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Chapter 1

Introduction

The Standard Model (SM) of particle physics [1] has achieved great success in de-
scribing the fundamental particles and three of the fundamental interactions such
as the strong, weak, and electromagnetic interactions. In the SM, the fundamen-
tal building blocks of matter, namely fermionic fields including quarks and lep-
tons, can be categorized into three generations and their interactions are mediated
by gauge bosons, which can be accommodated into the SU(3)c×SU(2)L×U(1)Y
gauge group. The discovery of the top quark [2, 3] marks the completeness of
the three generation structure of quarks and leptons. In addition, in order to ac-
count for the non-zero particle masses, the Higgs mechanism is introduced into the
model, where particles acquire masses through their coupling with the Higgs field
after the spontaneous breaking of the electroweak symmetry from higher to lower
symmetry. Although the discovery of the SM-like Higgs boson [4–6] indicates one
of the top achievements of particle physics, there are still many open questions
that cannot be explained by the SM. To begin with, in the SM, there are three
flavors (types) of neutrinos such as electron-type neutrino, muon-type neutrino,
and tau-type neutrino. Neutrino flavor oscillation, which has been confirmed by a
variety of experiments, refers to the phenomenon that neutrino flavor can change
from one type to another type when neutrino propagates through space. Such
phenomenon indicates that neutrinos have mixing among flavorsa and at least
one type of neutrino is massive. However, in the SM, neutrinos are assumed to
be massless. In order to account for the nonzero neutrino masses, the SM has
to be modified. Furthermore, the dark matter and dark energy problem is one
of the biggest challenges we are facing nowadays. Fig. 1.1 shows our current

aThe neutrino mixing matrix is known as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
matrix. The complex phase of the PMNS matrix is one of the possible contributions to ĈP̂
violation (see e.g. Ref. [7]).

1



knowledge concerning the composition of the Universe. A variety of astrophysi-
cal observations have shown that our Universe is dominated by dark matter and
dark energy and more than ∼ 80% of the matter in our Universe is composed
of dark matter [8, 9]. Dark matter is a type of matter, which barely interacts
with ordinary matter via the SM interactions including the strong, weak, and
electromagnetic interactions, except via gravity. However, there are no candi-
dates for dark matter in the SM, and a direct detection of dark matter particles
has been unsuccessful so far. This is well known as the dark matter problem.
Astrophysical observations have shown that our Universe is expanding at an ac-
celerating rate, which indicates the existence of some unknown form of energy,
namely dark energy. Although it is believed that the large scale structure of our
Universe is dominated by dark energy, the nature of dark energy is still a puzzle.
In addition, matter and antimatter asymmetry refers to the observed excess of
matter over antimatter in our Universe. However, according to the Big Bang
theory, equal amounts of matter and antimatter should have been created in the
early Universe. The matter and antimatter asymmetry is also one of the greatest
mysteries that cannot be explained by the SM. Last but not least, gravity, as one
of the four fundamental interactions, cannot be compatibly incorporated into the
framework of the SM. Although almost all the observed gravitational effects can
be well described by General Relativity (GR), it is believed that the ultimate
theory of gravity should be a quantum field theory, namely quantum gravity [10].
The unification of gravity with the non-gravitational fundamental interactions in
the framework of quantum field theory is one of the most challenging problems
in modern physics. In short, due to the above-mentioned problems, the SM is
considered as an incomplete theory.

In order to solve the problems, many new physics theories (models), such as
extra-dimensional theories [12], super-symmetric (SUSY) theories [13, 14], left-
right symmetric theories [14], grand unified theories [14], etc., that extend the
SM have been mathematically constructed and intensively explored in a wide va-
riety of experiments over the past decades. Recent developments in experimental
facilities at the high-energy and high-precision frontier have a significant impact
on the searches for new physics beyond the SM. The extra-dimensional theories
predict that, in addition to the conventional (3 + 1) spacetime, there may exist
extra space or time dimensions. The supersymmetric theories propose new in-
teractions described by the symmetry between fermions and bosons, assuming
that each fermion (boson) has an associated boson (fermion), which is called su-
perpartner. In the left-right symmetric models, besides the symmetry between
the left handed fermions, a new symmetry between the right handed fermions
is also implemented into the model. The grand unified theories suggest that, at
high energies, the three fundamental interactions of the SM can be unified into
a single interaction, which can be described by the gauge groups with higher
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Figure 1.1: Composition of the Universe [11].

symmetry than the conventional SU(3)c × SU(2)L ×U(1)Y group. Moreover, in
order to unify gravity with the remaining fundamental interactions, some other
new physics theories, such as quantum gravity and string theory, have also been
proposed. The construction of quantum gravity opens a promising window for
the unification of all fundamental interactions. All these theories attempt to an-
swer the unresolved problems of the SM. However, unlike the SM, no statistically
significant sign of such new physics theories has been confirmed so far.

Compared with the SM, many new physics theories are characterized by more
significant symmetry-breaking effects, which can be categorized into the two main
classes, depending on whether the symmetries are discrete or continuous. For the
former cases, we are interested in the effects related to the breaking of charge
conjugation symmetry (Ĉ), parity (P̂), time reversal symmetry (T̂ ), ĈP̂ symme-
try, etc. Among such effects, the searches for a non-zero electron electric dipole
moment (eEDM) have attracted an enormous level of attention recently. The ex-
istence of a non-zero eEDM violates the P̂ and T̂ symmetries. A nonzero eEDM
in the SM arises from multi-loop diagrams and thus is greatly suppressed. At
the four-loop level, it is estimated to be around the order of 10−38 e·cm [15],
which is much lower than the present experimental sensitivity. However, in some
extensions to the SM, such as the left-right symmetric models, SUSY, etc. [16],
the predicted value of the eEDM is in the range from the order of 10−27 to the
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order of 10−30 e·cm [17–22], which is several orders of magnitude higher than
that of the SM, possibly leading to an observable effect. According to the ĈP̂T̂
theorem, a non-zero eEDM also suggests ĈP̂ violation. In the SM, ĈP̂ violation
may come from the complex phase of the quark mixing matrixb or may come
from the θ-term in the QCDc Lagrangian. On the one hand, the breaking of the
Ĉ and ĈP̂ symmetries is one of the three criteria suggested by Sakharov to explain
the observed matter-antimatter asymmetry in our Universe [23]. On the other
hand, however, the amount of ĈP̂ violation in the SM is too small to account
for the observed asymmetry between matter and antimatter in our Universe. In
order to explain the observed matter-antimatter asymmetry, new physics models
with new source of ĈP̂ violation need to be constructed theoretically and to be
explored experimentally.

In addition to the symmetry-breaking effects, we are also interested in the
search for new phenomena, such as the variation of dimensionless fundamental
constants, etc. The idea of the variation of fundamental constants can be dated
back to the big numbers hypothesis proposed by Dirac [24] amid speculation that
the gravitational constant may depend on time [25]. Later on, this idea is gener-
alized to the scenario that the fine structure constant α may also vary with time.
Many new physics theories that extend the SM or unify all the fundamental inter-
actions are constructed with signatures of varying fundamental constants. The
search for the variation of fundamental constants might help to put constraints
on such new physics theories. For example, some dark matter candidates, which
are oscillating with respect to time, couple to the SM particles and thus lead to
the time variation of α and µ [26]. In this case, the studies of the variation of
fundamental constants can open a promising avenue for dark matter searches.
Another example lies within the new physics theories featured with domain walls
generated in the early Universe. Such domain walls couple to the electromagnetic
field and may cause the spatial variation of α when the domain walls are passing
through the Earth [27]. In this case, the searches for the spatial variation of α
might be helpful for the detection of the domain walls.

From an experimental point of view, the new symmetry-breaking phenomena
have been intensively investigated at the high-energy and high-precision frontier.
In general, the experimental limits on such phenomena are model dependent [28].
As an important feature, parity in the weak interaction is assumed to be maxi-
mally violated (100%) due to the interaction structure where only the left-handed
(right-handed) chiral components of particle (anti-particle) spinors participate
in the weak interaction. The measurement of the polarized muon decay shows
that the ratio of the observed parity violation to the expected parity violation
is 1.00084 ± 0.00029(stat.)+0.00165

−0.00063(syst.) [29], which demonstrates an excellent

bThe quark mixing matrix is known as the Cabibbo–Kobayashi–Maskawa (CKM) matrix.
cQCD denotes Quantum Chromodynamics.
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agreement with the SM prediction. In the weak interaction, ĈP̂ violation has
been intensively measured at the high-energy frontier after it was first discovered
in the neutral kaon systems. In 2001, ĈP̂ violation was first established in the B
meson decays by BaBar [30] and Belle [31]. In 2013, ĈP̂ violation was first re-
ported in the strange B meson system. Recently, ĈP̂ violation was also observed
in the D0 meson decay by LHCb with the asymmetry of −15.4 ± 2.9 (stat. +
syst.) ×10−4, which is different from zero with a significance of 5.3 σ [32]. It is
believed that the ĈP̂ symmetry is not necessarily conserved in the strong inter-
action, where a generic ĈP̂ violating term may exist and give rise to a non-zero
neutron electric dipole moment (nEDM) [33, 34]. However, no significant signal
of the nEDM has been observed so far and the experimental upper limit at the
90% confidence level on the nEDM is 2.9× 10−26 e·cm [35].

Although it is expected that symmetry-breaking effects and new physical phe-
nomena are greatly suppressed by some powers of high-energy scale and are usu-
ally considered to be negligible at low energies, tests of fundamental symmetries
and searches for new phenomena using atomic and molecular properties have
attracted a great deal of attention recently [36]. The reasons why atoms and
molecules have very promising applications to the tests of fundamental symme-
tries and searches for new phenomena can be summarized as follows. To begin
with, spectroscopy with high resolution and high sensitivity has been developed
enormously over the past years, enabling the observation of tiny optical effects
induced by novel interactions. Furthermore, compared with high-energy collid-
ers, the basic facility for research in atomic and molecular physics is usually much
smaller, making the search for new physical phenomena in atoms and molecules
a complementary and economical way of doing new physics. Thirdly, atoms and
molecules have a versatile electronic structure and can be very sensitive to a va-
riety of new physical phenomena, enabling simultaneous investigations of many
different effects using a single experimental setup. Remarkably, compared with
atoms and polyatomic molecules, diatomic molecules have additional significant
advantages in the search for symmetry-breaking effects due to the following con-
siderations. On the one hand, compared with atoms, diatomic molecules have
very closely spaced molecular levels with opposite parity, which lead to great en-
hancement of tiny physical effects when the spacing between neighboring levels
is close to zero, or when the external fields are applied to bring them into near
degeneracy. On the other hand, compared with polyatomic molecules, the calcu-
lations on diatomic molecules are not computationally expensive, allowing highly
accurate theoretical investigations. More importantly, previous studies have illus-
trated that, in some cases, the measurements on diatomic molecules can provide
competitive or even more stringent constraints on new physics models than the
ones imposed by the high-energy collider experiments. For example, a direct
detection of the eEDM is probably beyond the reach of the present high-energy
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experiments while it may lie within the detectable regions of the present high-
precision experiments due to the significantly enhanced sensitivity in diatomic
molecules. The present upper limit at the 90% confidence level on the eEDM
with the ThO molecule is 1.1× 10−29 e·cm [22], and excludes new physics below
an energy scale of around 3-30 TeV, which depends on specific models but in
general is beyond the detectable regions of the present experiments at the LHC.
In addition to the searches for symmetry-breaking effects, atoms and molecules
are also considered to be promising probes for the variation of fundamental con-
stants. The searches for the variation of fundamental constants with respect to
time and space can be performed through investigations of atomic and molecular
spectra [37], including analysis of atomic clock transitions and quasar absorp-
tion spectra. On the one hand, recent developments in atomic clocks enable
unprecedented level of precision with the uncertainty as low as 10−19 [38], al-
lowing precise measurement of the variation of fundamental constants through a
comparison of two clock transitions. For example, the experimental limit on the
time variation of the constant α imposed by the analysis of atomic transitions in
171Yb+ is α̇/α = −0.7 ± 2.1 × 10−17 yr−1 [39], which suggests that no evidence
for the time variation of the fine structure constant has been observed. On the
other hand, the experimental limit imposed by the observation of quasar spectra
is ∆α/α = 1.2±1.7 (stat.) ±0.9 (syst.) (×10−6) [40], which does not support the
time variation of α either. Another study using the analysis of quasar spectra
has reported a possible spatial variation of α with a significance of 4.2 σ [41]
but this may possibly arise from undetected systematic effect. Furthermore, the
study of the spectra from quasars has also placed constraints on the variation of
the proton to electron mass ratio with the result of ∆µ/µ = −9.5± 5.4 (stat.) ±
5.3 (syst.) (×10−6) [42]. It is worth mentioning that, similar to atoms, molecules
are also considered as promising probes for the variation of α and µ, because
molecular spectra are expected to be sensitive to both constants too.

Theoretical investigations of the electronic structure and molecular proper-
ties for diatomic molecules not only can help to develop an efficient experimental
setup for precision measurements, but also can help to interpret the results more
correctly after measurements [36]. Furthermore, powerful computational tools
and methods have been developed recently, allowing us to rigorously examine
electronic structure and molecular properties and to correctly understand the in-
fluence of new physics interactions on them. In some cases, they can also be used
to identify promising candidates with enhanced sensitivity. In other cases, the
measured quantities usually need to be combined with the calculated parameters
in order to extract the final values of molecular properties from experiments,
where the total uncertainty needs to be included by summing the experimen-
tal and theoretical uncertainties in quadrature. Highly accurate calculations of
molecular properties and systematic evaluation of theoretical uncertainties can
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help to extract the needed molecular properties precisely from the measured sig-
nals and can also help to draw conclusions reliably from experiments.

The main purpose of this work is to provide the needed molecular parameters
using the state-of-the-art computational methods for successful measurements of
various molecular properties and for rigorous interpretations of the results. To be
more specific, we are interested in various symmetry-breaking effects arising from
the nuclear anapole moment, the eEDM, etc. Among them, the parity-violating
nuclear anapole moment effect in diatomic molecules can be used to test nuclear
models and gain a deep understanding of nuclear structure. In order to extract
the magnitude of nuclear anapole moment from measurements effectively, a P̂-
odd interaction parameter WA, which depends on molecular structure, needs to
be calculated with high accuracy. In this case, it is also possible to evaluate
the theoretical uncertainties arising from the imperfect or unknown information
within the computational methods. The searches for the non-zero eEDM in di-
atomic molecules can be used as a powerful tool to place constraints on the
parameter space of new physics models. A successful measurement of such effect
requires the molecules to be effectively laser-cooled [43–46] so that long coherent
interaction time could be reached, resulting in an increase in the measurement
sensitivity [43–45]. There are a number of factors that determine whether a given
molecule is suitable for laser-cooling [47]. In order to develop laser systems more
efficiently throughout measurements and interpret the results more correctly after
measurements, highly accurate theoretical calculations of the molecular spectro-
scopic constants for diatomic molecules are necessary. We are also interested in
other new physical phenomena such as the variation of fundamental constants.
Since a wide variety of new physics theories beyond the SM and GR are featured
with the variation of fundamental constants, the searches for such new phenom-
ena can be used to test these new physics theories. In the search for the variation
of fundamental constants, we may compare the phase differences between two
light beams inside a solid-state laser interferometer [48], instead of comparing
two clock transition frequencies over a long period of time. The main goal of
the present work is to identify promising systems that lead to great discovery
potential, where the DFT calculations of solid-state properties can be employed
to achieve such goal. In this case, the coupled cluster calculations of molecular
properties can be used to benchmark the accuracy of the DFT calculations of
solid-state properties.

This thesis is organized as follows. In Chapter 2, we briefly review some im-
portant concepts of the SM and useful aspects of fundamental symmetries therein.
Then, we introduce the nature of the symmetry-breaking effects, which can be
used to test the SM and search for new physics beyond the SM. In Chapter 3,
the computational methods employed for the calculations of molecular properties
are reviewed. We summarize the factors that determine the accuracy of the theo-
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retical investigations and demonstrate the evaluation of theoretical uncertainties.
In Chapter 4, we introduce some useful molecular symbols involved in this work
and review the general form of the molecular Hamiltonian, which serves as the
basis for the rest of the discussions. In Chapter 5, we summarize the main topics
of the present work, including the measurement of symmetry-breaking effects,
such as the ones associated with the nuclear anapole moment effect and the elec-
tron electric dipole moment (eEDM), and the search for new phenomena, such
as the variation of fundamental constants. We address that the main purpose
of this work is to provide the needed molecular parameters with the help of the
state-of-the-art computational methods for successful measurements of various
molecular properties and for rigorous interpretations of the measurements. In
Chapter 6, we present high accuracy relativistic coupled cluster calculations of
the P̂-odd interaction parameter WA for the BaF molecule. The influence of
various computational parameters on the calculated WA parameter is analyzed.
The uncertainty evaluation is also demonstrated in this chapter. In Chapter 7, we
present more detail about the correlation trends of the nuclear anapole moment
effect in the BeCl molecule. We highlight the importance of electron correlation in
the determination of theWA parameter by comparing the calculated results from
various electron correlation approaches. In Chapter 8, we present high-accuracy
theoretical investigations of the spectroscopic constants for the selected alkaline
earth metal fluorides and discuss their application to laser cooling. We illustrate
that in the search for the eEDM with a slow beam of the BaF molecules, knowl-
edge of the molecular properties for BaF is needed to plan the measurements
and, in particular, to determine the optimal laser-cooling schemes. In Chap-
ter 9, we focus on the theoretical investigations of the variation of fundamental
constants by examining how crystal parameters in solid-state materials and equi-
librium bond distances in diatomic molecules vary with fundamental constants
(α and µ). If we assume that the distance between two nearest atoms (lattice
points) in a solid can be approximated by the equilibrium bond distance in a
diatomic molecule formed by these two atoms, the coupled cluster calculations of
the equilibrium bond distances for diatomic molecules can be used to benchmark
the performance of the DFT calculations of the lattice parameters for solid-state
materials. Finally, in Chapter 10, we present the conclusion for the present work
and give an outlook for future work.
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Chapter 2

The Standard Model and
fundamental symmetries

2.1 Overview
This chapter aims to give a brief introduction to the formalism of the Standard
Model (SM) and to highlight the importance of fundamental symmetries in the
construction and verification of the SM, as well as in the search for new phenom-
ena beyond the SM. The concept of symmetry has profound implications and
widespread manifestations in the SM [1], as it not only governs the construction
of the SM, but also predicts new particles and new phenomena. Since many
new physics theories are characterized by more significant symmetry-breaking ef-
fects, examining symmetry-breaking effects is the main topic of this work. There
are many different types of symmetries, which can be classified into two main
classes, depending on whether they are continuous or discrete. Conservation
laws in physics are usually arising from symmetry properties of a system [2]. The
connection between conservation laws and continuous symmetry properties can
be elucidated mathematically by Noether’s theorem (see e.g. Ref. [2]). Besides
continuous symmetries, we briefly review some important discrete symmetries in
the SM, such as charge conjugation symmetry Ĉ, parity (space inversion sym-
metry) P̂, time reversal symmetry T̂ , as well as their combinations such as ĈP̂
and ĈP̂T̂ (for more detail, see e.g. Ref. [3]). We give a brief overview of vari-
ous symmetry-breaking effects that we investigate, and explain their nature and
properties.
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Figure 2.1: Pictorial summary of the SM particles (adapted from Ref. [4]).

2.2 The Standard Model
The Standard Model of particle physics is built on the SU(3)c×SU(2)L×U(1)Y
gauge group, where the subscripts c, L, and Y represent color, left-handed spinor,
and hypercharge, respectively. Fig. 2.1 is a pictorial summary of the SM particles
and their properties known to date. The SM describes the fundamental inter-
actions among three sectors, such as the building blocks of matter (fermionic
fields including quarks and leptons), the force mediator sector (gauge bosons
including gluons, W±, Z0 bosons, and photon), and the Higgs sector. Under
the SU(3)c × SU(2)L × U(1)Y symmetry, the three-generation fermionic fields,
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namely quarks and leptons, take the following form:

qαL

(
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1
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)
≡
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L
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(
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s′

)
L

,

(
t
b′

)
L

,

lαL

(
1, 2,−1

)
≡
(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

,

uαR

(
3, 1,

4

3

)
≡uR, cR, tR,

d′αR
(

3, 1,−2

3

)
≡d′R, s′R, b′R,

eαR

(
1, 1,−2

)
≡eR, µR, τR.

(2.1)

Here, the index α enumerates the three generations of fermionic fields. The right
and left handed spinors are defined as ψR/L ≡ PR/Lψ with PR/L ≡ (1 ± γ5)/2
being the right and left chiral projection operators. The primed and unprimed
quark states represent the flavor and mass eigenstates, respectively. The flavor
eigenstates d′, s′, and b′ can be related to the mass eigenstates d, s, and b by the
Cabibbo–Kobayashi–Maskawa (CKM) matrix (see e.g. Ref. [5]):d′s′

b′

 = VCKM

ds
b

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 . (2.2)

Here, the CKM matrix VCKM describes quark mixing among the three genera-
tions. Under the same gauge symmetry, the SM Higgs doublet takes the following
form:

Φ
(

1, 2, 1
)

=

(
φ+

φ0

)
. (2.3)

In Equations (2.1) and (2.3), the first two numbers in the parentheses denote the
representations of the non-Abelian gauge groups SU(3)c and SU(2)L, respec-
tively. The third numbers in the parentheses denote the hypercharge, which is
related to the electromagnetic charge Q by the following expression:

Y = 2
(
Q− σ3

2

)
. (2.4)

Here, σ3 represents the third component of the weak isospin.
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The SM Lagrangian for the α-th generation of particles can be defined as [6]

L SM
α ≡ iq̄αL /DqαL + il̄αL /DlαL + iūαR /DuαR + id̄αR /DdαR + iēαR /DeαR

− 1

2
Tr
(
GµνG

µν
)
− 1

2
Tr
(
WµνW

µν
)
− 1

4
BµνB

µν

− yuq̄αLΦ̃uαR − ydq̄αLΦdαR − ye l̄αLΦeαR + h.c.

