondence is of a general nature (simply cate-

gorical) since it is difficult or meaningless to link the

examples with a more detailed relation like style, orienta-

tion, displacement, etc. In other words, there is not a one-

to-one correspondence between the examples of the

MNIST dataset and the examples of the SVHN dataset. In

order to explore such a one-to-one correspondence between

the examples of the two domains, we introduce three

datasets which are corrupted versions of the original

MNIST dataset. These MNIST variants are listed below:

• Rotated MNIST (MNIST_Rot): The original digits are

rotated by an angle generated randomly in the range 0

to 2p.
• Noisy MNIST (MNIST_Noisy): Each pixel in the

original image is replaced with 20% probability by a

random number uniformly sampled from the range 0 to

1.

• Rotated ? Background image (MNIST_Rot_Bck): The

digits are randomly rotated as in rotated MNIST and the

background is replaced with a black and white image

patch. These 28 9 28 patches are extracted from

random nature pictures downloaded from the Internet

and screened for having a minimum level of pixel

variation. More specifically, we discard patches that

have a variance less than 0.01. Samples from the

random images used to provide these patches are shown

in Fig. 5.

While creating the MNIST variant datasets, we noted

the image correspondence between the original image and

its variant and thus is available during the training of the

translation model. Figure 6 shows some samples from the

available datasets and indicates the direct 1:1 correspon-

dence between MNIST and its distorted versions. The goal

is to train models that can translate a pattern belonging to

either the SVHN, the MNIST_Noisy, the MNIST_Rot or

the MNIST_Rot_Bck domain to an appropriate pattern

belonging to the MNIST domain. Additionally, for each

MNIST variant, we study the two correspondence relations

(1:1 and 1:M).

We explore two experimental pathways: domain

translation with cross-domain pattern correspondence and

domain translation without cross-domain pattern corre-

spondence. We study both pathways for the MNIST

variants translation to the MNIST domain, while the

translation of the SVHN domain to the MNIST domain is

performed only according to the latter pathway. Accord-

ing to the proposed methodology, we train the MNIST

auto-encoder making use of the whole 60,000 available

patterns in the dataset. Next, we express the MNIST

dataset by the latent representation of the auto-encoder

and all constant-valued variables (1 or 0) are removed by

making the necessary bias weights’ adjustments for the

decoder stage where necessary. Furthermore, we calculate

the mean latent representations per class for the case of

the SVHN-to-MNIST translation. Finally, we place the

individual stages defined by the proposed model in a

unified architecture which is trained with a tiny learning

rate for the final stages.

3.2 The target-domain auto-encoder

For the construction of the MNIST auto-encoder, we use a

binary restricted Boltzmann machine with 1000 neurons in

the hidden layer, providing a latent representation of 1000

variables. Since the MNIST image size is 28 9 28, the

cFig. 7 Random samples of the a MNIST_Noisy, b MNIST_Rot,

c MNIST_RotBck and d SVHN domain-to- MNIST domain trans-

lation. Each pair of images is formed by the input-domain pattern on

the left and the model’s output on the right. The left side of the

figures a–c shows the 1:1 cross-domain pattern correspondence case

while the right side shows the translation results for the 1:M case. For

the case of the SVHN-to-MNIST translation (d), the 1:1 cross-domain

pattern correspondence is not applicable
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auto-encoder has an architecture of 784-1000. During the

training, we applied a weight decay of k ¼ 1e�5 and used

the full MNIST dataset comprising of 60,000 samples. We

next unfolded the trained auto-encoder according to its

encoding and decoding parts in an architecture of 784-1000-

784 with the weights of the second layer (decoder) being the

transposed weights of the first layer (encoder).

3.3 The target-domain classifier

Training on the full 60,000 patterns, MNIST dataset

(50,000 patterns for training and 10,000 for evaluation)

provides classification results that exceed 99% for the

10,000 patterns test set. Hinton et al. [12] reported a suc-

cessful classification rate of 99.21% by using dropout and

pre-training of the network layers with restricted Boltz-

mann machines. Rasmus et al. [13] used the ladder network

(semi-supervised learning) and obtained results that were

slightly better, namely 99.43%. We trained a 784-800-800-

10 MNIST classifier with dropout and used it in all

experiments. The classifier’s hidden layers contain rectified

linear units (ReLUs), and the final layer is a soft-max

function. We accomplished a classification success rate of

99.17% on the 10,000 patterns of the test set which is

comparable to the state-of-the-art results for the MNIST

dataset.

3.4 The input representation network

The latent representations for the MNIST target domain

consisted of 1000 variables. After exempting the constant-

valued latent representations only 922 remained. We used

the latent variables provided by the target-domain auto-

encoder to train a 2000-2000-922 network, with the output

stage corresponding to the latent representations L 2 <922.