+
1

2
| /DµΦ|2 − 1

2
µ2
H |Φ|2 −

1

4
λ2
H |Φ|4,

(2.5)

where µH and λH represent the Higgs coupling constants. Here, /D is defined as
/D ≡ γµDµ and Dµ represents the covariant derivative, which is defined as

Dµ = ∂µ −
i

2
g1Y Bµ −

i

2
g2σiW

i
µ −

i

2
g3λaG

a
µ. (2.6)

Here, σi and λa represent the Pauli and Gell-Mann matrices, respectively. The
parameters g1, g2 and g3 are the corresponding coupling constants for the elec-
tromagnetic, weak, and strong interactions. The interaction tensors for the elec-
tromagnetic, weak and strong interactions are defined, respectively, as follows:

Bµν = ∂µBν − ∂νBµ, (2.7)

Wµν = ∂µWν − ∂νWµ + ig2[Wµ,Wν ], (2.8)

Gµν = ∂µGν − ∂νGµ + ig3[Gµ, Gν ]. (2.9)

In the above equations, Wν and Gµ are defined as Wν ≡ σiW
i
µ/2 and Gµ ≡

λaG
a
µ/2, respectively. The parameters yu, yd, and ye are the Yukawa coupling

constants. The conjugate Higgs doublet is defined as Φ̃ = iσ2Φ∗. In the SM,
particles acquire masses when the Higgs field develops a non-zero vacuum expec-
tation value after the electroweak symmetry is broken from the SU(2)L×U(1)Y
symmetry to the U(1)em symmetry in the following way (see e.g. Ref. [5])a:

Φ =

(
0
v+h√

2

)
, (2.10)

where h is the scalar Higgs field and v is the vacuum expectation value.
Despite the great success in the interpretation of the observed data and in the

prediction of the new phenomena at the electroweak energy scale, the SM fails
to explain many open problems and thus is considered as an incomplete theory.

aThis expression is obtained in the unitary gauge (see e.g. Ref. [5]).
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In order to solve the problems, many new physics theories (models) that extend
the SM have been proposed and intensively explored in various experiments over
the past decades. However, no statistically significant evidence has been found
for such new physics theories so far. Since, compared with the SM, many new
physics theories are characterized by more significant symmetry-breaking effects,
examining symmetry-breaking effects can be used to test new physics theories
and to search for new phenomena beyond the SM.

2.3 Fundamental symmetries
In this section, we give a brief introduction to some important fundamental sym-
metries and highlight their importance in the verification of the SM and in the
search for new phenomena beyond the SM. There are many different types of
symmetries, which can be classified in two main classes, depending on whether
they are continuous or discrete.

2.3.1 Continuous symmetries
A valid theoretical description of a system requires that it obeys some fundamen-
tal conservation laws, such as the conservation of energy, momentum, angular
momentum, etc. In the SM, conservation laws refer to the existence of quan-
tities that are independent of the dynamical evolution of the whole system or
the existence of quantities that do not change with respect to time. In gen-
eral, conservation laws in physics are usually connected to continuous symmetry
properties of a physical system [2]. The connection between conservation laws
and symmetry properties can be elucidated mathematically by Noether’s theo-
rem (see e.g. Ref. [2]). According to Noether’s theorem [7], each continuous
symmetry transformation implies a conserved quantity. Tab. 2.1 summarizes the
most common group of continuous symmetry transformations and the associated
conserved quantities [8]. Energy and momentum conservation is related to the
temporal and spatial translation symmetries, respectively. Angular momentum
conservation arises from the rotational symmetry. The global U(1) symmetry
implies charge conservation, etc.

2.3.2 Discrete symmetries
In this section, we focus on the symmetry property with respect to discrete trans-
formations, which play an important role in particle physics (see e.g. Ref. [3]), as
well as in atomic and molecular physics. The most common discrete symmetry
transformations include charge conjugation Ĉ, space inversion (or parity) P̂, time
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Symmetry transform Description Conserved quantity

Translation in time t −→ t′ = t+ ∆t Energy
Translation in space x −→ x′ = x+ ∆x Linear momentum

Rotation (about x axis) y −→ y′ = y cos θ + z sin θ Angular momentum
z −→ z′ = −y sin θ + z cos θ

Global U(1) φ −→ φ′ = eiθφ Charge, etc.

Table 2.1: Continuous symmetry transformations and the corresponding con-
served quantities (see e.g. Ref. [8]).

reversal T̂ , and their combinations, such as ĈP̂ and ĈP̂T̂ . Since the transforma-
tion properties of the (quantized) scalar, spinor, and vector fields are different,
we discuss such fields separately in the following discussions.

2.3.3 Charge conjugation symmetry
The charge conjugation transformation Ĉ switches a particle with the correspond-
ing anti-particle or vice versa. This transformation not only changes the sign of
the charge but also changes the sign of other quantum numbers such as baryon
number, lepton number, etc. The important feature, which is distinct from the
space inversion and time reversal transformations, is that the charge conjugation
transformation does not depend on space-time coordinates.

Under charge conjugation transformation, the charged scalar field φ̂(t, r)
transforms in the following way:

Ĉφ̂(t, r)Ĉ−1 = ηcφ̂(t, r)†, (2.11)

where the transformation factor satisfies the condition: |ηc| = ±1. The spinor
field ψ̂(t, r) transforms in the following way:

Ĉψ̂(t, r)Ĉ−1 = C ˆ̄ψT (t, r), (2.12)

where ˆ̄ψ(t, r) = ψ̂†(t, r)γ0 is the adjoint spinor. Since the spinor field is a matrix,
the transformation factor C should also be a matrix, which satisfies the following
relations [2]:

C† = C−1 = CT = −C. (2.13)

The transformation factor C can be chosen as [2]

C = iγ2γ0. (2.14)

17



Fundamental symmetries

In order to keep the coupling between the electromagnetic current and the vector
field invariant, the vector field should transform in the following way [2]:

ĈÂµ(t, r)Ĉ−1 = −Âµ(t, r). (2.15)

The transformation property of observable quantities, such as energy and mo-
mentum, under the charge conjugation transformation is as follows [2]:

Ĉp(E,p)Ĉ−1 = p(E,p), (2.16)

where p(E,p) is the four-momentum.

2.3.4 Parity (space inversion symmetry)
Another important discrete symmetry transformation in physics is the space in-
version symmetry transformation or parity transformation P̂, which is defined as

P̂x(t, r)P̂−1 = x(t,−r), (2.17)

where t and r represent the time and space coordinates, respectively. Unlike the
charge conjugation transformation, the parity transformation depends on space-
time coordinates.

Under parity transformation, the scalar field φ̂(t, r) transforms in the following
way:

P̂φ̂(t, r)P̂−1 = ηpφ̂(t,−r), (2.18)

where the transformation factor can be chosen as ηp = ±1, which implies the
intrinsic parity of a scalar particle is either positive or negative, corresponding to
scalar and pseudo-scalar, respectively. The spinor field ψ̂(t, r) transforms in the
following way [2]:

P̂ψ̂(t, r)P̂−1 = Pψ̂(t,−r). (2.19)

Similarly, the transformation factor P should also be a matrix and, up to an
arbitrary phase factor of modulus 1, can be chosen as [2]

P = γ0. (2.20)

Obviously, the transformation factor satisfies the following expression:

P = P † = P−1. (2.21)

Again, in order to keep the coupling between the electromagnetic current and the
vector field invariant, the vector field should transform as follows [2]

P̂Âµ(t, r)P̂−1 = Âµ(t,−r). (2.22)
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It is worth mentioning that, in classical mechanics, space inversion symmetry
does not lead to conserved quantity, while in quantum mechanics space inversion
symmetry implies conserved quantity, namely parity. The transformation prop-
erties of observable quantities, such as four-momentum and angular momentum,
under the parity transformation are as follows [2]:

P̂p(E,p)P̂−1 = p(E,−p), (2.23)

P̂JP̂−1 = J . (2.24)

where p(E,p) is the four-momentum and J is the total angular momentum, which
is defined as

J = L+
~
2

Σ. (2.25)

Here, L is the orbital angular momentum and ~Σ/2 is the spin angular momen-
tum, where Σ is defined as

Σ =

(
σ 0
0 σ

)
. (2.26)

2.3.5 Time reversal symmetry
The third discrete symmetry transformation is the time reversal symmetry trans-
formation T̂ , which is defined as

T̂ x(t, r)T̂ −1 = x(−t, r). (2.27)

The time reversal transformation flips the direction of motion and exchanges the
incoming and outgoing particles. Similar to the space inversion transformation,
the time reversal transformation also depends on the space-time coordinates. The
time reversal transformation can be constructed by an anti-unitary operator as
follows:

T̂ ≡ ÛK̂, (2.28)

where Û is a unitary operator and K̂ is the operator of complex conjugation.
Under the time reversal transformation, the scalar field φ̂(t, r) transforms in

the following way:
T̂ φ̂(t, r)T̂ −1 = ηtφ̂(−t, r), (2.29)

where the transformation factor satisfies the condition: |ηt| = 1. The spinor field
ψ̂(t, r) transforms in the following way:

T̂ ψ̂(t, r)T̂ −1 = T ψ̂(−t, r). (2.30)
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Similarly, the transformation factor T is also a matrix and, up to an arbitrary
phase factor of modulus 1, can be chosen as [2]

T = iγ1γ3. (2.31)

In order to keep the electromagnetic interaction invariant, the vector field should
have the following transformation property [2]:

T̂ Âµ(t, r)T̂ −1 = Âµ(−t, r). (2.32)

The transformation properties of observable quantities, such as four-momentum
and angular momentum, are as follows [2]:

T̂ p(E,p)T̂ −1 = p(E,−p), (2.33)

T̂ J T̂ −1 = −J . (2.34)

2.3.6 ĈP̂ and ĈP̂T̂
In addition to the above-mentioned discrete symmetries, we can also combine
them together to construct new discrete symmetries, such as ĈP̂, ĈP̂T̂ , etc. For
example, under the ĈP̂ symmetry, a left-handed fermion can be transformed into
a right-handed anti-fermion. If the ĈP̂ symmetry was conserved, particles and
anti-particles would behave exactly in the same manner. Tab. 2.2 summarizes the
transformation properties of the three fundamental interactions in the SM under
various discrete symmetries. As can be seen from Tab. 2.2, the ĈP̂ symmetry
is believed to be conserved in the electromagnetic and strong interactions, while
broken in the weak interaction. In fact, the weak interaction not only violates the
ĈP̂ symmetry, but also violates the Ĉ, P̂, and T̂ symmetries. This means that
experiments with microscopic particles are able to make an absolute distinction
between particles and anti-particles, between left and right, as well as between
traveling forward and traveling backward in time [2] through the weak interac-
tion. It is remarkable that, in the weak interaction, although P̂ is violated at a
maximal level, measurements suggest that ĈP̂ violation is very small. The domi-
nant source of ĈP̂ violation in meson decays comes from the CKM matrix. Unlike
the ĈP̂ symmetry, it is believed that the ĈP̂T̂ symmetry should be conserved in
all known fundamental interactions described by a locally Lorentz-invariant Her-
mitian Hamiltonian or Lagrangian [2]. This is the so-called ĈP̂T̂ theorem, which
guarantees that a particle and its anti-particle have the same mass and lifetime.
The validity of the ĈP̂T̂ theorem has been tested by various experiments with
very high precision [9].
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Table 2.2: Transformation properties of the three fundamental interactions in the
SM under discrete symmetries.

Force Mediator Spin Ĉ P̂ T̂ ĈP̂ ĈP̂T̂
Stronga gluons 1 3 3 3 3 3
Electromagnetic photon 1 3 3 3 3 3
Weak W±, Z0 1 7 7 7 7 3

aAlthough it is believed that ĈP̂ violation might occur in the strong interaction, no signif-
icant evidence has been found so far.

2.4 P̂ violation
Since the nuclear anapole moment effect is characterized by parity (P̂) violation,
we first focus on the history of atomic parity violation. Parity violation was first
proposed and discovered in the β decay of nucleus through the weak interaction
[11, 12]. Subsequently, Zel’dovich pointed out that, unlike the situation in the β
decay, parity violation in atomic transitions might be too small to be detectable
[13]. However, many years later Bouchiat showed that parity violating effects
roughly scale as the cubic power of nuclear charge Z and thus can be significantly
enhanced in heavy atoms, possibly leading to observable signals [14, 15]. The
experimental measurements of P̂ violation in atoms were pioneered by Barkov
et al. [16] and Conti et al. [17] using the optical rotation and Stark-interference
techniques on the Bi and Tl atoms, respectively.

Atomic parity violation has been measured in a variety of atoms such as 209Bi,
208Pb, 205Tl, 174Yb, 133Cs, etc. What is actually measured in such experiments is
the ratio between the imaginary part of the parity violating amplitude Im(EPV)
and the vector transition polarizability β [18], which can be used to extract the
nuclear weak charge with the help of theoretical calculations. The most precise
result is provided by the measurement on the Cs atom through the transition
6S1/2− 7S1/2 and the measured quantity is −Im(EPV)/β ' 1.538 (40) mV·cm−1

[19]. Here, the number in the parenthesis represents the experimental uncertainty.
Further measurements have also been proposed on heavy atoms with similar
electronic structure, such as Fr [20].

In molecules, parity violation can be greatly enhanced because of closely
spaced molecular levels with opposite parity [21], making it more likely to be
detectable. It has been suggested that molecular parity violation could be ob-
served by comparing the transition spectra of chiral molecules [22]. However,
no statistically significant signal has been observed so far. Alternatively, the
measurements of the nuclear spin dependent parity violating effects in molecules
such as the nuclear anapole moment effect have also been proposed (see e.g. Ref.
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Figure 2.2: Nuclear spin dependent parity violating interactions [10]: (a) nuclear
anapole moment interaction, (b) weak neutral coupling between the electronic
vector current (Ve) and nuclear axial-vector current (AN ), (c) combined inter-
action between the nuclear spin independent weak interaction and the hyperfine
interaction. The blobs represent the effective interactions between gauge bosons
and nucleons (protons and neutrons), simply due to the consideration that nu-
cleons are composite particles made up of quarks, and we do not know all the
detail about their interactions.

[23, 24]).
In the SM, parity violation comes from the weak interaction through the

exchange of W± or Z0 bosons. In atoms and molecules, the weak interaction
between electrons and nucleons gives rise to parity violating effects. In particular,
the parity violating effects arising from the exchange of the Z0 boson can be given
by the following effective Lagrangian,

Leff =
GF√

2

[
ψ̄eγµ

(
1− γ5

)
ψe

][
ψ̄Nγ

µ
(
Cv − Caγ5

)
ψN

]
, (2.35)

where GF = 2.222516(1) × 10−14 Eh · a3
B is the Fermi weak interaction cou-

pling constant [25], Eh is the Hartree energy, aB is the Bohr radius. ψe and
ψN represent the field operators for electron and nucleon, respectively. Cv and
Ca are dimensionless constants accounting for the corrections to the vector and
axial-vector currents. The following parity-violating terms can be obtained by
expanding Eq. (2.35) explicitly [26, 27],

LPV =
GF√

2

[
C1

(
ψ̄eγµγ

5ψe

)(
ψ̄Nγ

µψN

)
+ C2

(
ψ̄eγµψe

)(
ψ̄Nγ

µγ5ψN

)]
. (2.36)
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Here, the first parameter C1 ≡ −Cv describes the strength of the interaction
between the electronic axial-vector current (Ae) and the nuclear vector current
(VN ), and the second parameter C2 ≡ −Ca describes the strength of the inter-
action between the electronic vector current (Ve) and the nuclear axial-vector
current (AN ). The first term does not depend on nuclear spin and gives rise to
the nuclear weak charge interaction. The second term depends on nuclear spin
and contributes to the nuclear spin dependent parity-violating (NSD-PV) inter-
actions. The coefficients C1 and C2 are contributed differently from proton and
neutron and, to the lowest order, they can be expressed as [27]

C1p =
1

2

(
1− 4 sin2 θw

)
,

C1n = −1

2
,

C2p =
1

2
gA

(
1− 4 sin2 θw

)
,

C2n = −C2p,

(2.37)

where the parameter gA takes the value of around 1.26 [27] and the parameter
θw is the Weinberg angle.

2.4.1 Nuclear spin-independent parity violating interaction
The first term in Eq. (2.36) describes the nuclear spin-independent parity vi-
olating (NSID-PV) interaction and can be expressed by the following effective
Hamiltonian [27]:

HNSID ' −
GF√

2

[
C1pZρp(r) + C1nNρn(r)

]
γ5, (2.38)

where the number of protons and neutrons are denoted by Z and N , respectively.
ρp(r) and ρn(r) represent the density distributions of protons and neutrons,
respectively. Since this interaction does not depend on nuclear spin, all the
nucleons contribute to the effect. If the proton and neutron distributions are
assumed to be the same i.e. ρ(r) ≡ ρp(r) = ρn(r), Eq. (2.38) can be simplified
further as [27]

HNSID = −GF√
8
Qwγ5ρ(r), (2.39)

where Qw is the nuclear weak charge and to the lowest order can be expressed as
[27]

Qw '
(

1− 4 sin2 θw

)
Z −N. (2.40)
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The nuclear weak charge predicted by the SM for the Cs nucleus is approximately
Qw ' −73.23 (1) [9], where the number in the parenthesis represents the uncer-
tainty. The NSID parity violating effects not only can be used to probe the SM
parameters like the weak charge Qw, but also can be used to impose constraints
on new physics beyond the SM.

2.4.2 Nuclear spin-dependent parity violating interaction
The second term in Eq. (2.36) is one of the nuclear spin-dependent parity violat-
ing (NSD-PV) interaction terms (see below). The possible diagrams responsible
for the NSD-PV interactions are depicted in Fig. 2.2, where N and e− denote
nucleons (protons or neutrons) and electrons, respectively. The NSD-PV interac-
tions are contributed by three main sources and can be described by the following
effective Hamiltonian [10, 27]:

HNSD =
GF√

2
(κA + κax + κhfs)

(
α · Î

)
ρ (r) , (2.41)

where ρ(r) is the nuclear density distribution, GF is the Fermi weak interaction
constant [25], Î is the unit vector along the nuclear spin, and α are the Dirac
matrices. As can be seen from Eq. (2.41), the NSD-PV effects are only nontriv-
ial for the nucleus with non-zero nuclear spin. The first term, κA, comes from
the nuclear anapole moment interaction (see Fig. 2.2 (a)) [26, 27] and will be
discussed in more detail below. The second term κax arises from the weak neu-
tral coupling between the electronic vector current (Ve) and nuclear axial-vector
current (AN ) [27, 28] (see Fig. 2.2 (b)). Theoretical prediction of κax within
the nuclear shell model can be found in Ref. [29]. The third contribution κhfs
originates in the nuclear spin independent weak interaction combined with the
hyperfine interaction [30, 31] (see Fig. 2.2 (c)).

The three sources contribute differently to the NSD-PV effects. The param-
eter κax is independent of the atomic mass number A, while the parameter κA
scales as ∼ A2/3 [27]. Compared with κA, the parameter κhfs is much smaller
[27]. Therefore, it is expected that for molecules containing heavy elements the
NSD-PV effects are dominated by the nuclear anapole moment interaction. In
this case, it is possible to separate the nuclear anapole moment effect from the
remaining NSD-PV effects. For molecules only containing light elements, the
measured NSD-PV effects are contributed from all these three major sources,
but it is still possible to distinguish the nuclear anapole moment effect from the
other two effects by performing measurements with different nuclei (or different
isotopes) [32]. Since numerous experiments aim to measure the nuclear anapole
moment effect with improved sensitivities [23, 24, 32], we give a special attention
to the nuclear anapole moment effect.
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a

Figure 2.3: Nuclear anapole moment generated by a toroidal current distribution.

The nuclear anapole moment a is a magnetic moment arising from a current
distribution j(r) within a nucleus and can be expressed as [26]

a = −π
∫
|r|2j(r)d3r, (2.42)

which gives rise to the following vector potential [26]:

A = aδ(r). (2.43)

The interaction between the vector potential and the electromagnetic current
leads to the nuclear anapole moment effect. From a classical point of view, the
current distribution that gives rise to the nuclear anapole moment can be demon-
strated in Fig. 2.3. By definition, the nuclear anapole moment interaction can
be factorized into two parts, i.e. the electronic part and the nuclear part. In the
nuclear shell model, except for the valence nucleon, all the nucleons with oppo-
site spin are grouped into pairs and form the core of the nucleus. Without parity
violating interactions, the spin of the valence nucleon is aligned in the direction
perpendicular to the plane where it travels around the core of the nucleus. How-
ever, in the presence of parity violating interactions, the spin direction of the
valence nucleon would be influenced and no longer aligned in the same direction
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when it travels around the core, leading to the current distribution in the wind-
ings of a toroidal solenoid [33]. Such current distribution gives rise to the parity
violating nuclear anapole moment effect.

In the nuclear shell model, the effective coupling constant κA, which describes
the strength of the nuclear anapole moment effect, takes the following explicit
form [10, 34, 35],

κA ' 1.15× 10−3(−1)I−l+
1
2

(
I + 1/2

I + 1

)
µigiA

2
3 , (2.44)

where I and l represent the quantum numbers of the spin and orbital angular
momenta for the unpaired valence nucleon, and A is the total number of nucleons
in the nucleus (atomic mass number). gi is an interaction constant with the
absolute values of around 5 [10, 34] and 1 [10, 36] for the proton-nucleus and
neutron-nucleus interactions, respectively. µi is the nuclear magnetic moment
with the absolute values of around 2.8 and 1.9 for proton and neutron, respectively
[10].

Non-vanishing nuclear anapole moment effect has been observed in the 133Cs
atom with the size of the effect being 0.127± 0.019, which is different from zero
by a significance of 7 σ [37, 38]. Further measurements with improved sensitiv-
ity have been proposed on other atoms, such as 137Ba [39], 163Dy [40], 171Yb
[41], 212Fr [42], etc. Recently, the measurements with unprecedented sensitivities
have also proposed on diatomic molecules such as BaF [43, 44], and triatomic
molecules [32] such as BeNC, MgNC, CaOH, SrOH, BaOH, etc. In Chapter 5,
we briefly introduce the methodology behind the measurement of the nuclear
anapole moment effect using molecules.

2.5 ĈP̂ violation
ĈP̂ violation (and Ĉ violation) is one of the three criteria suggested by Sakharov
to explain the observed matter-antimatter asymmetry in our Universe [45]. In
1964, ĈP̂ violation was first observed in the neutral K meson decays through the
weak interaction [46]. Many years later, the possibility of finding ĈP̂ violation
in the B meson decays was proposed by Bigi et al. [47]. In 2001, ĈP̂ violation
was established in the B meson decays by BaBar [48] and Belle [49]. In 2013,
ĈP̂ violation was first reported in the strange B meson systems [50]. Recently,
ĈP̂ violation has also been observed in the D0 meson decay by LHCb with the
asymmetry of −15.4±2.9 (stat. + syst.)×10−4, which is different from zero with
a significance of 5.3 σ [51]. In the SM, ĈP̂ violation may come from the complex
phase of the three-generation quark mixing (CKM) matrix or may come from the
θ-term in the QCD Lagrangian. Although such description of ĈP̂ violation agrees
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well with almost all the current electroweak data, the amount of ĈP̂ violation
predicted by the SM is insufficient to account for the observed matter-antimatter
asymmetry. Therefore, a new mechanism for ĈP̂ violation needs to be proposed
from a theoretical perspective and an additional source of ĈP̂ violation needs to
be identified from an experimental perspective.

Compared with the SM, many new physics theories are characterized by more
significant ĈP̂ violating effects. As early as 1950, Purcell et al. suggested the
probability that elementary particles and nucleons might possess a nonzero per-
manent electric dipole moment (EDM) [52]. For example, as indicated in Fig.
2.4, a non-zero permanent EDM of an electron is aligned along its spin axis and
violates both parity (P̂) and time reversal (T̂ ) symmetry. According to the ĈP̂T̂
theorem of the quantum field theory, the violation of time reversal symmetry
implies the violation of the ĈP̂ symmetry. The searches for the permanent EDM
of elementary particles can open a window for identifying new sources of ĈP̂ vio-
lation and can serve as a powerful tool to set constraints on new physics theories
beyond the SM.

Particularly, the searches for the permanent EDM of a nucleon may help find
the solution to the strong ĈP̂ problem. In Quantum Chromodynamics (QCD),
a nontrivial term induced by non-perturbative effects violates the ĈP̂ symmetry
explicitly through the so-called QCD vacuum angle and can be defined by the
following expression [53–55]:

Lθ =
g2

3θQCD

32π2
εµναβGaµνG

a
αβ , (2.45)

where the parameter g3 represents the coupling constant for the strong interac-
tion, and θQCD represents the QCD vacuum angle. This term can induce non-zero
neutron electric dipole moment (nEDM). By assuming that this term is the sole
source to the nEDM (dn), the nEDM can be expressed as follows [56]:

dn ' 3× 10−16θQCD e · cm. (2.46)

The searches for the nEDM have reached a very high level of precision. However,
no significant signal of the nEDM has been observed so far. The experimental
upper limit at the 90% confidence level on the nEDM is 2.9 × 10−26 e·cm [57],
which imposes an upper bound on the QCD vacuum angle with the value of
θQCD . 10−10, suggesting that such term is tiny and the ĈP̂ symmetry in the
strong interaction should be preserved to a very high degree [57]. The smallness
of strong ĈP̂ violation remains a puzzle.

Besides the term with the QCD vacuum angle, several other terms also involve
non-zero EDM and violate the ĈP̂ symmetry. Recently, exploring new source of
ĈP̂ violation with electron electric dipole moment (eEDM) has been a subject of
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Figure 2.4: The electron electric dipole moment (de) violates parity (P̂) and time
reversal symmetry (T̂ ).

active research. The interaction between a non-zero eEDM and electromagnetic
field can be described by the following effective Lagrangian [58, 59]:

L eEDM =
−i
2
deψ̄eσ

µνγ5ψeFµν , (2.47)

where σµν = (γµγν − γνγµ)/(2i), ψe is the field operator for electron, Fµν is the
field strength operator for electromagnetic field. Since the effects induced by a
non-zero eEDM can be greatly enhanced in atoms and molecules [10, 59], the
searches for the eEDM using atoms and molecules can be used as a powerful tool
to place constraints on new physics theories beyond the SM and have attracted
an enormous level of attention recently. Fig. 2.5 summarizes the constraints
on new physics models beyond the SM imposed by the searches for the eEDM.
As can be seen, the eEDM predicted by the SM is many orders of magnitude
smaller than the ones predicted by new physics theories beyond the SM. A large
fraction of such new physics models have been excluded by the recent results
from the measurement on ThO [60]. At present, the NL-eEDM collaboration
is building an experimental setup to search for the eEDM in a slow beam of
cold BaF molecules [61] with unprecedented sensitivity. Knowledge of molecular
properties of BaF is thus needed to plan the measurements and in particular
to determine the optimal laser-cooling scheme, which can help to increase the
interaction time and to improve the measurement sensitivity. In Chapter 5,
we briefly introduce the searches for the eEDM using atoms and molecules. In
Chapter 8, we demonstrate the theoretical investigations of molecular properties
for the eEDM measurements, as an application of ab initio methods.
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Figure 2.5: Constraints on new physics models beyond SM imposed by the
searches for the eEDM (image courtesy of the NL-eEDM collaboration [62]).

2.6 Variation of fundamental constants
Constructing new physics theories, such as quantum gravity, that unify gravity
with the other three fundamental interactions in a self-consistent manner is one
of the most challenging problems in modern physics. A variety of new physics
theories that extend the Standard Model (SM) and General Relativity (GR) have
been proposed with the signature of time and space dependence on dimensionless
fundamental constants, such as fine structure constant (α), proton to electron
mass ratio (µ), etc. The idea that fundamental constants may vary with respect
to time and space can be traced back to the big numbers hypothesis proposed
by Dirac [63] amid speculation that the gravitational constant may depend on
time [64]. Later on, this idea is generalized to the scenario that the fine structure
constant αmay also vary with time. The searches for the variation of fundamental
constants not only can help test the SM and GR, but also can help put constraints
on new physics theories.

New physics theories, such as quantum gravity, string theories, M-theories,
brane-world models, etc., that unify gravity with other fundamental interactions
are usually featured with extra space-time dimensions, which provide a natural
framework in describing the variation of fundamental constants [65]. The true
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fundamental constants exist in the whole space including the common (3 + 1) di-
mensional space and the extra dimensional space. Any change in the size of the
extra-dimensional space may give rise to the variation of fundamental constants
in the common (3 + 1) dimensional space. For example, in the Kaluza-Klein
model (one type of string theory), extra spatial dimensions are introduced as
an attempt of unifying gravity with other fundamental interactions in a form of
small compact manifold called internal space, which leads to the time variation
of fundamental constants like α [66]. Therefore, the search for the time variation
of α may help find evidence for extra space-time dimensions. Some superstring
theories with extra space-time dimensions are also considered as promising the-
ories for unifying gravity with other fundamental interactions. In such theories,
fundamental constants may vary with time through the coupling between the
electromagnetic field and a dynamical field called dilaton, which is a hypothet-
ical particle that could appear when the volume of the (extra) internal space
varies [67]. Similarly, in M-theories, the change in the volume of internal space
could also manifest itself as the variation of fundamental constants in the com-
mon (3 + 1) dimensional space [68]. In the brane-world models, the existence of
scalar fields called moduli fields are predicted and such fields are related to the
variation of fundamental constants through the size change of extra-dimensional
space as well [69].

Besides extra dimensional theories, some new physics theories give rise to the
variation of fundamental constants through scalar dark matter candidates. In
such theories, the scalar dark matter candidates oscillate with respect to time
and cause the time variation of fundamental constants through their coupling to
the SM particles [70]. For example, the newly added scalar field interacts with
the SM fermionic and electromagnetic fields respectively in the following way
(~ ≡ 1, c ≡ 1) [70]:

L1 =
Yγ cos(ωt)

4Λγ
FµνF

µν , (2.48)

−L2 =
Yf cos(ωt)

Λf
mf ψ̄fψf . (2.49)

Here, ω is the oscillating frequency for the new scalar field, Fµν represents elec-
tromagnetic tensor and ψf represents the fermionic field. The parameters Yγ and
Yf describe the coupling strengths between the new scalar field and the SM fields
and have units of mass, Λγ and Λf represent the energy scales associated with
new physics, mf represents the mass of the SM fermionic field. The temporal
variation of fundamental constants, such as the fine structure constant (α) and
fermionic mass mf , arises from the interactions given by Equations (2.48) and
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(2.49) and can be expressed as [70]

α′(t) =
α

1− Yγ cos(ωt)
Λγ

, (2.50)

m′f (t) =
[
1 +

Yf cos(ωt)

Λf

]
mf . (2.51)

In this case, the studies of the temporal variation of fundamental constants can
be helpful for dark matter searches.

Alternatively, the variation of fundamental constants with respect to the space
variables is also suggested by new physics theories that unify gravity with other
fundamental interactions. Moreover, the spatial variation of fundamental con-
stants can naturally explain the existence of life and the fine-tuning problem,
because it suggests that in some regions of the Universe the value of fundamental
constants may be in favor of the existence of life and may fit well with certain
observations [71]. In some dark matter and dark energy models, the inhomo-
geneous distribution of dark scalar fields gives rise to the spatial variation of
fundamental constants via the coupling between the dark scalar fields and the
SM fields, bringing forward the variation of the fundamental constants in ac-
cordance with gravitational potential [72–74]. Another example of the spatial
variation of fundamental constants lies within the new physics theories featured
with domain walls generated in the early Universe. Such domain walls couple
to the electromagnetic field and may cause the spatial variation of α when the
domain walls are passing through the Earth [75]. In this case, the searches for
the spatial variations of α may be helpful for the detection of such domain walls.
However, it is suggested by some new physics models that, compared with the
time variation of fundamental constants, the spatial variation is less significant
[76].

The searches for the variation of fundamental constants with respect to time
and space have attracted increasing attention over the past years. Such stud-
ies can be performed in a number of ways, such as Big Bang nucleosynthesis,
Oklo natural nuclear reactor data, meteorite data, laser interferometer, quasar
absorption spectra, and atomic clocks [71]. In Chapter 5, we briefly introduce the
methodology behind the search for the variation of fundamental constants using
a laser interferometer in particular and discuss its connection with the solid-state
and molecular properties. In Chapter 9, we demonstrate the role of ab initio
methods in the search for the variation of fundamental constants with an appli-
cation to some solid-state materials and diatomic molecules. Since it is impossible
to distinguish between the variation of dimensional constants and the variation of
units, it does not make sense to search for the variation of dimensional constants.
Throughout the present work, unless otherwise specified explicitly, the funda-
mental constants under discussion refer to dimensionless fundamental constants.
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Chapter 3

Computational methods

3.1 Overview
Theoretical investigations of molecular properties for diatomic molecules not only
can help develop an experimental setup for precision measurements, but also can
help correct the errors and interpret the results after measurements [1]. Com-
pared with the semi-empirical methods, the ab initio methods are more mathe-
matically rigorous and do not depend on empirical parameters, making it possible
to perform calculations on molecules when there is no experimental information
available or the experimental spectra are too complicated to be analyzed. Such
methods allow a careful examination of electronic structure and enable us to un-
derstand the possible mechanism for the influence of new physics interactions on
molecular properties. In some cases, they can also be used to identify promising
molecular candidates with enhanced sensitivity and provide the needed molecular
parameters for a successful interpretation of the measurements.

In this chapter, we briefly review the computational methods that are used
for the calculation of molecular properties in the present work. In order to cal-
culate molecular properties with high-accuracy, we need to take into account a
number of factors, such as relativistic effects (Hamiltonian), basis set quality,
treatment of electron correlation, etc. The treatment of relativistic effects and
electron correlation plays an increasingly important role in accurately determin-
ing the properties of molecules containing heavy elements. Light molecules are
more feasible for highly accurate investigations, because sufficiently large and
high-quality basis sets can be used. A comprehensive analysis of the impact of
such factors might help find strategies to systematically improve the accuracy
of the calculated molecular properties. In particular, we focus our attention on
the performance of various electron correlation methods that have been widely
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employed in the calculations of molecular properties.
Theoretical uncertainty not only can help quantitatively evaluate the qual-

ity of the calculations, but also can help draw reliable conclusions from mea-
surements. In some cases, theoretical values cannot be directly compared to
the experimental values if the corresponding uncertainties are not acknowledged
properly [2]. In other cases, the experimental values usually need to be combined
with the theoretical values in order to extract the final values of molecular prop-
erties from measurements, where the total uncertainties need to be included by
summing the experimental and theoretical uncertainties in quadrature [3]. In or-
der to put theoretical uncertainties on the calculated parameters, various factors
that determine the theoretical uncertainties are explored and discussed in this
chapter as well.

3.2 Hamiltonian
Before proceeding with many-body systems, we first introduce the solution to
the Dirac equation for an electron in a central field, which provides the basis
for relativistic computational methods. In this case, the Dirac equation can be
written as [

cα·p+ βmec
2 + V (r)

]
ψ = Eψ, (3.1)

where me represents the electron mass, c represents the speed of light, and α and
β are the Dirac matrices which are defined as

αi =

(
0 σi
σi 0

)
, β =

(
1 0
0 −1

)
. (3.2)

The corresponding solution can be chosen as the following form [4]:

ψ = i

(
G(r)
r χκm

iF (r)
r χ−κm

)
, (3.3)

where n represents the principal quantum number, m represents the magnetic
quantum number. The quantum number κ is defined as [4]

κ = ∓
(
j +

1

2

)
. (3.4)

Here, j represents the total angular momentum quantum number. With the help
of Eq. (3.3), the Dirac equation can be written conveniently in following matrix
form [4] (

mec
2 + V (r) −~c ddr + ~cκr

~c ddr + ~cκr −mec
2 + V (r)

)(
G(r)
F (r)

)
= E

(
G(r)
F (r)

)
. (3.5)
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Relativistic effects can significantly influence atomic and molecular properties
[5], especially for atoms and molecules containing heavy elements. The eigenvalue
(energy) for an electron in a Coulomb potential produced by an infinite-mass
point charge Ze takes the following form [4, 6]:

E = mec
2
[
1 +

(Zα)2(
n− |κ|+

√
κ2 − (Zα)2

)2

]− 1
2

. (3.6)

It is easy to see that, in the scenario where Zα� 1, the importance of relativis-
tic effects is approximately proportional to (Zα)2 [4], and thus relativistic effects
have more important consequences for heavy elements. Furthermore, parity vi-
olating properties are usually induced by the operators containing four-by-four
gamma matrices, which reveal their relativistic nature. In such cases, relativistic
effects have to be incorporated into the calculation. In this work, the ab initio
calculations of molecular properties are mainly carried out using the developer’s
version of the DIRAC package [7], which is a relativistic electronic structure
program. Specifically, in the many-electron system, the following (relativistic)
4-component Dirac-Coulomb Hamiltonian is employed with respect to the treat-
ment of relativistic effects,

HDC =
∑
i

Hi +
∑
i<j

e2

rij

=
∑
i

[
cαi · pi + βimec

2 + Vn(ri)
]

+
∑
i<j

e2

rij
,

(3.7)

where Vn(ri) is the nuclear Coulomb potential, which can be chosen as the poten-
tial of a point charge or a finite-size charge [8]. In the latter case, the finite-size
charge (nucleus) can be modeled by a Gaussian type distribution [9]. The use
of Gaussian charge distribution has the advantage that the nucleus-electron at-
traction integrals and the electron-electron repulsion integrals can be evaluated
by the same efficient routines and thus leads to the easy computational imple-
mentation [9]. The sum runs over all the electrons in the system. The distance
between two electrons is defined as rij ≡ |ri − rj |. In practice, the Hamiltonian
shifted by the electron rest mass energy (mec

2) has been widely used [6]:

HDC =
∑
i

Hi +
∑
i<j

e2

rij

=
∑
i

[
cαi · pi + (βi − 1)mec

2 + Vn(ri)
]

+
∑
i<j

e2

rij
.

(3.8)
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The corresponding eigenequation for a given electron can be conveniently written
as [6, 10] (

Vn c(σi · pi)
c(σi · pi) Vn − 2mec

2

)(
φLi
φSi

)
= εi

(
φLi
φSi

)
. (3.9)

Here, φLi and φSi represent the large and small components of the relativistic wave-
function. In most cases, the relativistic effects can be sufficiently accounted by
the Dirac-Coulomb Hamiltonian. However, the Coulomb potential is not Lorentz
invariant and thus is not fully relativistic. In order to compensate for the error
due to this limitation, we need to incorporate some important terms arising from
higher-order QED a corrections in a more rigorous manner. Actually, the rela-
tivistic effects are contributed by an infinite number of terms. Among them, the
leading contribution to the relativistic effects comes from the Breit term, which
is defined as [6, 11–14]

Bij = −e
2αi ·αj

2rij
− e2(αi · rij)(αj · rij)

2r3
ij

. (3.10)

In practice, the Breit term could be rewritten in the following way [14],

Bij = −e
2αi ·αj
rij

− e2(αi ·∇i)(αj ·∇j)rij
2

, (3.11)

where the first term is the Gaunt term [15], which gives rise to the leading effects
from the Breit term, and the second term is the gauge term, which is less impor-
tant [13, 14]. Considering the Gaunt term, the following Dirac-Coulomb-Gaunt
Hamiltonian has also been widely used [14]:

HDCG =
∑
i

Hi +
∑
i<j

( e2

rij
+Gij

)
, (3.12)

with

Gij = −e
2αi ·αj
rij

. (3.13)

In some cases, the Gaunt term [15] is considered to be important even for some
light molecules [16] and thus needs to be taken into account.

In order to decrease computational time and expense while without losing
too much predictive accuracy [17–19], the molecular mean-field implementation
of the 2-component relativistic (X2Cmmf) Hamiltonian [18, 20, 21] can be em-
ployed in the calculations of molecular properties. The main idea behind the

aQED denotes Quantum Electrodynamics.
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construction of the 2-component (2C) Hamiltonian is to choose an appropriate
unitary transformation U to decouple the large and small components of the 4-
component (4C) Hamiltonian via a block diagonalization procedure, so that the
spectrum of the 4-component Hamiltonian can be reproduced as well as possible
[14, 18]. Such procedure can be illustrated by the following expression [14, 18]:

H4C = U †
(
HLL HLS

HSL HSS

)
U

=

(
H+ 0
0 H−

)
,

(3.14)

where H2C ≡ H+ is the 2-component Hamiltonian. In order to reduce the com-
putational effort, the smaller component H− can be ignored without losing too
much accuracy.

3.3 Basis sets
In computational physics or chemistry, a basis set is a group of functions that can
be used to model the nuclear, atomic, and molecular wavefunctions (orbitals). A
molecular orbital φi can be constructed by a linear combination of atomic orbitals
(LCAO),

φi =
∑
β

Ciβξβ , (3.15)

where ξβ represents atomic orbitals (basis functions). The expansion coefficients
Ciβ can be optimized in a manner that the determined energy tends to be con-
verged to a minimum. It is motivated by the form of the electronic wavefunction
of a hydrogen atom that a reasonable guess of the atomic orbitals can be the
following Slater-type orbitals (STOs) [22]:

ξβ(λ, r) = NSx
aybzce−λr, (3.16)

which has a well-defined behavior and describes the atomic orbitals more accu-
rately, but has computationally expensive constraints. Alternatively, the follow-
ing Gaussian-type orbitals (GTOs) have been widely chosen as the basis functions
to model atomic orbitals [22]:

ξβ(λ, r) = NGx
aybzce−λr

2

. (3.17)

In the above two equations, the orbital angular momentum quantum number l
satisfies the relation l = a+ b+ c, and the radial distance r satisfies the relation
r2 = x2 +y2 +z2. The factors NS and NG represent the normalization constants.
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The exponent of the STOs is a linear function of r while the exponent of the
GTOs is a quadratic function of r. The parameter λ describes the radial extent
of the orbital. Since the STOs contain the factor e−λr, they could model the
required characteristics of atomic orbitals naturally. Although the STOs have
physically more accurate picture, they are computationally more expensive than
the GTOs [23]. Furthermore, the accuracy of the calculation can be improved by
linearly combining more GTOs. For these reasons, the GTOs have been widely
used in practice.

In the relativistic case, the four-spinor molecular orbitals can be constructed
in the following way [24, 25]

φi =



∑
µ
CLαiµ ξ

L
µ∑

µ
DLβ
iµ ξ

L
µ

i
∑
ν
CSαiν ξ

S
ν

i
∑
ν
DSβ
iν ξ

S
ν

 , φ̄i = T̂ φi =



∑
µ
CLα
īµ
ξLµ∑

µ
DLβ
īµ
ξLµ

i
∑
ν
CSα
īν
ξSν

i
∑
ν
DSβ
īν
ξSν

 . (3.18)

Here, ξLµ and ξSν represent the large and small component atomic orbitals, re-
spectively. φ̄i represents the Kramers partner of φi generated by applying the
time reversal operator T̂ [6, 25, 26]. In the relativistic case, the molecular or-
bitals have large and small components and all such components can be modeled
by Eq. (3.17). The expansion coefficients CLαiµ , DLβ

iµ , CSαiν , and DSβ
iν , in gen-

eral, are complex numbers. The basis functions employed in describing the large
component atomic orbitals are different from the ones employed in describing the
small component atomic orbitals. In order to reproduce the non-relativistic limit,
the small component atomic orbitals are related to the large component atomic
orbitals by the following expression [24, 27, 28]:

ξSν (λ, r) ' σ · p
2mec

ξLµ (λ, r). (3.19)

The exponents of the basis functions for the small component atomic orbitals are
much smaller than the ones for the large component atomic orbitals [29].