For the distorted MNIST datasets, the input images are of

size 28 9 28 so the network input has a size of 784. For the

SVHN case, the input image is 32 9 32, so we used a

network input layer of size 1024. The hidden layers neu-

rons use rectified linear activations (RLUs), and the output

layer units are sigmoidal. We trained the network with

batch normalization and mini-batches of 1000 patterns, a

learning rate of kw ¼ 0:5; and a tiny weight decay since the

targets’ sampling occurring on every mini-batch creation

adds a lot of gradient noise. We used two metrics to

evaluate the performance of the network during training:

the cross-entropy loss based on the targets and the actual

outputs and the precision score of both states (1 or 0) of the

binary outputs. The second metric is rather necessary in

order to detect misleading performance scores obtained by

matching many of the outputs on one binary state while

heavily neglecting the other state.

3.5 Constructing and training the unified deep
architecture

After the unified model resulted from the embedding of the

various stages, we trained it with mini-batch gradient

descent. According to the networks used to form the model,

the final architecture for the MNIST variants is 784-2000-

2000-922-784-800-800-10 and for the SVHN is 1024-

2000-2000-922-784-800-800-10. As expected, every layer

size reflects the underlying individual network embedded

in the architecture, for example, the fourth hidden layer of

both models is of size 784 because it lies at the position

where the decoder part of the auto-encoder is placed and

thus it must have an output equal to the MNIST image size.

The third hidden layer of the networks reflects the final

number of the latent variables of the target-domain auto-

encoder after the constant-valued variables are removed.

Fig. 7 continued

6788 Neural Computing and Applications (2020) 32:6779–6791

123



Finally, the last two hidden layers correspond to the

architecture of the target-domain classifier. We trained the

first three hidden layers with a learning rate of k ¼ 0:05,

and for the next layers, we used a learning rate of k ¼ 1e�8.

The final results are shown in Fig. 7 for the MNIST_Noisy,

MNIST_Rot, MNIST_RotBck and SVHN datasets,

respectively. For the MNIST variants, the left side of the

figures shows the results of a model trained with the mean

latent class representations. For the SVHN domain, the 1:1

pattern relation is not applicable.

According to the results, the input-domain patterns are

translated to a pattern in the target domain that belongs to

the same class and has an image quality that generally

reflects the quality of the input image. All models take

advantage of the existence of prior information on how to

feature map the input domain to the target domain and

seem to build a concept of what defines a MNIST sample.

This prior knowledge is embedded to the model through

the pre-trained input-domain representation network, the

embedded target-domain decoder stage and the target-do-

main classifier lying in the last stage of the model. This

information guides the training of the initial stages of the

network toward learning how to translate an image coming

from a different domain to the specific format. For the

specific implementation which uses the MNIST domain as

the target domain, this means disposing the noise in the

image as efficiently as possible, reconstructing or rear-

ranging the digit areas that are lost or modified and

maintaining a uniform dark background. None of this

information was given to the model explicitly, but it is

implied by the embedded stages that were trained based on

the target domain. The results are particularly interesting

for the SVHN-to-MNIST translation setup since the model

learns implicitly an efficient way to reconstruct the MNIST

format of the number in the middle of the image ignoring

any numbers appearing at its sides. Additionally, this

model trains itself on dealing with distorted digit images

and many variations of the original patterns. During

experimentation, it was noted that the quality of the target-

domain auto-encoder and the training of the input-domain

representation network were more crucial for the perfor-

mance of the final model than extreme tuning of the final

stage classifier. Another, rather unexpected, observation

extracted from the results is the fact that cross-domain

pattern correspondence is not as advantageous as expected.

The resulted quality of both experimental pathways (1:1

correspondence and 1:M correspondence) is not that dif-

ferent which suggests that during training of the input-

domain representation model, an adequate approximation

of the target-domain manifold is sufficient in terms of

enabling the unified architecture to learn how to perform

the domain translation.

4 Discussion

We have introduced a method for performing cross-domain

pattern translation which transfers a pattern from one

domain to a similar domain that spans the same classifi-

cation categories. Figure 8 compares our model’s results

for the translation of the MNIST_Rot dataset to the MNIST

dataset with the results of a CoGAN [7] trained to output

MNIST images rotated by 90� specifically. Our model

produces at least comparable results while performing a

significantly harder task since the rotation of each pattern is

not fixed but varies in the range of 0 to 2p.
Figure 9 shows the results of our model, CycleGAN

[10] and one-sided unsupervised domain mapping [5] when

performing translation from the SVHN domain to the

MNIST domain.