In principle, sufficiently large and high-quality basis sets should be used, so
that the behavior of the electrons can be well described. However, we also need to
take into account the balance between the accuracy and computational feasibility.
Actually, various types of basis sets have been developed and used in practice.
Among them, we employ the so-called ζ basis sets in the present work. Such
basis sets use multiple-ζ basis functions to describe each atomic orbital and could
contain both the core and valence orbitals. The ζ basis sets used in this work
are Dyall’s relativistic valence and core-valence basis sets with various sizes, such
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as dyall.v3z, dyall.v4z, dyall.cv3z, and dyall.cv4z [30, 31]. Here, dyall.v3z and
dyall.v4z stand for the valence basis sets with triple-ζ and quadruple-ζ functions.
The other two stand for the core-valence basis sets with triple-ζ and quadruple-
ζ functions. The valence basis sets contain the functions accounting for the
electron correlation between the outer shells while the core-valence basis sets
contain additional functions for the electron correlation from deep shells. Besides
Dyall’s standard basis sets, their enlarged versions with additional tight and
diffuse functions for each shell are also employed in our calculations.

Basis sets are usually constructed by systematically optimizing them with
respect to energies, and thus have sufficiently good performance for predicting
energies but may have inadequacies for predicting other properties. In order to
compensate for the inadequacies of the basis sets in predicting other properties,
an enlargement scheme of basis sets needs to be applied until the convergence
of the calculated properties is reached. From a practical point of view, such
enlargement of basis sets can be achieved by augmenting Dyall’s relativistic basis
sets with more tight and diffuse functions. The tight functions are associated with
the orbitals that are more contracted on the origin and thus play a significant role
in modeling the behavior of electrons close to nucleus. The diffuse functions are
associated with the orbitals that are more spread out from the origin and thus
take a leading role in modeling the behavior of electrons far away from nucleus.
In particular, since the atomic and molecular parity-violating effects mainly arise
in the vicinity of the nucleus, augmenting additional tight functions could help
improve the accuracy of the calculation. By contrast, chemical bonding mainly
depends on the behavior of the electrons in the peripheral region of each atom,
where the diffuse functions play an important role, and thus augmenting more
diffuse functions would be beneficial for increasing the accuracy of the calculation.

3.4 Computational methods and electron correla-
tion

Electron correlation, which is an instantaneous many-body effect in a quantum
system, includes the contributions from the influence of all other electrons on
the movement of one electron and from the inadequacy of a single reference
determinant in describing the system. The former is known as the dynamical
correlation while the latter is known as non-dynamical (or static) correlation
[32]. From a practical point of view, electron correlation quantifies inadequacy
of the Hartree-Fock (HF) method in describing a quantum system, due to the
assumption that the electrons travel independently in a mean field produced by
the nuclei and all other electrons [32]. Electron correlation energy can be defined
as the difference in the energies between the correlation method and the HF
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method and should always be negative because when the electrons travel around
they would tend to distribute as far as possible from each other and thus a more
adequate method would lower down the energy [32]. The development of various
correlation methods that handle electron correlation effects more accurately and
more efficiently has been a subject of active research.

In order to investigate the influence of electron correlation on the calculated
molecular properties, various electron correlation methods, such as the pertur-
bation method, the coupled cluster method, etc., are employed in this work.
The electron correlation methods under discussion in this work are all based on
the Dirac-Hartree-Fock (DHF) method, except for the density functional theory
(DFT) method. Before proceeding with various correlation methods, we first
introduce the HF method in both the non-relativistic and relativistic scenarios.
To illustrate the performance of the perturbation method, we perform the calcu-
lations using the second-order Møller-Plesset (MP2) method [33]. The coupled
cluster method is considered as the state-of-the-art methods in the treatment
of electron correlation. In the present work, the molecular properties are inves-
tigated by both the relativistic single-reference and multi-reference Fock-space
coupled cluster theories. The single-reference coupled cluster calculations are car-
ried out by including single, double, and perturbative triple excitation, namely
CCSD and CCSD(T) [34]. The multi-reference Fock-space coupled cluster calcu-
lations are carried out by taking into account the single and double excitation,
namely FSCCSD. Although the relativistic DFT method [35] does not treat elec-
tron correlation in a robust way, in order to compare the performance of various
correlation methods, the DFT method is also employed in this work. Further-
more, in order to test the performance of the DFT method, we also perform the
calculations with various functionals.

In addition to examining various correlation methods, we also analyze the
effects from the truncation of the occupied and virtual orbitals on the calculated
molecular properties. It is worth mentioning that, in some cases, if the deep core
orbitals and the high virtual orbitals do not play an important role in determining
the molecular properties, such orbitals can be safely excluded from the correlation
schemes so that computational effort can be considerably reduced without losing
too much accuracy.

3.4.1 Dirac-Hartree-Fock method
The Hartree-Fock (HF) method is based on the assumption that each electron
travels in the potential generated by the nuclei and in the mean fields gener-
ated by all the remaining electrons. Before proceeding with the relativistic HF
method, namely the Dirac-Hartree-Fock (DHF) method, a general formalism of
the HF method will be briefly reviewed, starting with the definition of the HF
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wavefunctions and molecular orbitals. As a basic assumption, the Pauli exclu-
sion principle requires that the HF wavefunction (Φ) for a N -electron system is
defined as the following Slater determinant composed of the molecular orbitals
φi [36]:

Φ =
1√
N !

∣∣∣∣∣∣∣∣
φ1(1) φ2(1) . . . φi(1) . . . φN (1)
φ1(2) φ2(2) . . . φi(2) . . . φN (2)
. . . . . . . . . . . . . . . . . .

φ1(N) φ2(N) . . . φi(N) . . . φN (N)

∣∣∣∣∣∣∣∣ . (3.20)

As defined in Sec. 3.3, the spatial part of the molecular orbitals φi can be
constructed by a linear combination of atomic orbitals (or equivalently basis
functions) [37]:

φi =

m∑
β

Ciβξβ , (3.21)

where ξβ represents atomic orbitals (basis functions), and the sum runs over m
atomic orbitals contained in a specific basis set employed in a calculation.

The HF equations can be obtained from the variation principle. If the Hamil-
tonian (H) of a many-body system, such as an atom or a molecule, is known
while the wavefunction (Φ) of this system is unknown, we could use the varia-
tional principle to evaluate the ground state energy. For the many-body problem,
the exact wavefunction of the system is assumed to be a linear superposition of
all the eigen-states of the Hamiltonian. According to the variational principle,
the expansion coefficients can be obtained by minimizing the energy. This could
result in the following HF equations [36]:

Fφi = εiφi, (3.22)

where F is the Fock operator and can be defined as [36, 37]

F (r1) = H(r1) +
∑
s

[
js(r1)− ks(r1)

]
. (3.23)

Here, the sum runs over all the occupied spin orbitals. In particular, for a closed-
shell system with N electrons, the so-called spin-restricted Fock operator can be
defined as [37]

F (r1) = H(r1) +

N/2∑
j

[
2jj(r1)− kj(r1)

]
. (3.24)

Here, N is an even number and the sum runs over all the occupied spatial orbitals.
jj(r1) is the Coulomb operator, which describes the mean potential on electron
1 in orbital i arising from the presence of electron 2 in orbital j, and kj(r1) is
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the exchange operator, which describes the mean potential on electron 1 due to
the exchange process. Such operators can be defined as follows [37, 38]:

jj(r1)φi(r1) =
[∫

dr2
e2|φj(r2)|2

r12

]
φi(r1)

≡ 〈φj(2)| e
2

r12
|φj(2)〉|φi(1)〉,

(3.25)

kj(r1)φi(r1) =
[∫

dr2

e2φ†j(r2)φi(r2)

r12

]
φj(r1)

≡ 〈φj(2)| e
2

r12
|φi(2)〉|φj(1)〉.

(3.26)

In Eq. (3.22), the orbital energy εi can be expressed (using the final form of
orbitals) as follows [37]

εi =

∫
dr1φ

†
i (r1)F (r1)φi(r1)

=

∫
dr1φ

†
i (r1)

[
H(1) +

∑
j

(
2jj − kj

)]
φi(r1)

=

∫
dr1φ

†
i (r1)H(1)φi(r1) +

∑
j

[
2

∫
dr1φ

†
i (r1)jjφi(r1)−

∫
dr1φ

†
i (r1)kjφi(r1)

]
≡ Ei +

∑
j

(
2jij − kij

)
.

(3.27)

The total HF energy can be obtained by summing over all the orbitals and elim-
inating double counting [37]:

EHF = 2
∑
i

Ei −
∑
i,j

(
2jij − kij

)
. (3.28)

Using Eq. (3.21), the HF equation (Eq. (3.22)) can be expressed in terms of
atomic orbitals as follows [37],

F

m∑
β

Ciβξβ = εi

m∑
β

Ciβξβ . (3.29)

On both side of Eq. (3.29), if we multiply by ξ†α and integrate, then the following
equation can be obtained [37]:∑

β

FαβCiβ = εi
∑
β

SαβCiβ , (3.30)
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which can be written compactly in the following matrix form (Roothaan-Hall
equation) [37]:

FC = εSC. (3.31)

Here, S is the overlap integral matrix, and its matrix element Sαβ can defined
as [37]

Sαβ =

∫
dr1ξ

†
α(r1)ξβ(r1)

≡ 〈ξα(1)|ξβ(1)〉.
(3.32)

In Eq. (3.31), F is the Fock matrix, and its matrix element Fαβ can be defined
as [37]

Fαβ =

∫
dr1ξ

†
α(r1)F (r1)ξβ(r1)

≡ 〈ξα(1)|F (1)|ξβ(1)〉.
(3.33)

In the relativistic case, with the help of Eq. (3.8), the Fock matrix can be
written as [6]

F =

(
FLL FLS

FSL FSS

)

=

Vn +
∑
j

(
jj − kLLj

)
c(σ · p)−∑

j

kLSj

c(σ · p)−∑
j

kSLj Vn − 2mec
2 +

∑
j

(
jj − kSSj

)
 ,

(3.34)

where jj represents the relativistic Coulomb operator, which can be written as
[39]

jj =

∫
dr2

e2φL†j (r2)φLj (r2) + e2φS†j (r2)φSj (r2)

r12
. (3.35)

Here, kLLj , kLSj , kSLj , and kSSj represent the relativistic exchange operators. We
take the operator kLSj as an example to illustrate the action of such operators
on the relativistic wavefunction. The operator kLSj mixes the large and small
components of the relativistic wavefunction in the following way [39]:

kLSj φSi (r1) =
[∫

dr2

e2φS†j (r2)φSi (r2)

r12

]
φLj (r1). (3.36)
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In the relativistic case, the HF equation, i.e. Eq. (3.31), can be written in the
following matrix form (the relativistic Roothaan-Hall equation) [6, 40]:(

FLL FLS

FSL FSS

)(
CL

CS

)
= ε

(
SLL 0

0 SSS

)(
CL

CS

)
. (3.37)

As can be seen from Eq. (3.31) (or Eq. (3.37)), the Fock matrix F depends
on the expansion coefficients C. In practice, the HF (or DHF) calculation can be
performed by the following steps. To begin with, a trial Fock matrix F and a trial
overlap integral matrix S can be constructed with an initial guess of the atomic
orbitals ξβ and the expansion coefficients Ciβ . Then, the orbital energies εi and
the new expansion coefficients C ′iβ can be obtained by solving Eq. (3.31). This
is a feedback process and can be repeated by constructing a new Fock matrix
again using the new expansion coefficients from the last step until the change in
the energy or in the expansion coefficients is smaller than a specific threshold.

3.4.2 Density Functional Theory
The density functional theory (DFT) method can treat electron correlation in
a computationally cheaper way than the post-HF methods, such as the coupled
cluster method, etc. Due to this feature, the DFT method has become one of
the most popular tools in many branches of science, such as molecular physics,
material physics, etc. Furthermore, compared with other computational methods
in this chapter, the DFT method is not based on the wavefunction. Instead,
it is based on functionals of electron density. In this formalism, appropriate
functionals can be constructed in describing the electron-electron interactions,
such as the exchange-correlation interaction, etc. In the relativistic case, the
basic equation for the DFT method, namely the Kohn-Sham (KS) equation, can
be written as [41–43][

c(α · p) + βmec
2 + aµv

µ(r)
]
φi(r) = εiφi(r). (3.38)

Here, the vector aµ is defined as aµ ≡ γ0γµ with γ0 and γµ being the Dirac gamma
matrices. The 4-dimensional effective potential operator vµ, which depends on
four-dimensional current j(r), is defined as [41–43]

vµ(r) = vµex[j(r)] + vµH [j(r)] + vµxc[j(r)]. (3.39)

Here, vµex[j(r)] is the external potential operator, vµH [j(r)] is the direct Hartree
energy operator, and vµxc[j(r)] is the exchange-correlation potential operator. The
four-dimensional current j(r) is defined as [41–43]

j(r) =
(
n(r),

j(r)

c

)
, (3.40)
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where n(r) is the traditional electron density. The solution to Eq. (3.38) can
also be obtained iteratively by requiring that the change in the four-dimensional
current j(r) between two consecutive iterations is smaller than a specific thresh-
old.

The (relativistic) DFT method does not treat electron correlation in a robust
way. Many new density functionals with improved accuracy for the treatment of
electron correlation have been proposed. In order to further test the performance
of the DFT method, we perform the calculations with various functionals, such as
the Slater local exchange (SVWN5) functional [44], the Perdew-Burke-Ernzerhof
(PBE) functional [45, 46], the Becke-Lee-Yang-Parr (B3LYP) hybrid functional
[47–49] and its adapted version (CAMB3LYP) [50, 51]. The B3LYP functional
has improved performance in determining the molecular properties, such as vi-
brational frequencies, equilibrium bond lengths, etc. The CAMB3LYP has been
optimized by reproducing the accurate electron correlation effects obtained from
the coupled cluster method and thus is expected to work well for parity-violating
effects [51].

3.4.3 Second order Möller-Plesset method
Usually, since the correlation energy is much smaller than the Hartree-Fock (HF)
energy, the HF Hamiltonian can be taken as the lowest order approximation to
the exact Hamiltonian of the system. In this case, the correlation effect can be
treated as a perturbation term in the exact Hamiltonian, which can be formally
written as

H = HHF +Hcorr, (3.41)

where Hcorr is the perturbation term. The exact energy can be expressed in
terms of the corrections of various orders:

E = E0 + E1 + E2 + . . . (3.42)

Similarly, the exact wavefunction can be expressed as

Ψ = Ψ0 + Ψ1 + Ψ2 + . . . (3.43)

In Equations (3.42) and (3.43), E0 is the HF energy and Ψ0 is the HF wavefunc-
tion.

The simplest and widely used correlation method is the second order Möller-
Plesset (MP2) method. The general form of the non-relativistic energy correction
from the MP2 method can be expressed as [29, 52]

EMP2 =
1

4

occ∑
ij

vir∑
ab

|〈ab||ij〉|2
εi + εj − εa − εb

, (3.44)
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with
〈ab||ij〉 = 〈ab|ij〉 − 〈ab|ji〉 (3.45)

and

〈ab|ij〉 =

∫
dr1

∫
dr2φ

†
a(r1)φi(r1)

e2

r12
φ†b(r2)φj(r2). (3.46)

Here, the indices i and j denote the occupied orbitals and the indices a and b
denote the (unoccupied) virtual orbitals. As can be seen, this method is only
applicable for atoms or molecules with a large energy gap between the highest
occupied and lowest virtual orbitals. In the relativistic case, the energy correction
can be expressed as follows [25, 29]:

EMP2 =
1

2

∑
ij

∑
ab

1

εi + εj − εa − εb

[
|〈ij||ab〉|2 + |〈̄ij||ab〉|2 + |〈īj||ab〉|2

+ |〈ij||āb〉|2 + |〈ij||ab̄〉|2 + |〈īj||ab̄〉|2 + |〈ij||āb̄〉|2 + |〈īj||āb〉|2
]
,

(3.47)

where the barred-spinor represents the Kramers partner of unbarred-spinor gen-
erated by the time reversal operator T̂ in Eq. (3.18). The MP2 method takes the
virtual orbitals into account, and can improve the HF results significantly and
straightforwardly, without requiring very high computational cost. Although it
is expected that higher-order Möller-Plesset methods can improve the treatment
of electron correlation further, this method faces the slow convergence problem
in some cases [53].

3.4.4 Single reference coupled cluster method
In this section, we review the formalism of the single reference coupled cluster
(CC) method, which is based on the exponential form of the wave operators and
is considered as a powerful tool for the treatment of electron correlation. Before
proceeding with the CC method, we first introduce relevant concepts, such as the
normal ordering, Wick’s theorem, etc. In the second quantization formalism of
quantum field theory, a normal ordering means that all the annihilation operators
aj are placed to the right side of all the creation operators a†i . As an example,
the normal-ordered product (N̂ ) of two operators can be defined as

N̂
(
aja
†
i

)
= εa†iaj , (3.48)

where ε is a permutation sign and takes the values of +1 and −1 for the bosonic
and the fermionic field, respectively. The important feature of the normal-ordered
product is that its vacuum expectation value is vanishing:

〈Φ|N̂
(
ABCD . . .WXYZ

)
|Φ〉 = 0. (3.49)
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Frozen orbitals

Active orbitals

Virtual orbitals

(a) (b) (c)

Figure 3.1: Possible diagrams for electron excitation: (a) Hatree-Fock, (b) single
excitation, (c) double excitation.

Here, |Φ〉 represents the vacuum state and can be chosen as the HF state. The
HF energy can be defined as

EHF = 〈Φ|H|Φ〉. (3.50)

In the correlation method, for a specific state, we are interested in the relative
energy with respect to the energy for the vacuum state (EHF). According to
the definition of the normal-ordered product, the Hamiltonian is normal-ordered
in such a way that all the annihilation operators are placed to the right side of
the creation operators, and thus in this form the energy for the vacuum state is
subtracted automatically [54]:

H̄ = H − 〈Φ|H|Φ〉. (3.51)

In what follows, the Hamiltonian under discussion refers to the normal-ordered
Hamiltonian and for convenience we omit the bar over it. With the help of the
normal-ordered product, the contraction between two operators A and B can be
written as

AB = AB − N̂
(
AB
)
. (3.52)
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(a) (b) (c)

Figure 3.2: All contracted diagrams [55].

Wick’s theorem implies that a product of annihilation and creation operators
can be expressed as a sum of normal-ordered products with all possible contrac-
tions between two operators [54]:

ABCD . . .WXY Z

=N̂
(
ABCD . . .WXY Z

)
+N̂

(
ABCD . . .XY Z +ABCD . . .WXY Z + · · ·+ABCD . . .WXY Z

)
+N̂

(
ABCD . . .XY Z +ABCD . . .WXY Z + · · ·+ABCD . . .WXY Z

)
+ . . .

(3.53)

where the dots represent all possible other (normal-ordered) contractions.
In the single-reference coupled cluster (CC) approach, in order to construct

other configurations, an exponential of the excitation operator eT̂ is introduced
to act on the HF wavefunction (a Slater-determinant) [56, 57]:

|Ψ〉 = eT̂ |Φ〉, (3.54)

where |Φ〉 and |Ψ〉 represent the HF and CC wavefunctions, respectively. Here,
the excitation operator T̂ is defined as [57]

T̂ = T̂1 + T̂2 + ...+ T̂n, (3.55)

with

T̂n|Φ〉 =
1

(n!)2

occ∑
i1i2...in

vir∑
a1a1...an

ta1a1...ani1i2...in
a†a1a

†
a2 ...a

†
anain ...ai2ai1 |Φ〉

=
1

(n!)2

occ∑
i1i2...in

vir∑
a1a1...an

ta1a1...ani1i2...in
|Φa1a1...ani1i2...in

〉,
(3.56)
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where the indices in and an represent the occupied and virtual orbitals, respec-
tively. The CC method with single and double excitation, namely CCSD, is
defined by truncating Eq. (3.55) up to the T̂2 level:

T̂CCSD ≡ T̂1 + T̂2, (3.57)

where the operators T̂1 and T̂2 represent single and double excitation, respectively,
and can be defined as [57]

T̂1 =

occ∑
i

vir∑
a

tai a
†
aai, (3.58)

T̂2 =
1

4

occ∑
ij

vir∑
ab

tabij a
†
aa
†
bajai. (3.59)

Fig. 3.1 shows the possible diagrams for the single and double excitation and
their connection to the vacuum state, namely the HF state.

The energy of the system can be obtained by acting the Hamiltonian to Eq.
(3.54) [57],

HeT̂ |Φ〉 = EeT̂ |Φ〉, (3.60)

which can be written equivalently as [57]

E = 〈Φ|e−T̂HeT̂ |Φ〉. (3.61)

The operator on the right side of Eq. (3.61) can be expanded explicitly with the
help of the Baker-Campbell-Hausdor formula [57],

e−T̂HeT̂ = H + [H, T̂ ] +
1

2
[[H, T̂ ], T̂ ] +

1

6
[[[H, T̂ ], T̂ ], T̂ ] + ... (3.62)

Furthermore, the following requirements on the amplitude should also be satisfied
[57]:

〈Φabc...ijk... |e−T̂HeT̂ |Φ〉 = 0. (3.63)

In particular, for the CCSD method, the basic equations can be written as [57, 58]

〈Φ|e−T̂HeT̂ |Φ〉 = ECCSD,
(3.64)

〈Φai |e−T̂HeT̂ |Φ〉 = 0,
(3.65)

〈Φabij |e−T̂HeT̂ |Φ〉 = 0. (3.66)
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According to Wick’s theorem, Equations (3.64), (3.65), and (3.66) can be
evaluated in terms of all possible (normal-ordered) contractions. The CCSD
energy, arising from the contracted diagrams depicted in Fig. 3.2, can be written
as [57, 59]

ECCSD − 〈Φ|H|Φ〉 =
∑
ia

fiat
a
i +

1

4

∑
aibj

〈ij||ab〉tabij +
1

2

∑
aibj

〈ij||ab〉tai tbj . (3.67)

Here, the two-particle integral 〈ab||ij〉 is an anti-symmetrized integral and can
be defined as b [55]

〈ab||ij〉 = 〈ab|ij〉 − 〈ab|ji〉. (3.68)

The Fock matrix element fia is defined as [58]

fia = 〈i|H|a〉+
∑
s

〈is||as〉. (3.69)

For T̂1, the amplitude equation, which is related to the diagrams in Fig. 3.3, can
be written explicitly as [57, 59]

fai +
∑
c

fact
c
i −

∑
k

fkit
a
k +

∑
kc

〈ka||ci〉tck +
∑
kc

fkct
ac
ik +

1

2

∑
kcd

〈ka||cd〉tcdki

−1

2

∑
klc

〈kl||ci〉tcakl −
∑
kc

fkct
c
i t
a
k −

∑
klc

〈kl||ci〉tcktal +
∑
kcd

〈ka||cd〉tcktdi

−
∑
klcd

〈kl||cd〉tcktdi tal +
∑
klcd

〈kl||cd〉tcktdali −
1

2

∑
klcd

〈kl||cd〉tcdkital

−1

2

∑
klcd

〈kl||cd〉tcakl tdi = 0.

(3.70)

The explicit form of the amplitude equation for T̂2 is cumbersome and can be
found in Refs. [57, 59]. Here, we shall not repeat it in detail. In some cases, the
contributions from triple excitation need to be taken into account. In the next
subsection, the CCSD method combined with the perturbative triple correction
will be discussed.

Similar to the configuration interaction (CI) method, the CC method can
also incorporate different orders of excitation into the treatment of electron cor-
relation. In the CI method, the wavefunctions can be constructed by a linear
combination of Slater determinants formed from a set of relevant orbitals and

bThe integral 〈ab|ij〉 is defined in Eq. (3.46).
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the expansion coefficients can be determined variationally by minimizing the to-
tal energy. In principle, the accuracy of the CI method can be improved gradually
by incorporating more determinants until the full CI limit is reached. The full CI
calculation is computationally expensive and usually can not be practically avail-
able. In order to make it less computationally demanding, we need to truncate
the series of the determinants up to a certain order. Among various truncation
schemes, the CI method with single and double excitation (CISD) has been widely
employed. Compared with the CISD method, the CCSD method offers a number
of competitive advantages. To begin with, unlike the CISD method, the CCSD
method employs the so-called exponential parameterization of the wave opera-
tors, making it size consistent in such a manner that correct dissociation limits
can be yielded in terms of wavefunction and energy [32, 60]. In addition, the
CCSD method is also size extensive in such a way that a proper scaling behavior
of energy can be obtained with regard to the size of the system [29, 32]. Fur-
thermore, compared with the CISD method, the accuracy of the CCSD method
is highly improved, because the CISD method only includes correlation effects
up to double excitations while the CCSD method not only includes correlation
effects up to double excitations but also approximately includes additional corre-
lation effects from higher-order excitations through the combination of the single
and double excitations [61]. However, the CC methods might have difficulties in
handling excited states in some cases, where the CI methods would become more
suitable [36].

3.4.5 CCSD(T)
A combination of the coupled cluster and perturbation theories has a good per-
formance in describing electron correlation while reducing computational expense
considerably. The CC method with triple excitation is computationally demand-
ing [29]. In the present version of the DIRAC program, the triple excitation has
not been implemented into the CC equations in an iterative way. Instead, it has
been added into the calculations perturbatively based on the CCSD amplitudes
[62, 63]. This method is usually denoted as CCSD(T) in ab initio calculations.
The correlation energy in the CCSD(T) method can be expressed as follows
[29, 57, 64, 65]:

ECCSD(T) = ECCSD + E4th + E5th, (3.71)

with

E4th =
∑
i<j<k

∑
a<b<c

tabcijk

[
P (i|jk)P (a|bc)

(∑
d

〈bc||di〉tadjk −
∑
l

〈la||jk〉tbcil
)]
, (3.72)

E5th =
∑
i,j<k

∑
a,b<c

〈bc||jk〉tabcijk tai . (3.73)
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Here, P (i|jk) denotes the permutation operator and is defined in the following
way [29, 57, 64, 65]:

P (i|jk)f(ijk) = f(ijk)− f(jik)− f(kij). (3.74)

In Eq. (3.71), ECCSD represents the CCSD energy, E4th and E5th represent the
energy corrections from the perturbative triple amplitude in the fourth and fifth
orders, respectively. The energy corrections in the second and third orders are
contributed from only double substitutions and, as a consequence, all commonly
employed iterative techniques incorporate corrections up to the third order [62,
66].

The CCSD(T) method has a wide range of application area in both physics
and chemistry, because of its substantial improvements in terms of accuracy-
to-cost ratio. However, due to the perturbative nature, the applicability of the
CCSD(T) method is restricted to the non-degenerate cases. Besides the CCSD(T)
approach, similar methods, such as the CCSD-T and CCSD+T methods, have
also been proposed to handle the electron correction from the triple excitation at
different levels. In the CCSD-T method [67], further fifth-order terms from the
triple excitation are included, while in the CCSD+T method [68], the corrections
from the triple excitation are only treated at the fourth-order level.

3.4.6 Fock-space coupled cluster method
The relativistic Fock-space coupled cluster (FSCC) approach is a powerful elec-
tronic structure computational tool for the treatment of electron correlation
[8, 64, 69–73]. The main feature of this approach is that one calculation can
provide molecular properties simultaneously for multiple electronic states. The
main idea behind this approach is to divide the Hilbert space into a model space
and a (orthogonal) complementary space and then construct an effective Hamil-
tonian Heff in the model space, which contains active orbitals directly related
to the required electronic states and can be enlarged by including more active
orbitals. The diagonalization of the effective Hamiltonian provides approximate
energies for the required electronic states. Since the diagonalization of the effec-
tive Hamiltonian is performed only within the model space, the FSCC method
can relatively reduce the computational effort [74], comparing with the full di-
agonalization over a very large space in the CI methods. Just like the CCSD
method, the starting point of the FSCC method is also the HF method, where
the closed shell HF determinant is chosen as the vacuum state. All holes and
particles can be defined with respect to this vacuum state. The wavefunctions
containing m active holes and n active particles in the model space can be de-
noted as Φ(m,n). The effective Hamiltonian can be constructed with the help of
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the projection operator P , which is defined as [69]

P =

d∑
α

|Φ(m,n)
α 〉〈Φ(m,n)

α |, (3.75)

where the index α enumerates all the reference determinants in the model space
and d represents the dimension of the model space. The projection operator (Q)
for the complementary space is defined as [69]

Q = 1− P. (3.76)

The FSCC method would be more efficient, if the Hilbert space is divided in
such a way that the energy levels are very close to each other in the model space
while far way from the ones in the complementary space [75]. The zeroth-order
wavefunction for the i-th electronic state in the d-dimensional model space is
defined as [73]

|Ψ(m,n)
i(0) 〉 =

d∑
α

C
(m,n)
iα |Φ(m,n)

α 〉, (3.77)

where C(m,n)
iα denote the expansion coefficients. The exact wavefunction for the

i-th electronic state in the d-dimensional model space can be obtained from the
zeroth order wavefunction by the following expression [69, 73]:

|Ψ(m,n)
i 〉 = Ω|Ψ(m,n)

i(0) 〉, (3.78)

with
Ω = N̂

(
eS
)
. (3.79)

Here, Ω is the normal-ordered wave operator with N̂ being the normal ordering
operator defined in Eq. (3.48). The normal ordering operator guarantees that
the equations for the (0, 0) sector can be solved without higher-order amplitudes
being involved [76]. The excitation operator S withm valence holes and n valence
electrons is defined with regard to the closed-shell reference state by the following
expression [71–73]:

S =
∑
m>0

∑
n>0

 ∑
l>m+n

S
(m,n)
l

 , (3.80)

where l is the number of excited electrons. The major part of |Ψ(m,n)
i 〉 comes from

|Ψ(m,n)
i(0) 〉. According to the intermediate normalization, the following expression

is satisfied [69]:
|Ψ(m,n)
i(0) 〉 = P |Ψ(m,n)

i 〉. (3.81)
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We take the calculation of an electron affinity as an example to illustrate the
FSCC formulation. An electron affinity yields the system with zero active hole
and one active particle, and can be denoted as the (0, 1) sector. In this case,
the first step is to solve the (0, 0) sector, where a Dirac-Hartree-Fock (DHF)
calculation followed by a conventional coupled cluster procedure with single and
double excitations (CCSD) is carried out for the closed-shell reference state and
the corresponding converged amplitudes are obtained iteratively. Based on the
results from the first step, active orbitals are selected and the model space is
constructed in the second step. Then, equations for the (0, 1) sector can be
solved iteratively until a required convergence criterion is satisfied. After that,
the following effective Hamiltonian (Heff) can be constructed in the model space
based on the previous steps [8, 69–73]:

Heff = PHΩP. (3.82)

The current version of DIRAC only allows the relativistic FSCC calculations
with single and double excitation (namely, the FSCCSD method), and with the
number of excited electrons up to 2 (l 6 2) [64, 71, 72]. The eigenvalues (energies)
corresponding to the model space can be obtained by the diagonalization of the
effective Hamiltonian Heff, with the correlation effects for the core and valence
electrons being included [70]. Remarkably, the accuracy of the FSCC method
can be largely improved by including more active orbitals into the model space.

3.5 Finite field approach
Molecular properties can be calculated analytically or numerically. Usually, there
is a difficulty in finding the analytical solutions, mainly because the analytical
methods are technically too difficult to be implemented or computationally too
expensive to be employed. In this case, the finite field approach can be employed
to calculate molecular properties numerically. In the finite field approach, the
total Hamiltonian, including the usual unperturbed term H0 and a perturbative
term H1 arising from the molecular properties, can be written as

H = H0 + λH1, (3.83)

where H0 is the Hamiltonian excluding perturbation and can be chosen as the
Dirac-Coulomb Hamiltonian HDC defined in Eq. (3.7), and λ is a small pertur-
bation parameter. Since the perturbation parameter λ is very small, the total
energy can be expanded around λ = 0 and, to the lowest orders, can be written
as

E(λ) = E(0) +
∑
k=1

λk

k!

∂kE(λ)

∂kλ

∣∣∣∣
λ→0

. (3.84)
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Table 3.1: Main possible sources of theoretical uncertainties.

Error sources

Basis set quality
Higher l functions
Basis set augmentations

Tight functions
Diffuse functions

Electron correlation
Truncation of the occupied and virtual orbitals
Residual triple and higher-order excitations

Relativistic effects
Higher-order QED corrections, etc.

Others

The molecular properties of interest in this work are mainly first-order molecular
properties. In this case, the general form of molecular properties can be obtained
by invoking the Hellmann-Feynman theorem [26, 29]:

Wg ' 〈Ψ|H1|Ψ〉

=
∂E(λ)

∂λ

∣∣∣∣
λ→0

,
(3.85)

where |Ψ〉 represent the wavefunction of the system, Wg represents a generic
molecular property, such as the P̂-odd WA parameter defined in Chapter 5.

3.6 Uncertainty evaluation
Since theoretical results can only be reproduced at the level of uncertainty, any
claimed high-accuracy would be meaningless without incorporating the corre-
sponding uncertainty. Theoretical uncertainty arises from imperfect or unknown
information within the computational approach, and thus the evaluation of the-
oretical uncertainty forms an integral part of theoretical investigations. In order
to put uncertainties on the calculated parameters (properties), we systematically
quantify the main possible sources of uncertainty within our computational ap-
proach or methodology. There are a number of possible sources contributed to
the theoretical uncertainty in the calculated molecular properties, such as basis
set quality, electron correlation, relativistic effect, etc. Tab. 3.1 summarizes the
main possible sources of the uncertainties in our calculations.
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The uncertainty from basis sets describes the incompleteness in their size and
quality. To begin with, we explore the basis set size effects by testing the standard
valence and core-valence basis sets with various sizes. Furthermore, we also ex-
amine the contributions from the tight and diffuse functions, and, in some cases,
we also take into account any further shortfalls of the basis sets. In particular,
since the molecular parity-violating effects mainly arise from the regions of the
nucleus, augmenting additional tight functions could help reduce the uncertainty
of such calculations. By contrast, chemical bondings mainly depend on the be-
havior of the electrons in the peripheral regions of each atom, where the diffuse
functions play an important role. Therefore, augmenting more diffuse functions
would be beneficial for decreasing the uncertainty of such calculations. In this
manner, the corresponding uncertainty from the incompleteness of the basis sets
can be quantified by taking the difference in the calculated values between the
optimized basis sets and the ones with additional diffuse and tight functions.

The uncertainty arising from the treatment of electron correlation is con-
tributed by numerous sources, such as the correlation methods, etc. The un-
certainty from the correlation methods is mainly from neglecting higher-order
excitations. In the CCSD(T) calculation, the contribution of triple excitations is
perturbatively taken into account by completely including the fourth order terms
and partially including the fifth order terms, while neglecting all the remaining
higher-order terms. For the current version of the DIRAC package, although it is
impossible to evaluate the corrections from the quadruple or higher-order excita-
tions, the uncertainty from neglecting such higher-order terms can be estimated
by examining the results of the CCSD-T and CCSD+T methods. In the CCSD-
T method [67], further fifth order terms from the triple excitation are included,
while in the CCSD+T method [68] the corrections from the triple excitation are
only treated at the fourth order level. As the triple corrections are not signif-
icant, we evaluate the uncertainty from the incompetent treatment of electron
correlation by taking twice the difference between the CCSD-T and CCSD+T
values.

The truncation of the occupied and virtual orbitals also gives rise to uncer-
tainties. In some cases, if the deep core orbitals and the high virtual orbitals
do not play an important role in determining molecular properties, such orbitals
can be safely excluded from the treatment of electron correlation so that com-
putational effort can be considerably reduced without losing too much accuracy.
However, since electron correlation plays a leading role in determining the P̂, T̂ -
odd molecular properties, all the deep-lying core orbitals and high-lying virtual
orbitals need to be included into the treatment of electron correlation in such
calculations. The uncertainty arising from neglecting the higher virtual orbitals
can be estimated by taking the difference in the calculated values of molecular
properties between two virtual orbital cut-offs.
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The uncertainty also comes from the approximate treatment of higher-order
relativistic effects. Although in most cases the relativistic effects can be suffi-
ciently accounted by the Dirac-Coulomb Hamiltonian, the Coulomb potential is
actually not Lorentz-invariant and thus is not completely relativistic. Currently,
there is no possibility to incorporate all the relativistic effects, such as the higher-
order QED corrections, in a rigorous manner. In practice, we take into account
the leading contributions of the remaining relativistic effects by including the
Gaunt interaction, which is a part of the Breit interaction. We assume that the
effect of replacing the Breit interaction by the Gaunt interaction and neglecting
all other higher-order QED corrections is not more than the contribution of the
Gaunt interaction itself. Since the Gaunt interaction is implemented at the HF
level in the present version of DIRAC, we take the difference between the re-
sults with and without the Gaunt interaction as the uncertainty of neglecting the
higher-order QED corrections.

Finally, the total theoretical uncertainty can be given by adding all the above
uncertainties in quadrature. Besides the above-mentioned sources of uncertainty,
an additional source of uncertainty comes from the numerical nature of the finite
field approach, where a slight dependence on the size of the perturbation param-
eters can emerge. For small perturbation parameters, numerical noise might be
a factor but in most cases it is negligible. It is worth pointing out that different
source of the theoretical uncertainty contributes differently to the total theo-
retical uncertainty for different molecules. For light molecules, the theoretical
uncertainty might be dominated by the basis set effects while for molecules con-
taining heavy elements, the leading contributions to the theoretical uncertainty
may come from electron correlations and relativistic effects.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

(n)

Figure 3.3: One-body intermediate diagrams of the T̂1 amplitude [55]
.
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Chapter 4

Molecular structure

4.1 Overview
The spectra and properties of diatomic molecules are determined by numerous
motions, such as electronic excitation, vibrations of nuclei, rotations of the whole
molecule around its molecular axis [1], etc. The motional characteristics of di-
atomic molecules provides more detailed information and new insights on dy-
namics and internal structure of many-body system [2], despite making it more
complicated than that of atoms. Furthermore, in order to facilitate the measure-
ment, external fields, such as the electric and magnetic fields, are often applied to
molecules, causing the interactions inside them to be even more complicated. For
example, in the measurement of parity-violating nuclear anapole moment effects,
external magnetic fields need to be applied so that the molecular levels with op-
posite parity can be brought into near degeneracy, resulting in great enhancement
of the effect. Additionally, in order to further amplify the tiny parity-violating
effect, external electric fields can be applied in such a way that the interference
between the parity-violating amplitudes and the Stark-induced amplitudes leads
to dramatic signal amplification [3, 4].

Due to the complexity of many-body systems, such as diatomic molecules, it
is impossible to solve the dynamical equations exactly and describe the behav-
ior of the electrons comprehensively without making any approximations. The
first approximation we employ is the Born-Oppenheimer approximation, which
arises from the consideration that nuclei are much heavier and move much slower
than electrons. Although the electronic wavefunction depends on the internuclear
distance, the influence of the nuclear motion on the electronic wavefunction is neg-
ligible. Similarly, since some of the interactions (or couplings) inside a diatomic
molecule are more important than others in determining molecular properties, a
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number of additional approximations are necessary in the calculations and anal-
yses. In this chapter, for a better understanding about molecular structure and
dynamics, we focus on the interactions and couplings between different degrees
of freedoms, such as electronic excitations, vibrations, rotations, etc. We address
the hierarchy of these interactions (or couplings) and introduce some important
additional approximations, such as the so-called Hund’s coupling cases and the
Franck-Condon approximation, which have been widely employed for the calcu-
lations of the molecular properties under discussion.

This chapter is organized as follows. To begin with, we introduce some useful
molecular symbols involved in this work and review the general form of molecular
Hamiltonian, which serves as the basis for the rest of the discussions. In order to
investigate the parity violating effects, it is necessary to analyze the symmetry
properties of a specific molecular state under parity transformation. This can be
achieved by examining Hund’s coupling cases and choosing approximately good
quantum numbers. Hund’s coupling cases are the basic assumptions in describing
the rotational states of diatomic molecules based on the relative strengths of the
couplings between different angular momenta. Moreover, based on such informa-
tion, we introduce the symmetry properties of diatomic molecules, which play an
important role in the measurement of parity-violating effects in such molecules.
In addition, we briefly review the Franck-Condon approximation, which plays a
leading role in quantitatively describing electromagnetic transitions in molecules.
After that, we introduce the corresponding selection rules for electric dipole tran-
sitions.

4.2 Molecular symbols
Following Refs. [5–7], the molecular symbols involved in the present work are
defined and summarized in Tab. 4.1. The electronic spin angular momentum
can be denoted by S and its projection on molecular axis can be denoted by Σ.
The electronic orbital angular momentum can be denoted by L and its projection
on molecular axis can be denoted by Λ. The nuclear rotation and spin angular
momenta can be denoted by R and I, respectively. The vector sum of the
electronic and orbital angular momenta can be defined as Jso ≡ L + S. The
total angular momentum excluding the nuclear spin angular momentum can be
defined as J ≡ L + S +R and its projection on molecular axis can be denoted
by Ω. The total angular momentum can be defined as F ≡ J + I. The vector
sum of the nuclear rotation and the electronic orbital angular momenta can be
defined as N ≡ R + L and its projection on molecular axis can be denoted by
Λ too. Throughout this work, unless otherwise specified explicitly, the quantities
in bold font represent vectors while the quantities in normal font represent their
magnitudes.
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4.3 External fields
In the measurement of the nuclear anapole moment effect, external magnetic
fields need to be applied so that the molecular levels with opposite parity can
be brought into near degeneracy, causing significant enhancement of the effect.
Furthermore, in the presence of external electric fields, the interference between
the parity-violating amplitudes and the Stark-induced amplitudes provides a huge
amplification of the signal. The effective Hamiltonian for a diatomic molecule in
the presence of the external electric and magnetic fields can be written as

Htot ' Hmol +Hs +Hz, (4.1)

where Hmol represents the effective Hamiltonian for the diatomic molecule in the
absence of the external fields and will be discussed in more detail later on. In the
presence of an (static) electric field E, the interaction can be described by the
Stark Hamiltonian Hs, which can be defined as

Hs = −µE ·E −
1

2
E ·αE ·E + . . . (4.2)

where µE and αE represent the molecular dipole moment and polarizability
tensor, respectively. Here, we only include the linear and quadratic terms. In the
presence of an external magnetic field B, the interaction can be described by the
Zeeman Hamiltonian Hz, which can be approximately written as

Hz = −µB ·B, (4.3)

where µB represents the magnetic dipole moment.

Table 4.1: Molecular symbols involved in the present work (see e.g. Ref. [5–7]).

Angular momenta Operators Quantum numbers Projections

Electronic spin S S Σ
Electronic orbital L L Λ
Nuclear rotation R R -
L+ S Jso Jso -
L+ S +R J J Ω
R+L N N Λ
J + I F F -
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4.4 Born-Oppenheimer approximation
Without external fields, the general form of the molecular Hamiltonian for a
diatomic molecule can be written as

Hmol ≡ Te(∇r) + Tn(∇R) + Vee(r) + Vnn(R) + Vne(r,R), (4.4)

which formally satisfies the following equation:

HmolΨmol(r,R) = EmolΨmol(r,R). (4.5)

Here, r and R represent the electronic and nuclear coordinates, respectively.
Ψmol(r,R) and Emol are the total molecular wavefunction and energy, respec-
tively. Te(∇r) and Tn(∇R) represent the electronic and nuclear kinetic energy
operators, respectively. Vee(r) represents the electrostatic potential energy op-
erator between electrons. Vnn(R) represents the electrostatic potential energy
operator between nuclei. Vne(r,R) represents the electrostatic potential energy
between nuclei and electrons and depends on the coordinates of the electrons and
nuclei.