The results are also interesting from another point of

view: The stages of the model that perform the domain

translation and the classifier at the final stage of the unified

network resemble the mechanisms of a conditional GAN.

The former group of stages represents the GAN generator

and the latter represents the GAN discriminator that out-

puts the K problem classes. In respect to Odena’s semi-

supervised GAN [14] which implements K ? 1 discrimi-

nator outputs, the proposed model omits the fake image

output class. This output is rather safely omitted because

the generator is pre-trained to produce images in the

vicinity of the domain information format and is prevented

from deviating away from it since the training gradients

come from a well-performing classifier acting on that

domain. The concept served by the feature mapping

property added to the objective function of Tim Salivan

et al. method is also served by the pre-training of the input-

domain representation network proposed by our approach:

Instead of enforcing a similarity on how an intermediate

layer of the discriminator is mapping real and generated

information, our model consolidates this representation

through the pre-training process, the embedding of the

decoder stage of the target-domain decoder and the tiny

learning rate applied on this stage. Extending this rational,

the proposed model is acting similarly to a conditional

GAN with K ? 1 outputs, starting from an advanced

training point, after the generator has started performing

‘‘reasonably’’ by producing images that should mostly be

classified as belonging to one of the K problem classes.

Hypothetically, the discriminator is constantly fooled by

the generator in identifying one of the available K classes

for every fake image it examines. Consequently, the fake

output is omitted and not considered as an output option.

Jost Tobias Springenber [15] also uses K output classes for

training a GAN in an unsupervised or semi-supervised

manner by omitting the fake image output. His strategy is
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to train an artificial image generator which produces fake

images that seem real and uses a uniform distribution of

samples in terms of their associating label. At the same

time, the discriminator must be trained to perform well on

real data, to raise classification uncertainty when dealing

with fake data and to choose the output class uniformly.

From the requirements, it is obviously assumed that the

model deals with uniform class priors. Our model complies

with all the requirements stated above both for the gener-

ator and for the discriminator. Uniform distribution of

Fig. 8 Comparison of the proposed model to the CoGAN for the

rotation operation. The top figure shows the results obtained by

CoGAN with the top row of each group containing unrotated MNIST

patterns while the second row of each group shows their counterpart

rotated by 90�. The bottom image shows the results of our model

when trained on the rotation-inversion task with the MNIST_Rot

dataset. Our model performs a more complicated task because the

rotation applied is not of a constant value like in CoGAN but

significantly varies in the range [0, 2p]

Fig. 9 The results of translating SVHN domain patterns to the MNIST domain for the CycleGAN (top left), the one-sided unsupervised domain

mapping (top right) and our model (bottom figure). The results of our model are at least comparable to the other methods’ results
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sample generation is satisfied by the generator due to equal

class priors. The discriminator also satisfies this require-

ment and the one for performing well on real data because

of its pre-training on the target-domain data. The raised

uncertainty condition for the discriminator is naturally

satisfied due to the noise injected during sampling of the

latent probabilities. The proposed model also shares some

theoretic principles with the semi-supervised GAN

described by Odena [14] which uses K ? 1 discriminator

outputs.

An obvious modeling deviation of the proposed model

from GANs is the absence of a noise generator at the input.

Noise is important for the unconditional GAN for supply-

ing the necessary variance at the input of the model. For

conditional GANs, to which the proposed model is paral-

lelized, this noise is not critical or even necessary since

there is enough input variation due to the input-domain

images applied to the network and are acting like a con-

dition for the generative process. This is also supported by

Isola et al. [13] and Mathieu et al. [16].

Besides the conditional GAN parallelization, there is

another notable characteristic of the proposed model. It

suggests that deep networks perform well when the

layers obey an hierarchy of functionality. Of course, this

is not a new idea since modern deep networks are built

upon a function-specific layer architecture with various

types of layers (convolutional, pooling and fully con-

nected layers). However, a stricter sectional embedding

paradigm in the form proposed might worth further

investigation and experimentation. Embedding domain

information to a model in the form of whole network

blocks may produce networks that learn in a more effi-

cient way. It could also provide the structural foundation

of combining information from many similar domains to

construct high-level concepts that are transferable

between these domains and are used to build more

sophisticated models.

5 Conclusions

This paper presents a novel approach for performing

domain translation without incorporating a GAN in the

model architecture like the great majority of the previously

proposed models do. Our approach uses an hierarchical

architecture comprised from individually trained modules.

The architecture is trained as a whole (fine-tuned) and is

able to achieve results that are at least comparable to the

ones provided by the state-of-the-art models that use one or

more GANs in their architecture. By not using GANs, the

proposed architecture avoids deficiencies related to the

training of GANs such as high instability and mode

collapse.
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