The Born-Oppenheimer approximation can be divided into two steps [8, 9]. To
begin with, since nuclei are much heavier than electrons, they could not respond
as fast as the electronic transition occurs. Although the electronic wavefunc-
tion depends on the internuclear distance, the influence of the nuclear motion
on the electronic wavefunction is negligible. The nuclear coordinate R can be
assumed to be fixed in electronic transitions and the nuclear kinetic energy oper-
ator Tn(∇R) can be considered to be negligible in the molecule-fixed frame. In
this case, the electronic wavefunction and energy only depend parametrically on
the fixed nuclear coordinate R. Moreover, the energy arising from the electro-
static interactions between nuclei can be treated as a constant and thus Vnn(R)
can be isolated from the molecular Hamiltonian. Therefore, Eq. (4.5) can be
approximately written as [8, 9][

He + Tn(∇R) + Vnn(R)
]
Ψe(r|R)Ψn(R) =

(
Ee + En

)
Ψe(r|R)Ψn(R), (4.6)

with
Hmol = He + Tn(∇R) + Vnn(R), (4.7)

He = Te(∇r) + Vee(r) + Vne(r,R), (4.8)

Ψmol(r,R) = Ψe(r|R)Ψn(R), (4.9)

Emol = Ee + En. (4.10)
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In the above equations, Ψn(R) and Ψe(r|R) are the nuclear and electronic wave-
functions, respectively. En and Ee represent the nuclear and electronic energies,
respectively. To summarize, the Born-Oppenheimer approximation is based on
the consideration that nuclei are much heavier and thus move much slower than
electrons, making it possible to treat the motions of nuclei and electrons sepa-
rately. Although the electronic wavefunction depends on the fixed nuclear coor-
dinates, the nuclear motion has negligible effect on the electronic wavefunction.

4.5 Effective Hamiltonian
The effective Hamiltonian for the rotational spectra of a diatomic molecule in the
absence of the external fields can be approximately written as [1, 6, 7, 10–13]

Heff ' Hrot +Hcd +Hso +Hss +Hsr +Hld +Hhfs, (4.11)

with

Hrot ' BrotR
2, (4.12)

Hcd ' −DcdR
4, (4.13)

Hso ' AsoL · S, (4.14)

Hss ' −
2

3
λss

(
S2 − 3S2

z

)
, (4.15)

Hsr ' γsrS ·R. (4.16)

Here, Hrot represents the rotational interaction term and Brot is the rotational
constant. This term will be discussed in more detail in the next section. Hcd rep-
resents the centrifugal distortion interaction term and Dcd represents the quartic
centrifugal distortion constant. Hso represents the spin-orbit interaction term and
Aso is the spin-orbit splitting constant. Hss represents the spin-spin interaction
term and λss is the spin-spin coupling constant. Hsr represents the spin-rotation
interaction term and γsr is the spin-rotation coupling constant. Hld represents
the Λ-doubling interaction term and its explicit form can be found in Ref. [1].
Hhfs represents the hyperfine structure interaction term, which, to the lowest
orders, can be written as

Hhfs ' Hmhf +Heqd, (4.17)

where Hmhf represents the magnetic hyperfine interaction term and Heqd repre-
sents the electric quadrupole moment interaction term. The magnetic hyperfine
interaction term Hmhf can be written as

Hmhf ' aI ·L+ bI · S + cIzSz (4.18)
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where a, b, and c are the Frosch-Foley parameters [14]. Alternatively, in the
presence of axial symmetry, the magnetic hyperfine interaction term can also be
written as [15]

Hmhf ' A‖SzIz +A⊥
(
SxIx + SyIy

)
, (4.19)

where A‖ and A⊥ are the parallel and perpendicular components of the magnetic
hyperfine structure constant and can be defined as follows [15, 16]:

A‖ =
µN
IΩ
〈±|

(
α× r
r3

)
z

|±〉, (4.20)

A⊥ =
µN
IΩ
〈±|

(
α× r
r3

)
x,y

|∓〉. (4.21)

Here, µN is the nuclear magnetic moment. Obviously, the Frosch-Foley parame-
ters are related to A‖ and A⊥ in the following way [17]

b = A⊥, (4.22)

c = A‖ −A⊥. (4.23)

The electric quadrupole moment interaction term Heqd can be approximately
written as [1]

Heqd '
eqQ(3I2

z − I2)

4I(2I − 1)
, (4.24)

where eqQ is the electric quadrupole moment coupling constant.

4.6 Hund’s coupling cases
In order to investigate the parity-violating effects, it is necessary to analyze the
symmetry properties of a specific molecular state under parity transformation.
Such symmetry properties can be represented by (approximately) good quantum
numbers. The choice of (approximately) good quantum numbers can be clas-
sified into Hund’s coupling cases [1, 7]. In diatomic molecules, there are three
main types of interactions (couplings) between angular momenta, such as the
coupling between L and S, the coupling between L and molecular axis, and the
coupling between Jso and J . Hund’s coupling cases are the basic assumptions
in describing the rotational states of diatomic molecules based on the relative
strengths with respect to the above-mentioned types of interactions (couplings).
Tab. 4.2 summarizes the coupling strengths between angular momenta and the
corresponding Hund’s coupling cases. Hund’s coupling case (a), (b), (c), and (d)
are the most commonly used ones. Figures 4.1 and 4.2 show the vector diagrams
for Hund’s coupling cases (a), (b), (c), and (d).
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Figure 4.1: Hund’s coupling case (a) and (b).

4.6.1 Case (a)
Hund’s coupling case (a) assumes that the orbital angular momentumL is strongly
coupled to the molecular axis, and both L and S have well-defined projections on
the molecular axis, namely Λ and Σ. The good quantum numbers can be chosen
as Λ, S, Σ, Ω, and J . In this case, the rotational Hamiltonian can be written as
[1, 7]

Hrot = B(J −L− S)2, (4.25)

where B is the rotational constant. The corresponding rotational energy can be
written as [9, 18–20]

E(J) = BJ(J + 1). (4.26)

4.6.2 Case (b)
Hund’s coupling case (b) assumes that the spin-orbit coupling is not strong, i.e.
L and S are decoupled. In addition, S is coupled to N while L is still coupled
to the molecular axis. The good quantum numbers can be chosen as Λ, N , S,
and J . In this case, the rotational Hamiltonian can be written as [1, 7]

Hrot = B(N −L)2, (4.27)
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Electrostatic Rotational Spin-orbit Hund’s coupling cases

Strong Weak Intermediate (a)
Strong Intermediate Weak (b)
Intermediate Weak Strong (c)
Intermediate Strong Weak (d)

Table 4.2: Coupling strengths between the angular momenta and the correspond-
ing Hund’s coupling cases [1, 7].

where B is the rotational constant. The corresponding rotational energy can be
written as [9, 18–20]

E(N) = BN(N + 1). (4.28)

4.6.3 Case (c)
Hund’s coupling case (c) assumes that, compared with the coupling to the molec-
ular axis, the spin-orbit coupling is much stronger and yields Jso. The vector J
is given by the coupling between the projection of Jso onto the molecular axis
and the nuclear rotation R. The good quantum numbers can be chosen as Jso,
J , and Ω. In this case, the rotational Hamiltonian can be written as [7]

Hrot = B(J − Jso)2, (4.29)

where B is the rotational constant. The corresponding rotational energy can be
written as [18, 19]

E(J) = BJ(J + 1). (4.30)

4.6.4 Case (d)
Hund’s coupling case (d) assumes that the coupling between L and R is much
stronger than their couplings to the molecular axis and such coupling forms N .
Then the coupling between N and S yields J . The good quantum numbers can
be chosen as S, L, J , R, and N . In this case, the rotational Hamiltonian can be
written as [1, 7]

Hrot = BR2, (4.31)

where B is the rotational constant. The corresponding rotational energy can be
written as [1, 9, 13, 18–20]

E(R) = BR(R+ 1). (4.32)
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Figure 4.2: Hund’s coupling case (c) and (d).

4.7 Symmetry properties of diatomic molecules
In the measurement of parity-violating effects, in order to draw definite conclu-
sions about whether a specific transition violates parity, the symmetry properties
of molecular states under parity transformation need to be known. Such symme-
try properties can be explored with the help of Hund’s coupling cases introduced
in Section 4.6. For diatomic molecules, parity is one of the most important
symmetry properties we are interested in. All the molecular transitions induced
by electromagnetic interactions preserve parity, and thus parity should be taken
into account in determining the selection rules for electromagnetic transitions.
The total wavefunction of a diatomic molecule can be factorized into three parts
[1, 6, 7, 9, 13, 18, 19]:

Ψmol = ΨeleΨrotΨvib, (4.33)

where Ψele, Ψrot, and Ψvib represent (pure) electronic, rotational, and vibrational
wavefunctions, respectively. In this case, the symmetry property of a diatomic
molecule under parity transformation is determined by the symmetry properties
of these three parts. In the molecule-fixed frame, the parity transformation P̂ is
equivalent to the reflection transformation σ̂v with respect to the plane containing
the rotation axis [1, 6, 7, 9, 13, 18, 19, 21]. For this reason, we only need to
focus on the molecule-fixed frame, where parity transformation P̂ can be replaced
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with the reflection transformation σ̂v a. As an example, we introduce the effect
of parity transformation on the wavefunction of a diatomic molecule based on
Hund’s coupling case (a).

In Hund’s coupling case (a), the (pure) electronic part (Ψele) of the molecular
wavefunction can be written as [1, 6, 7, 9, 13, 18, 19, 21]

Ψele = |χ,Λ〉|S,Σ〉. (4.34)

Here, |χ,Λ〉 and |S,Σ〉 represent the orbital and spin parts of the electronic wave-
function, respectively, and χ represents all other quantum numbers. The orbital
wavefunction has the following symmetry property under parity transformation
[1, 6, 7, 9, 13, 18, 19, 21]:

P̂|χ,Λ〉 = (−1)Λ+Θ|χ,−Λ〉. (4.35)

Here, Θ takes the value of 1 for the Σ− states and takes the value of 0 for all
other states. Particularly, for the states with Λ = 0, the symmetry property
under parity transformation takes the following form [9, 18, 19]:

P̂|Σ±〉 = ±|Σ±〉. (4.36)

The spin wavefunction has the following symmetry property under parity trans-
formation [1, 6, 7, 9, 13, 18, 19, 21]:

P̂|S,Σ〉 = (−1)S−Σ|S,−Σ〉. (4.37)

In diatomic molecules, since the vibrational wavefunction only depends on the
magnitude of the internuclear distance R, it does not change sign under parity
transformation [1, 6, 7, 9, 13, 18, 19]:

P̂Ψvib = P̂|v〉
= (+1)|v〉.

(4.38)

Here, v represents the vibrational quantum number.
In diatomic molecules, the rotational wavefunction describes how the molecule-

fixed coordinates are transformed with respect to the space-fixed coordinates
[1, 6, 7, 9, 13, 18, 19, 21]. The symmetry property of the rotational wavefunction
under parity transformation is more complicated than that of the electronic and
vibrational wavefunctions. In Hund’s coupling case (a), it takes the following
form [1, 6, 7, 9, 13, 18, 19, 21]:

P̂Ψrot = P̂|J,Ω,M〉
= (−1)J−Ω|J,−Ω,M〉,

(4.39)

aRigorously, a reflection transformation is different from a parity transformation in three
dimensional space.
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where J represents the quantum number of the total angular momentum exclud-
ing the nuclear spin. The second quantum number Ω represents the projection of
the total angular momentum on the molecular axis in the molecule-fixed frame.
The third quantum number M represents the projection of the total angular
momentum on the molecular axis in the space-fixed frame.

Combining Equations 4.35, 4.37, 4.38, and 4.39, we obtain the total symmetry
property for the molecular wavefunction of a diatomic molecule under parity
transformation [1, 6, 7, 9, 13, 18, 19]:

P̂ΨeleΨrotΨvib = P̂|χ,Λ〉|S,Σ〉|J,Ω,M〉|v〉
= (−1)Λ+Θ+S−Σ+J−Ω|χ,−Λ〉|S,−Σ,M〉|J,−Ω〉|v〉
= (−1)Θ+S+J−2Σ|χ,−Λ〉|S,−Σ〉|J,−Ω,M〉|v〉,

(4.40)

where the relation Ω = Λ + Σ has been used.

4.8 Franck-Condon approximation
Due to the complexity of many-body systems, such as diatomic molecules, it is im-
possible to solve the dynamical equations exactly and describe the behavior of the
electrons comprehensively without making any approximations. The previous ap-
proximations we have introduced are the Born-Oppenheimer approximation and
Hund’s coupling cases. In this section, we explore another approximation, which
plays an important role in the absorption and emission processes in molecular
spectroscopy.

In molecules, the absorption and emission intensity in vibronic transitions
can be derived based on the so-called Franck-Condon approximation (principle).
In electronic transitions, the nuclei are assumed to be stationary, because they
are much heavier than the electrons and could not respond as fast as the elec-
tronic transitions occur. The Franck-Condon principle is similar to the Born-
Oppenheimer approximation and allows us to separate the nuclear wavefunction
from the total molecular wavefunction. The intensity of a transition induced by
the electric dipole interaction is proportional to the squared transition moment
integral |〈Ψ′mol|µ|Ψ′′mol〉|2 [9], where Ψ′′mol and Ψ′mol represent the molecular wave-
functions of the initial and final states. The operator µ represents the transition
dipole moment and is contributed from the nuclear and electronic parts [9]:

µ = µn(R) + µe(r). (4.41)

Here, the nuclear part induces pure rovibrational transitions while the electronic
part gives rise to electronic transitions [9]. According to the Born-Oppenheimer
approximation, the total molecular wavefunction can be divided into the nuclear
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and electronic parts. With the help of Eq. (4.9), the squared transition moment
integral can be expressed as [9]

|〈Ψ′mol|µ|Ψ′′mol〉|2 =|〈Ψ′e(r|R)Ψ′n(R)|µ|Ψ′′e (r|R)Ψ′′n(R)〉|2

=|〈Ψ′e(r|R)Ψ′n(R)|(µn + µe)|Ψ′′e (r|R)Ψ′′n(R)〉|2
=|〈Ψ′e(r|R)|Ψ′′e (r|R)〉〈Ψ′n(R)|µn|Ψ′′n(R)〉

+ 〈Ψ′e(r|R)Ψ′n(R)|µe|Ψ′′e (r|R)Ψ′′n(R)〉|2

'|〈Ψ′e(r|R)Ψ′n(R)|µe|Ψ′′e (r|R)Ψ′′n(R)〉|2.

(4.42)

In the above equation, we have taken into account the fact that different electronic
wavefunctions are orthogonal [9],

〈Ψ′e(r|R)|Ψ′′e (r|R)〉 = 0. (4.43)

The electronic transition dipole moment (TDM) operator µe in Cartesian coor-
dinates can be expressed as [19]

µe =
∑
i

eri, (4.44)

Here, the sum runs over all the electrons in the system. The transition dipole
moment can be decomposed into two components, such as the perpendicular and
parallel components, which are defined as [18, 19]

µ⊥ =
1√
2

(
µx ± iµy

)
, (4.45)

µ‖ = µz, (4.46)

where µ⊥ and µ‖ represent the perpendicular and parallel components, respec-
tively.

According to the Franck-Condon approximation, the electronic transition mo-
ment integral does not depend or only weakly depends on the internuclear dis-
tance R [7]. As an approximation (r-centroid approximation), it can be replaced
with the value at the equilibrium internuclear distance Re in the following way

D(R) ≡ 〈Ψ′e(r|R)|µ‖(⊥)|Ψ′′e (r|R)〉
' D(Re).

(4.47)

Here, D(R) and D(Re) represent the transition dipole moments at the arbitrary
and equilibrium internuclear distances. In this approximation, Eq. (4.42) can be
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rewritten as [8, 19]

|〈Ψ′mol|µ‖(⊥)|Ψ′′mol〉|2

'|〈Ψ′n(R)|Ψ′′n(R)〉|2D(Re)
2

'|〈Ψ′vib(R)|Ψ′′vib(R)〉|2D(Re)
2

=|〈v′|v′′〉|2D(Re)
2

=qv′v′′D(Re)
2.

(4.48)

In the second step of Eq. (4.48), we have considered the fact that, in the molecule-
fixed frame, the nuclear wavefunctions of the initial and final states can be approx-
imately replaced with the corresponding vibrational wavefunctions. Here, v′′ and
v′ represent vibrational quantum numbers for the initial and final states, respec-
tively. The newly defined parameter qv′v′′ ≡ |〈Ψ′vib(R)|Ψ′′vib(R)〉|2 = |〈v′|v′′〉|2 is
the Franck-Condon factor (FCF).

The FCF is the squared vibrational overlap integral and describes the relative
intensity of a transition between the initial and the final vibrational states. Due
to the probability conservation, the FCF satisfies the following expression [19, 20]:∑

v′

qv′v′′ = 1. (4.49)

Here, the index v′ enumerates all the final vibrational states. According to the
Born-Oppenheimer approximation, if the motion of nuclei is negligible during
a transition, then the intensity of the transition should be dominated by the
so-called vertical transition where the relation v′ = v′′ holds.

The selection rules for many-electron systems are more complicated than the
ones for hydrogen-like atoms. For simplicity, before proceeding with molecular
transitions, we first introduce the selection rules for one-electron transitions. For
the electric dipole transitions in hydrogen-like atoms, the possible selection rules
can be summarized as follows [22]:

1. ∆l = ±1

2. ∆m = 0,±1

3. ∆s = 0

Here, l and s represent the orbital and spin angular momentum quantum num-
bers, respectively, andm represents the magnetic quantum number. In atoms, the
perpendicular component µ⊥ can induce transitions with the magnetic quantum
number being changed by one unit, while the parallel component µ‖ can induce
transitions with the magnetic quantum number being unchanged [22]. Since the
transition dipole moment operator only depends on the spatial coordinates, the
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Franck-Condon approximation

total spin quantum number before and after transitions should be unchanged un-
der its action. In molecules, angular momenta are coupled to each other, making
the selection rules for molecular transitions far more complicated than the ones
for atomic transitions. In this case, Hund’s coupling cases can be used to choose
the (approximately) good quantum numbers. Besides complexity, the molecular
selection rules can provide additional insights into the absorption and emission
processes, comparing with the atomic selection rules. As an example for the
electric dipole transitions in molecules, the possible selection rules based on the
(approximately) good quantum numbers assigned by Hund’s coupling case (a)
can be summarized as follows [2, 19, 20, 23]:

1. ∆Λ = 0,±1

2. ∆S = 0

3. ∆J = 0,±1

Similarly, the perpendicular component µ⊥ shifts the quantum number Λ by one
unit, while the parallel component µ‖ keeps the quantum number Λ unchanged
[18]. Besides the above selection rules, in all electromagnetic transitions, the total
parity of the whole system including photons should be conserved.
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Chapter 5

Symmetry-breaking effects
and new phenomena

5.1 Overview
This chapter addresses the main topics to be discussed in the present work.
The present work is intended to investigate the tests of fundamental symmetries
of the Standard Model (SM) and the searches for new phenomena beyond the
SM using molecular properties of diatomic molecules. Among such properties,
the parity-violating nuclear anapole moment effect in diatomic molecules can be
used to test nuclear models and gain deep understanding about nuclear structure.
Moreover, the searches for the ĈP̂-violating eEDM in diatomic molecules not only
can provide stringent test of the SM, but also can help put constraints on new
physics theories beyond the SM. In addition, the searches for the variation of
dimensionless fundamental constants not only can help test the SM, but also can
offer a large window for the construction of new physics theories, such as quantum
gravity a. More importantly, such investigations can also help gain insights into
the unsolved problems in physics, such as the nature of dark matter and dark
energy, etc.

5.2 Nuclear anapole moment effect
Diatomic molecules are considered as promising candidates for the measurement
of the parity-violating nuclear anapole moment effect. For a 2Σ1/2 ground state

aQuantum gravity is considered as a promising approach to the unification of the four fun-
damental interactions.
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Nuclear anapole moment effect

of such molecules, the Hamiltonian associated with the nuclear anapole moment
interaction in Eq. (2.41) can be rewritten as [1, 2],

HA = κAWAÎ ·
(
n̂× Seff

)
, (5.1)

where Seff stands for the effective spin of the open-shell electron, and n̂ is the
unit vector along the molecular axis. The P̂-odd WA parameter depends on
molecular structure, and can be defined by the following matrix element between
two different Ω states [3]:

WA ≡
GF√

2
〈+ 1

2 |ρ(r)α+|− 1
2 〉, (5.2)

with
α+ = αx + iαy =

(
0 σx
σx 0

)
+ i

(
0 σy
σy 0

)
, (5.3)

where σx and σy are the Pauli matrices.
The nuclear anpole moment effect can be used to probe parity violation in

hadronic sector and to gain deep understanding about nuclear structure. The
effective coupling constant κA can be obtained both experimentally and theoret-
ically. On the one hand, κA can be determined by measuring parity-violating
transitions in atoms or molecules when the P̂-odd WA parameter is known. On
the other hand, κA can also be calculated directly from nuclear theories. From an
experimental point of view, the WA parameter cannot be measured directly and
needs to be calculated with high accuracy so that the effective coupling constant
κA can be extracted precisely from the measured signals. The measured value
of κA from experiments can be compared with its predicted values from nuclear
theories. Any deviation may suggest the incompleteness of our knowledge about
nuclear models or even imply hints for new physics beyond the SM.

The nuclear anapole moment interaction violates parity and causes parity-
forbidden mixing between molecular states with opposite parity. As an example,
the admixture between the molecular states with opposite parity induced by the
nuclear anapole moment interaction can be roughly expressed as (see e.g. Ref.
[4])

|Ψ′even〉 ' |Ψeven〉+ i
∑
odd

εodd|Ψodd〉

= |Ψeven〉+
∑
odd

〈Ψodd|HA|Ψeven〉
Eeven − Eodd

|Ψodd〉,
(5.4)

where the sum runs over all the molecular states with odd parity, and Ψeven
(Eeven) and Ψodd (Eodd) represent the wavefunctions (energies) with even and
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odd parity, respectively. The parameters εodd represent the mixing coefficients
between the molecular states with opposite parity. As can be seen from Eq.
(5.4), the parity-violating effect can be enhanced by increasing the mixing coeffi-
cients or decreasing the energy gaps between the molecular states with opposite
parity. To begin with, the matrix element 〈Ψodd|HA|Ψeven〉 in the mixing co-
efficient approximately scales as Z3 (in atoms) [5–7], which indicates that the
effect grows rapidly with the nuclear charge Z. Furthermore, the energy lev-
els with opposite parity can be shifted towards each other by applying external
magnetic fields, resulting in nearly-degenerate molecular levels and dramatic sig-
nal amplification. In particular, diatomic molecules are considered as promising
candidates in the search for the nuclear anapole moment effect, because such
molecules possess closely-spaced molecular levels with opposite parity, making
it more easier to bring such molecular levels into degeneracy. In addition, the
tiny parity-violating effect can be effectively detected with the help of the Stark-
PV interference technique, where external electric fields can be applied so that
the interference between the parity-violating amplitudes and the Stark-induced
amplitudes leads to a dramatic signal amplification [8, 9].

In the Stark-PV interference technique, the tiny parity-violating effect can be
isolated from the more significant Stark-induced effect through a reversal of the
external electric field [10, 11]. In reality, the measurement can be accomplished
by two data-acquisition sequences. In the first sequence of data acquisition, the
molecules are formed in such a way that the molecular states with even and
odd parity are equally populated. Such molecular states with opposite parity
can be brought into near degeneracy with the help of magnetic fields generated
by a superconducting magnet. Then, the molecular states with even parity are
depleted by employing a laser beam. After that, an oscillating electric field par-
allel to the magnetic field is applied. Some molecules experience a transition
from the even parity to the odd parity through the combined interaction of the
Stark and parity-violating effects. Next, the molecules with odd parity are de-
pleted by another laser beam. The molecular states with even parity can be
detected and counted when the molecules leave the region of the magnetic field.
When the first sequence of data acquisition is complete, the external electric field
can be reversed and the second sequence of data acquisition can be performed.
The parity-violating effect can be extracted from the asymmetry between the two
data-acquisition sequences. For molecules containing heavy elements, the nuclear
anapole moment effect is the dominant contribution to the NSD-PV effects. How-
ever, from heavy to light elements, the nuclear anapole moment effect decreases
rapidly, but it is still possible to distinguish such effect from other NSD-PV ef-
fects by performing the measurements with different nuclei (or different isotopes)
[12].

The alkaline earth metal halides can manifest themselves as promising can-
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didates in the measurement of the nuclear anapole moment effect at a variety
of levels, due to their structural characteristics. First of all, such molecules con-
tain an unpaired electron with a 2Σ1/2 ground state, which are more amenable
to interpret the measurements because the calculated WA parameter can be re-
lated to the measured signal through a simple expression as indicated in Eq.
(5.1). Furthermore, the nuclear anapole moment effect is induced by the interac-
tion between the unpaired electron and nucleon within the region of the nucleus.
Since the electronic wavefunction for a 2Σ1/2 state has a large overlap on the
nucleus, the effect can be greatly enhanced in such molecules. More importantly,
such molecules possess closely-spaced molecular states with opposite parity. By
employing external magnetic fields, these molecular states can be more easily
to be brought into near degeneracy, where more significant enhancement of the
effect can be achieved. From an experimental point of view, long coherent inter-
action times can help improve the measurement sensitivity. This requires that
the molecules can be effectively laser-cooled. The electronic structure of such
molecules reveals that they are promising candidates for laser-cooling. In addi-
tion, it is technically available to produce a well-characterized beam source of
such molecules, which allows versatile spectroscopic and reaction studies, includ-
ing the measurement of the nuclear anapole moment effect [10]. Last but not
least, such molecules have a wide range of isotopes, allowing the measurements
for different nuclear configurations.

In Chapter 6, we present highly accurate relativistic coupled cluster calcula-
tions of the P̂-odd interaction parameterWA, which describes the nuclear anapole
moment effect and depends on the molecular structure. The WA parameter can
not be measured directly and can only be calculated by ab initio methods. The
molecule under study, BaF, is considered as a promising candidate for the mea-
surement of the nuclear anapole moment effect [10, 11]. The experimental setup
for the measurement with improved sensitivity has been demonstrated [10, 11].
The influence of various computational parameters, such as basis sets, relativistic
effects, and electron correlations, on the calculatedWA parameter is investigated.
The uncertainty evaluation is also demonstrated in this chapter.

In Chapter 7, we present more detail about the correlation trends of the
nuclear anapole moment interaction for the BeCl molecule. The BeCl molecule is
also considered as a good candidate in the search for the nuclear anapole moment
effect, due to fact that the molecular and nuclear calculations for the Be element
are highly tractable. In this work, the calculations of the WA parameter for the
Be atom in BeCl are carried out with various electron correlation approaches.
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5.3 Search for the eEDM and spectroscopic con-
stants

Diatomic molecules also serve as promising probes for detecting the effect from
the electron electric dipole moment (eEDM), which violates the ĈP̂ symmetry.
In non-relativistic approximation, the interaction between the eEDM and the
effective electric field of a molecule can be written as

HeEDM = −de ·Eeff, (5.5)

where Eeff represents the effective electric field of the molecule and de represents
the eEDM. At low energies (see Eq. (2.47) for relativistic case), the effective
Hamiltonian accounting for the interaction between the eEDM and the total
electric field in an atom or a molecule can be written as [13–15]

HeEDM = 2icde
∑
i

βγ5p
2
i . (5.6)

Here, de ≡ |de| represents the magnitude of the eEDM. The index i enumerates
all the electrons inside an atom or a molecule, c represents the speed of light,
pi represents the momentum of the i-th electron. The magnitude of the effec-
tive electric field Eeff ≡ |Eeff| can be calculated using ab initio methods in the
following way:

Eeff = −〈Ψ|H
eEDM|Ψ〉
de

, (5.7)

where |Ψ〉 denotes the normalized wavefunction for the whole system.
From an experimental point of view, the measurement of the eEDM can be

illustrated as follows [16]. To begin with, two molecular states with spin being
aligned and antialigned with respect to the effective electric fields are produced.
After that, such molecules are brought into a magnetically shielded region with
the static electric and magnetic fields along the z-axis. Then, the coherent super-
position of the two molecular states can be formed by applying a radio-frequency
pulse. Over the time of data-taking (T ), a phase φ is developed between the two
molecular states, which can be defined as [17]

φ =
(±µBB ∓ deEeff)T

~
. (5.8)

Here, the phase is contributed from both the electric and magnetic dipole inter-
actions. The contribution from the electric dipole moment can be separated if
the external electric field is flipped. This gives rise to a small phase difference,
which is proportional to de and can be written as [16, 17]

δφ =
2deEeffT

~
. (5.9)
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Figure 5.1: The experimental limits (up to the year 2017) on the value of the
eEDM and on the probed energy scale associated with new physics beyond the
SM (image courtesy of the NL-eEDM collaboration [18]).

The statistical uncertainty of the eEDM measurement can be expressed as [18]

σs =
~
e

1

2|P |Eeffτ
√
ṄT

. (5.10)

Here, P represents the polarization factor, Ṅ represents the rate of the detected
molecules, T is the time of data taking, τ represents the coherent interaction
time.

As can be seen from Eq. (5.10), a successful measurement of the eEDM
requires the candidates to satisfy numerous criteria. To begin with, a promising
candidate needs to have a large effective electric field. In a molecule, the effect
of a non-zero eEDM can be greatly enhanced by the huge surrounding electric
fields, which are contributed from both the effective intrinsic electric field and
the external electric field. Such electric fields can improve the measurement
sensitivity considerably. The measurements of the eEDM with sufficiently high
sensitivity using various molecules and molecular ions, such as HfF+ [19], ThO
[20–22], YbF [16], BaF [18], etc., have been carried out or in preparation. Fig.
5.1 shows the experimental limits (up to the year 2017) on the value of the eEDM
and on the probed energy scale associated with new physics beyond the SM. The
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present best limit at the 90% confidence level on the eEDM is 1.1× 10−29 e·cm,
which is obtained by ACME using the ThO molecule [22]. Further measurements
with improved sensitivity have also been proposed on other molecular species such
as BaF [18], YbOH [23], etc.

In order to further improve the sensitivity, the experimental setup needs to
be designed to achieve a long coherent interaction time [18, 24, 25], which re-
quires that the molecules under study can be effectively laser-cooled [18, 24–26].
There are a number of key factors that determine whether a given molecule is
suitable for laser-cooling [27]. To begin with, strong one-photon transitions are
more favorable to guarantee high photon-scattering rates and increase momen-
tum transfer efficiency. Since the oscillator strengths of the transitions can be
determined by the transition dipole moments (TDMs) between the states, strong
one-photon transitions require that the corresponding TDMs cannot be too small.
Furthermore, the molecule should possess highly diagonal Franck-Condon factors
(FCFs), which provide a near-closed optical cycle in the vibronic structure and
thus decrease the number of the required repump lasers. Last but not least,
there should either be no intervening electronic states to which the upper state
could radiate and cause leaks in the cooling cycle, or at least the transitions to
such states should be highly suppressed. Previous studies have demonstrated
that calcium monofluoride (CaF) can be successfully laser-cooled to around 5 µK
[28, 29]. As a homologue of CaF, barium monofluoride (BaF) has similar elec-
tronic structure and thus is considered as a promising candidate for laser-cooling.
In order to develop laser systems more efficiently throughout measurements and
to interpret the results more correctly after measurements, highly accurate the-
oretical calculations of molecular spectroscopic constants (see Appendix A) are
necessary. At present, the NL-eEDM collaboration is building an experimental
setup to search for the permanent eEDM in a slow beam of the BaF molecules
[18] with unprecedented sensitivity. Theoretical knowledge concerning molecular
properties of BaF is thus needed to design the measurement strategies and in
particular to determine the optimal laser-cooling scheme.

In Chapter 8, we present the theoretical investigations of the molecular spec-
troscopic constants for CaF, SrF, and BaF. We discuss their applications in laser-
cooling molecules and investigate different possible laser-cooling schemes. Accu-
rate and reliable theoretical predictions of these spectroscopic constants (proper-
ties) require incorporating a number of factors into the calculations, such as large
and high-quality basis sets, high-order relativistic effects, and advanced electron
correlation methods. In this work, theoretical investigations of the low-lying elec-
tronic states of BaF and its lighter homologues, CaF and SrF, are carried out
using the relativistic Fock-space coupled cluster (FSCC) method and the multiref-
erence configuration interaction (MRCI) method. Using the calculated potential
energy curves (PECs), we determine the molecular spectroscopic constants of the
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low-lying electronic states and the Franck-Condon factors (FCFs) between these
states. We also present the dipole moments of the low-lying electronic states and
the transition dipole moments (TDMs) between such states. Finally, using the
calculated spectroscopic constants, FCFs, and TDMs, we determine the suitable
transition for laser-cooling BaF.

5.4 Search for the variation of fundamental con-
stants

Besides the measurement of the symmetry-breaking effects, the searches for other
new phenomena, such as the temporal and spatial variations of fundamental con-
stants, have attracted an enormous level of attention recently. Many new physics
theories that extend the SM, or theories that unify gravity with all the non-
gravitational interactions are featured with the variation of fundamental con-
stants. The search for the variation of fundamental constants not only can help
test the SM and GR, but also can help put constraints on new physics theories.
For example, some dark matter candidates, which are oscillating with respect to
time, couple to the SM particles and lead to the time variation of fundamental
constants [30]. In this case, the search for the variation of fundamental constants
can be helpful for dark matter searches. Throughout the present work, we are
interested in the variation of dimensionless fundamental constants, such as the
fine structure constant α and the proton-to-electron mass ratio µ.

The search for the variation of fundamental constants with respect to time and
space can be performed in a number of ways, such as Big Bang nucleosynthesis,
Oklo natural nuclear reactor data, meteorite data, laser interferometer, quasar
absorption spectra, and atomic clocks [31]. Among them, the last two approaches,
namely quasar absorption spectra and atomic clocks, are based on the analysis
of atomic and molecular spectra. The advantages of using such approaches are
obvious because they not only help gain high sensitivity, but also open windows
for evaluating systematic uncertainties [32, 33]. The observation of quasar spectra
shows that there has been no sign for the time variation of the fine structure
constant and the corresponding limit is ∆α/α = 1.2 ± 1.7 (stat.) ± 0.9 (syst.)
(×10−6) [34]. The study of the spectra from quasars has also placed the constraint
on the variation of µ with the result of ∆µ/µ = −9.5 ± 5.4 (stat.) ± 5.3 (syst.)
(×10−6) [35]. The limit on the time variation of α with 171Yb+ is α̇/α = −0.7
± 2.1 × 10−17 yr−1 [36]. For the spatial variation of fundamental constants,
the example lies in the new physics theories with the signature of domain walls
generated in the early Universe. Such domain walls couple to the electromagnetic
field and may cause the spatial variation of α when the domain walls are passing
through the Earth [37]. In this case, the search for the spatial variation of α
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Figure 5.2: Schematic view of a laser interferometer.

can be helpful for the detection of such domain walls. The observation of quasar
spectra has indicated a possible spatial variation of α with a significance of 4.2 σ,
but it may arise from some undetected systematic effects [38]. Last but not least,
recent developments in atomic clocks enable unprecedented level of precision with
the uncertainty as low as 10−19 [39], making it possible to search for the temporal
and spatial variation of fundamental constants with high sensitivity. In practice,
atomic clocks can be used to search for the variation of fundamental constants
by comparing the transition frequencies between two stable atomic clocks over
long period of time or at different locations [40]. Most recently, the analysis of
atomic clocks has imposed the constraint on the variation of α with the result of
|δα/α| < 5× 10−17 for transients of duration 103 s [41].

As an alternative method in the search for the variation of fundamental con-
stants, we may compare the phase differences between two light beams inside
the cavities of a laser interferometer [42], instead of comparing two transition
frequencies over a long period of time. A schematic view of a laser interferom-
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eter that can be used in the search for the variation of fundamental constants
is presented in Fig. 5.2, where the green lines stand for the light paths through
the laser interferometer. A beam of highly coherent light emitted from a laser
device at point A is split into two light beams at point O by a beam splitter,
which is used for separating and recombining the light beams and serves as a
crucial part of the experiment. One light beam travels inside the cavity of the
test arm extending from the beam splitter to the end mirror at point B. The
other light beam travels inside the cavity of the reference arm extending from the
beam splitter to the end mirror at point C. The reference and test arms have
the lengths L1 and L2, respectively. The two end mirrors are used to reflect the
two light beams back. When the two light beams arrive at the detector at point
D, they can be recombined to produce interference. Any changes in the differ-
ence between the two arm lengths can give rise to the phase shifts between the
two light beams. The laser interferometer is greatly sensitive to length changes
between the reference and test beams. The observable in a laser interferometer
is the phase difference ∆φ, which is defined as

∆φ =
(L1 − L2)ω

c
, (5.11)

where ω is the reference frequency and c represents the speed of light. The two
arm lengths can be adjusted in such a way that the recombined two beams of light
give rise to destructive interference in the absence of the variation of fundamental
constants [30] and other drifts.

The size of the materials employed in the optical cavity of a laser interferom-
eter depends on the solid-state and molecular properties, such as crystal lattice
parameters (e.g. ae and ce) and molecular bond lengths (Re). The changes in
such properties can manifest themselves through the changes in the material sizes
as well as in the arm lengths. The variation of fundamental constants would af-
fect the crystal lattice parameters and the molecular bond lengths. The main
goal of this work is to identify promising materials which are sensitive to the
variation of α and µ and thus open windows of opportunity for observing such
new phenomena. The sensitivity coefficients KC can be defined in the following
way [30]:

δ(∆φ)

∆φ
≡
∑
C

KC
δC

C
, (5.12)

where the index C enumerates all relevant fundamental constants, such as α, µ,
etc.

In Chapter 9, we present an application of ab initio methods in the search
for the variation of fundamental constants. As a new alternative method to
the analysis of atomic clocks and quasar spectra, precision laser interferometry
may provide the expected sensitivity to the variation of fundamental constants
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through the comparison of the phase differences between two light beams. Ide-
ally, the dependence of the crystal lattice parameters (constants) in a solid needs
to be examined by highly accurate computational methods like the coupled clus-
ter method. Highly accurate computational methods can help identify promising
candidates which lead to great discovery potential. However, comprehensive and
systematic calculations on solid-state materials using the coupled cluster method
are not computationally affordable or tractable. Instead, the DFT method has
been widely used to predict the solid-state properties, but the accuracy of the
DFT results should be assessed. In principle, the exact lattice parameters in a
solid depend on the specific crystal structure and on the actual thermal environ-
ment. Nonetheless, if we assume that the distance between two nearest atoms
(lattice points) in a solid can be approximated by the equilibrium bond distance
in a diatomic molecule formed by these two atoms, the coupled cluster calcula-
tions of the equilibrium bond distances for diatomic molecules can be used to
benchmark the performance of the DFT calculations of the lattice parameters for
solid-state materials. Our calculations show that the material sizes can be well-
modeled by the equilibrium bond distances of diatomic molecules and the DFT
calculations can provide the expected accuracy in predicting the dependence of
the material sizes on the variation of fundamental constants. We also provide the
accurate values for the dependence of lattice parameters on α and µ in a variety
of solid-state materials, such as Cu, Si, Al, Nb, Al2O3, etc. Finally, we present
the possible experimental setups for the detection of the variation of fundamental
constants and reveal the corresponding discovery potential.
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Chapter 6

Nuclear anapole moment
effect in BaFa

6.1 Motivation
The standard model (SM) of particle physics, unifying the electromagnetic, weak,
and strong forces by which the fundamental particles interact, has proven to be
valid within unprecedented accuracy. However, the SM as we know is incomplete
and many open questions remain that lie beyond its current formulation [2];
among the most important are the origin of dark matter and dark energy, neutrino
mass and oscillations, matter-antimatter asymmetry and the unification with the
gravitational force. These open questions motivate both formulations of new
theories beyond the SM and experimental searches for new physical phenomena.

One prominent category of such experiments is the search for violation of
parity (P̂) and time (T̂ ) reversal symmetries in atoms and molecules [3]. In
particular, investigation of nuclear spin dependent parity violating (NSD-PV)
effects, which are the main focus of this work, can be used to test low-energy
quantum chromodynamics and parity nonconservation in nuclei [4].

The effective Hamiltonian responsible for the NSD-PV interaction between
an electron and nucleus can be written as [3],

HNSD =
GF√

2I
(κA + κax + κhfs)

(
α · I

)
ρ (r) , (6.1)

aThis chapter is reproduced from our published paper [1]: Yongliang Hao, Miroslav Iliaš,
Ephraim Eliav, Peter Schwerdtfeger, Victor V. Flambaum, and Anastasia Borschevsky, Nuclear
anapole moment interaction in BaF from relativistic coupled-cluster theory, Phys. Rev. A 98,
032510 (2018).
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where GF is the Fermi weak interaction coupling constant [5], α are the Dirac
matrices in the standard representation, I is the nuclear spin, and ρ(r) is the
(normalized) nuclear density distribution. This contribution is only present for
nuclei with I 6= 0, and for open-shell atoms or molecules because of Kramers
symmetry. The three dimensionless nuclear κ parameters are associated with the
different sources of the NSD-PV effects. The first term, κA, comes from the nu-
clear anapole moment interaction and will be discussed in more detail below. The
second term κax arises from the electroweak neutral coupling between the elec-
tronic vector and nuclear axial-vector currents (VeAN ) [6]; theoretical prediction
of κax within the nuclear shell model can be found in Ref. [7]. The third contri-
bution κhfs originates in the nuclear-spin-independent weak interaction combined
with the hyperfine interaction [8]. The coefficients κhfs were derived using differ-
ent models, for example in Refs. [9–11].

The anapole moment was first predicted by Zel’dovich [12] in 1958. It ap-
pears in the second-order multipole expansion of the magnetic vector-potential
simultaneously with the P̂ and T̂ violating magnetic quadrupole moment [13].
In a simple valence nucleon model κA has the following form [14],

κA ' 1.15× 10−3(−1)I−l+
1
2

(
I + 1/2

I + 1

)
µigiA

2
3 . (6.2)

Here, K = (−1)I+
1
2−l(I + 1/2), l is the orbital angular momentum of the ex-

ternal unpaired nucleon i = n, p; µp = +2.8, µn = −1.9, and A is the atomic
mass number. Theoretical estimates give the dimensionless strength constant for
nucleon-nucleus weak potential |gp| ' 4.6 for a proton [14], and |gn| ∼ 1 for a
neutron [15]. Due to the A2/3 scaling of this effect, the nuclear anapole mo-
ment provides the dominant NSD-PV contribution for systems containing heavy
nuclei [4]. The determination of nuclear anapole effects can contribute to the
fundamental understanding of parity violation in the hadronic sector [4, 16].

To date, only one single observation of a non-zero nuclear anapole moment
was achieved using a Stark-PV interference technique in an experiment on the
133Cs atom [17], where the main source of the anapole moment was due to the un-
paired proton. The value of κA for 133Cs was determined as κA=3.64(62)×10−1

[15]. Further measurements on Cs and other alkali atoms using the ground state
hyperfine splitting have been recently proposed [18]. Complementary measure-
ments are also being performed on atoms with unpaired neutrons, such as Yb
[19] and Fr [20].

It was shown early on [9, 21, 22] that NSD parity violating effects are enhanced
significantly in diatomic molecules with 2Σ1/2 and 2Π1/2 electronic states due to
the mixing of close rotational states of opposite parity. Thus, these systems
provide a different, advantageous route for the search for these phenomena. An
experiment to measure NSD-PV effects using the Stark-PV interference technique
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in polar diatomic molecules was proposed in 2008 by DeMille and coworkers [23].
In this approach, the opposite parity rotational or hyperfine levels of ground state
molecules are tuned to near-degeneracy by a magnetic field, causing dramatic
amplification of the parity violating effects [24]. Highly sensitive measurements
of this type using the BaF molecule were demonstrated recently [25, 26]. Another
experiment based on optical rotation measurements in 199HgH was also proposed
[27].

In diatomic molecules with non-zero nuclear spin and 2Σ1/2 and 2Π1/2 elec-
tronic states, the nuclear anapole moment interaction between an electron and a
nucleus can be rewritten in a slightly simplified form

HA = κA
GF√

2
ρ(r)α+ (6.3)

with
α+ = αx + iαy =

(
0 σx
σx 0

)
+ i

(
0 σy
σy 0

)
. (6.4)

Here, σx and σy are the Pauli matrices. The 2Σ1/2 and 2Π1/2 open-shell electronic
states are twofold degenerate, corresponding to the two possible projections of
electronic angular momentum along n, i.e., |Ω〉 =

∣∣± 1
2

〉
, where n is the unit

vector directed along the molecular axis from the heavier to the lighter nucleus.
The interaction HA removes the degeneracy and mixes |Ω〉 states with different
signs (parities).

The P̂-odd interaction coefficient WA is usually explored for the expression
of the strength of coupling of the two different parity states. This coefficient
depends on the electronic structure of the molecule and is defined for a given
electronic state; it can be derived from the expression for HA as the transition
element between the two different |Ω〉 states [28],

WA =
GF√

2

〈
+ 1

2

∣∣ ρ(r)α+

∣∣− 1
2

〉
. (6.5)

Note that the matrix elements calculated between the same |Ω〉 states are zero.
Thus, the coefficient WA defines the amplitude of the expectation value of HA in
the mixed-parity state. Knowledge of WA is required for extracting the nuclear
anapole moment from experiment. It can not be measured directly, and has
to be provided by theory. Needless to say the accuracy and reliability of the
calculated WA coefficients is important for the meaningful interpretation of any
measurement, and it is thus most desirable to employ state-of-the-art relativistic
quantum theoretical methods for such calculations.
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Here we perform relativistic coupled cluster calculations to obtain the WA

coefficient for BaF within the framework of a finite-field approach. We investi-
gate the sensitivity of WA to various computational parameters allowing us to
estimate the uncertainty of our result, and finally propose a recommended value
for interpretations of future experiments on this molecule.

There have been two previous studies that used coupled cluster theory for the
calculation of theWA coefficient. Relativistic two-component Fock-space coupled
cluster theory was used to calculateWA and other P̂- and (P̂, T̂ )-odd parameters
for RaF (the authors estimated the uncertainty of the results as 10%). More
recently, the relativistic Fock-space coupled cluster method was used to calculate
the WA coefficients of the 2Σ1/2 and the 2Π1/2 electronic states of HgH [27].

The majority of earlier investigations of NSD-PV effects in diatomic molecules
such as BaF have relied on more approximate approaches such as semiempirical
methods [23, 29], where the WA parameters were estimated using experimental
spectroscopic data. Kozlov et al. performed relativistic effective core potential
(RECP) calculations in the framework of a self-consistent-field (SCF) approach
estimating core polarization effects by an effective operator (EO) [30]. Nayak
and Das [31] carried out Dirac-Hartree-Fock (DHF) calculation within restricted
active space configuration interaction (RASCI). Isaev and Berger [32] used a
quasirelativistic two-component zeroth-order regular approximation (ZORA) com-
bined with Hartree-Fock (HF) and density functional theory (DFT), and scaled
the results using a semiempirical model described in Ref. [33]. We have pre-
viously carried out both DHF and DFT calculations of this property for BaF
and many other diatomic molecules [34, 35]. In that work the average of the
DHF and the DFT results scaled by the effect of core-polarization (CP) obtained
from atomic calculations was taken as the recommended value; these results are
designated here as DHF/DFT+CP.

6.2 Method and computational details
The calculations were carried out using the adapted version of the DIRAC pro-
gram package [36] in the framework of the Dirac-Coulomb Hamiltonian,

H0 =
∑
i

[cαi · pi + βimec
2 + V (ri)] +

∑
i<j

e2

rij
, (6.6)

where αi and β are the Dirac matrices in standard representation. The Coulomb
potential V (ri) takes into account the finite size of the nuclei, modelled by Gaus-
sian charge distributions [37]. The use of Gaussian charge distribution has the
advantage that the nucleus-electron attraction integrals and the electron-electron
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repulsion integrals can be evaluated by the same efficient routines and thus leads
to the easy computational implementation [37].

The P̂-odd interaction constant is a property of a given nucleus within the
molecular environment and for a diatomic molecule we have in principle two WA

values. In this work, however, we entirely focus on the WA parameter at the
heavier nucleus relevant for future experiments.

In order to perform coupled cluster calculations for the WA parameter, we
employ a finite-field approach (FF) [38, 39]. Within this scheme, the entire
Hamiltonian of the system H is regarded to be a function of some perturbation
parameter λ,

H(λ) = H0 + λ
GF√

2
ρ(r)α+. (6.7)

The nuclear density ρ(r) is of Gaussian shape, which is suitable for the fully rel-
ativistic framework of the present work, as the s1/2 and p1/2 spinors are singular
at the nucleus. For small values of λ, the total energy can be expanded in Taylor
series around λ = 0,

E(λ) = E(0) +
∑
k=1

λk

k!

∂kE(λ)

∂kλ

∣∣∣∣
λ→0

. (6.8)

The calculations are performed at various perturbation strengths λ. If these
are chosen to be small enough to remain in the linear regime, the higher order
terms can be ignored and WA can be obtained numerically, according to the
Hellmann-Feynman theorem, from the first derivative of the energy with respect
to λ:

WA =
dE(λ)

dλ

∣∣∣∣
λ=0

. (6.9)

The perturbation strength needs to be sufficiently large such that the change in
total energy is not lost in the precision of the calculations. We have tested the
linearity of the above expression with different perturbation strengths applied,
i.e. λ = 10−6, 10−7, 10−8 and 10−9. Based on our results, we found that minimal
error in linear fit is obtained for perturbation strengths of the order of ∼ 10−8.
Furthermore, the energy convergence requirement of the coupled cluster iterations
had to be set to 10−12 a.u.

We have used and compared two variants of relativistic coupled cluster the-
ory: the standard single-reference coupled cluster method with single, double,
and perturbative triple contributions, (CCSD(T)) [40], and the multireference
Fock-space coupled cluster approach (FSCC) [41]. Within the framework of the
valence-universal FSCC approach an effective Hamiltonian is defined and cal-
culated in a low-dimensional model (or P ) space, constructed from zero-order
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wave functions (Slater determinants), with eigenvalues approximating some de-
sirable eigenvalues of the Hamiltonian. According to Lindgren’s formulation of
the open-shell CC method [42], the effective Hamiltonian has the form

Heff = PHΩP, Ω = exp{S}, (6.10)

where Ω is the normal-ordered wave operator and the excitation operator S is
defined with respect to a closed-shell reference determinant (vacuum state) and
partitioned according to the number of valence holes (m) and valence particles
(n) with respect to this reference:

S =
∑
m>0

∑
n>0

( ∑
l>m+n

S
(m,n)
l

)
. (6.11)

Here, l is the number of excited electrons.
BaF has a single valence electron occupying the σ orbital and thus two differ-

ent computational schemes are appropriate for this system. In the first scheme,
designated FSCC(0,1), we start with BaF+. After solving the relativistic Dirac-
Fock equations and correlating this closed shell reference state, an electron is
added to reach the neutral state. At each stage, the coupled cluster equations
are solved to obtain the correlated ground and excited state energies. The ex-
tra electron can be added to the lowest σ orbital, or allowed to also occupy the
higher states, thus yielding a number of energy levels and also improving the
description of the ground state energy and properties. We have tested the influ-
ence of the size of the model space P on the calculated WA parameters. Within
the second computational scheme (FSCC(1,0)) the calculation begins from the
closed shell negative ion BaF−, and an electron is removed to obtain the neutral
system. In principle, the two schemes should give very similar results for the
ground state, the main difference stemming from the different closed shell ref-
erence states yielding different Hartree-Fock orbitals (i.e. relaxation effects). In
addition to the coupled cluster results, we also report WA values from second-
order Møller-Plesset (MP2) method [43].

In order to further investigate the effects of electron correlation we performed
open-shell single determinant average-of-configuration DHF [44] and relativistic
DFT [45] calculations for WA by evaluating the matrix elements of the ρ(r)α+

operator in the molecular spinor basis. To test the performance of various func-
tionals for this property, the DFT calculations were carried out with the Perdew-
Burke-Ernzerhof (PBE) functional [46, 47], the Slater local exchange (SVWN5)
functional [48], the Becke-Lee-Yang-Parr hybrid functional (B3LYP) [49–51] and
its Coulomb-attenuated version (CAMB3LYP*) adapted to accurately describe
PV energy shifts in heavy atomic systems obtained from coupled cluster theory
[52, 53].
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Standard Dyall’s basis sets of varying size [54, 55] were employed to investi-
gate the basis set effects on the calculated WA values. To further improve our
results, we augmented the basis sets of the two atoms by additional large (tight)
and small (diffuse) exponent functions (see below for details). Further investi-
gated computational parameters were the active space in the electron correlation
procedure, i.e. the number of correlated electrons and the chosen virtual energy
cut-off. In addition, we include the Gaunt term in our calculations [56] as part
of the Breit interaction, which corrects the 2-electron part of the Dirac-Coulomb
Hamiltonian up to order (Zα)2 [57]. The Gaunt interaction is included self-
consistently at the DHF step. Alongside the detailed investigations of BaF, we
also perform calculations for the WA parameters of its lighter homologues BeF,
MgF, CaF, and SrF in order to examine the dependence of WA on the nuclear
charge of the group 2 atom. The positions of the atoms were chosen according to
the molecular experimental equilibrium bond lengths (1.361 Å for BeF, 1.750 Å
for MgF, 1.967 Å for CaF [58], 2.076 Å for SrF [59], and 2.159 Å for BaF [60]).

6.3 Results and discussion
The first important step in our investigation was a detailed study of the influence
of the basis set size on the WA parameters; we also use this study to determine
the best basis set which is still affordable computationally. These tests were
performed within the DHF, CCSD, and CCSD(T) framework. In the coupled
cluster calculations, 35 electrons were correlated and virtual orbitals with ener-
gies above 30.0 a.u. were excluded. We used the standard Dyall’s relativistic
basis sets of double-, triple-, and quadruple-ζ quality [54, 55]. To check the in-
fluence of diffuse functions, we have augmented the dyall.v4z basis with a single
diffuse function for each symmetry (s-aug-dyall.v4z) and with two diffuse func-
tions (d-aug-dyall.v4z). While diffuse functions are usually more important for
chemical properties, a good description of the electronic wave function in the
nuclear region is essential for obtaining reliable results for parity-violating effects
[61]. In particular, it was demonstrated in our earlier work [34, 35, 62] that tight
s and p functions have a considerable influence on theWA parameter at the DHF
level, especially for the lighter elements. Thus, we also tested the effect of adding
different types of tight functions to the basis sets (designated as ts for high ex-
ponent s function, tp for high exponent p, etc.). The augmentations (both with
the diffuse and the tight functions) were carried out separately for each of the
atoms, and the results are summarised in Table 6.1.

Going from double- to triple-ζ quality basis set increases the calculated WA

value by ∼10%; moving to quadruple-ζ quality leads to a further increase of less
than a single percent on the coupled-cluster level. The correlation part of the
WA coefficient does not scale smoothly with the size of the basis set, and hence
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Table 6.1: Basis set dependence of the calculated WA coefficient (Hz) of BaF (for
the Ba atom).

Basis set (Ba) Basis set (F) DHF CCSD CCSD(T)

v2z v2z 99.12 131.04 129.22
v3z v3z 110.70 143.51 141.42
v4z v4z 112.27 144.02 141.84

Diffuse functions
s-aug-v4z dyall.v4z 112.25 143.95 141.76
d-aug-v4z dyall.v4z 112.25 143.95 141.76
dyall.v4z s-aug-v4z 112.09 143.36 141.16
dyall.v4z d-aug-v4z 112.04 143.27 141.05

Tight functions
v4z+ts v4z 112.30 144.08 141.89
v4z+tp v4z 112.39 144.15 141.97
v4z+td v4z 112.27 144.00 141.82
v4z+tf v4z 112.32 145.17 143.02
v4z+2tf v4z 112.33 145.28 143.08
v4z+tg v4z 112.27 144.42 142.31
v4z v4z+ts 112.27 144.02 141.84
v4z v4z+tp 112.27 144.02 141.84
v4z v4z+td 112.27 144.00 141.82
v4z v4z+tf 112.27 144.00 141.82

we did not perform extrapolation to the complete basis set limit. Adding diffuse
functions for barium has negligible effects on the results, while augmenting the
basis of fluorine reduces the WA value by 0.5% as the fluorine orbitals extend
into the domain of the Ba atom. Out of the large exponent functions, only the
tight f -type function has a discernible influence on the calculated WA, raising
its value by ∼1% on CCSD and CCSD(T) level (but having no impact on the
DHF results). Adding a second tight f orbital leaves the calculated WA almost
unchanged. We thus assume that the results are converged (close to the basis set
limit) and perform the rest of our calculations using the optimized dyall.v4z+tf
basis set.

Next we explored the effect of the number of correlated electrons and the
size of the virtual space on WA. In the first set of calculations we keep the
energy cut-off for the virtual space at a rather high value (500 a.u.) and vary the
number of correlated electrons. Figure 6.1 presents the calculated MP2, CCSD,
and CCSD(T) WA values. Overall, the difference between including 35 electrons
in the calculation (corresponding to the commonly used cut-off of −20.0 a.u. in
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Figure 6.1: Calculated WA coefficients of BaF (for the Ba atom) using different
number of correlated electrons.

the space of the occupied orbitals) and correlating all 65 electrons is ∼3% for
the three methods. We note that the major part of this difference does not come
from the 1s orbital alone, despite its proximity to the nucleus, but rather comes
from all the core shells. In order to achieve < 1% accuracy, all the electrons
should be included in the electron correlation procedure.

In the next step we performed calculations where all electrons are correlated,
and vary the energy cut-off in the virtual space (Figure 6.2). Unlike many other
atomic or molecular properties, the calculated WA value does not saturate at
the energy cut-off of about 30 a.u., but continues to increase. The difference in
the value corresponding to cut-off of 500 a.u. compared to 30 a.u. is ∼3%, and
the WA value continues to increase further beyond this point, albeit at a much
lower rate (WA = 148.91 Hz for cut-off of 1000 a.u. vs. 148.40 Hz for 500 a.u.).
The importance of inclusion of high lying virtual orbitals for the correlation of
the core electrons was also observed by Skripnikov et al. [63] for the scalar-
pseudoscalar interaction constant Rs in the francium atom. We selected a final
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Figure 6.2: Calculated WA coefficients of BaF (for the Ba atom) using different
sizes of the virtual space.

cut-off of 500 a.u. for the following calculations, which is a compromise between
optimal accuracy and computational feasibility.

Table 6.2 contains the WA constant of BaF (for the Ba atom), calculated
at the DHF, MP2, and DFT levels of theory, using different functionals, and
within various coupled cluster schemes. These results were obtained using the
optimised basis set (dyall.v4z augmented by a single tight f function) and in the
MP2 and CC calculations all electrons were correlated with the energy cut-off for
the virtual space set to 500 a.u.

Electron correlation clearly plays an important role for this property, and the
CCSD results are 25% higher than the corresponding DHF values. MP2, how-
ever, performs remarkably well and captures the majority of electron correlation,
differing from the CCSD value by only 8%.

DFT results tend to be very close to the DHF value; in particular, the re-
sult obtained with the CAMB3LYP* functional, which is generally expected to
perform well for parity-violating properties [53], is almost identical to the DHF
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result, which is somewhat disappointing. Note, similarly disappointing results
are obtained for electric field gradients of molecules containing transition metals
[64], and arguments about the failure of DFT can be found in Ref. [65]. As
we expect that most density functionals lie in-between the DHF and the local
density approximation (SVWN5) results, here this deficiency cannot be so easily
fixed by adjusting the Hartree-Fock contribution in the hybrid functional as was
done for electric field gradients [64].

Moving to the coupled cluster results, the triple excitations contribute very
little and they lower the WA value by ∼1.5% only. We thus expect that the
higher-order excitations in the CC procedure will not play an important role for
this property.

As already mentioned, we have tested two variants of FSCC. In the first one,
FSCC(0,1), the calculation starts from BaF+, and an electron is added into the
virtual orbitals. Here we test two sizes of the model space: the minimal one,
designated Model space I, where the additional electron is allowed to occupy
only the lowest σ orbital (yielding the ground X2Σ1/2 state), and Model space
II, which contains 2 σ, 2 π, and 2 δ orbitals.

The second FSCC scheme, FSCC(1,0), starts with BaF− as reference state,
and an electron is removed to reach the neutral system. Usually, one expects
the FSCC results to be situated between the CCSD and the CCSD(T) values
(for recent reviews of relativistic FSCC approach, see Ref. [66]). The sector (0,1)
results are extremely close to the CCSD(T) values; superior performance of FSCC
in particle sectors compared to single reference CCSD has been observed in the
past [66]. It should be noted that in this case increasing the size of the model
space has negligible influence on the results. The sector (1,0) values are slightly
higher than the CCSD ones, rather than lower as one would expect. This is
probably due to the fact that the (1,0) calculation starts from a negative closed
shell reference state, and the basis which was optimised for the neutral system
does not provide sufficient description of the more diffuse orbitals in BaF−.

The Gaunt interaction lowers the WA (on DHF level) by 0.7 Hz. We add
the Gaunt contribution from the DHF calculation to the CCSD(T) result to
provide the final (recommended) value for the WA constant of BaF. This value
is designated as CCSD(T)+Gaunt in Table 6.2.

In order to put an error bar on this value, we need to examine the remaining
sources of uncertainty within our computational approach. These include basis
set deficiencies, the unaccounted full triple and higher order contributions in the
coupled cluster procedure, the choice of the virtual space cut-off, and neglect of
the full Breit and higher-order QED effects. From the investigation of the basis
set effects (Table 6.1), we see that the contribution from the diffuse functions on
the F atom, which we neglect here, is around −0.6 Hz, while the effect of tight
functions beyond tight f (mostly stemming from the tight g) is +0.5 Hz. These
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two effects cancel out, but we take a conservative estimate of basis set uncertainty
of about 0.5 Hz (of the order of magnitude of these effects), to account for any
further shortfalls of the basis set. The difference in the values of WA calculated
with a virtual space cut-off of 500 a.u. and 1000 a.u. is about 0.5 Hz and
it seems that saturation is reached; we thus take 1 Hz as the corresponding
uncertainty. The contribution of perturbative triple excitations in the calculation
via the CCSD(T) scheme is −2.26 Hz. In CCSD(T) the triple excitations are
included fully in the fourth order in perturbation theory, and part of the fifth-
order terms is also included [67]. To test the stability of this scheme, we present
the results of CCSD-T calculation where further fifth-order terms are included
[68], as well as the CCSD+T approach [69], where the triple corrections are
treated only at forth-order level. These values are also shown in Table 6.2. While
CCSD+T has the strongest effect on the calculated WA (−2.77 Hz), addition of
the fifth order terms moderates the contribution of the triple excitations, and the
difference between CCSD(T) and CCSD-T is negligible. Currently, there is no
possibility to evaluate the contribution of quadruple and higher excitation, but as
the triple excitation contribution is already quite small, we may safely neglect the
higher order ones. We take twice the difference between CCSD+T and CCSD-T
(1.5 Hz) as the uncertainty due to incomplete treatment of electron correlation.
We assume that the effect of replacing the Breit term by the Gaunt term and
neglecting QED effects is not more than the contribution of the Gaunt term
itself (∼ 0.7 Hz). The final source of uncertainty is in the numerical nature of the
finite field approach, where a slight dependence on the size of the perturbation can
emerge, and for small fields numerical noise might be a factor. Test calculations
we carried out show that these effects are small, up to 0.5 Hz. Summing up all
of the above effects we get an uncertainty estimate of 2 Hz, or 1.5%.

Table 6.2 also contains the results of the previous investigations of the WA

parameter of BaF. The majority of these studies used approximate methods,
such as DHF and DFT, or semiempirical approaches. Our investigation of this
property in BaF is within a relativistic coupled cluster approach, and thus direct
comparison with earlier values is perhaps difficult. Our present DHF value is in
excellent agreement with the RECP-SCF result of Kozlov et al. [30]. However,
when these authors include an effective operator (EO) to account for core polar-
ization effects, their final value overshoots the result obtained here. The DHF
and DFT results of Ref. [32] are close to the corresponding present values but the
scaling scheme seems to overcompensate for the spin-polarization effects, similar
to that employed in Ref. [30]. Our earlier DHF and DFT calculations are in
good agreement with the present results, as expected, and the final value in that
publication, corrected for core polarisation, is in fact very close to our CCSD(T)
result, supporting the use of this scaling scheme. The DHF result of Ref. [31] is
larger than our value and other uncorrelated calculations [30, 35, 70], but their
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RASCI value is again close to our present CCSD(T) result.
It is expected that the magnitude of |WA|/RW of the 2Σ1/2 electronic state

scales as Z2 [8], where the relativistic enhancement parameter RW (RW ≥ 1) is
defined as follows [9],

RW =
2γ + 1

3

(
aB

2Zr0A
1
3

)2−2γ
4

[Γ(2γ + 1)]
2 , (6.12)

γ =
√

1− (Zα)2. (6.13)

Here, α is the fine-structure constant, r0 is the nucleus radius, taken here as
r0 = 1.2×10−15 m [4], Γ(x) is the gamma function, and aB is the Bohr radius. To
test this dependence, we have calculated the WA parameters of the other alkaline
earth metal fluorides (for the alkaline-earth-metal atoms). These calculations
were performed with the standard Dyall’s v4z basis set; all the electrons were
correlated, and the energy cut-off for the virtual space was again set at 500 a.u.
Table 6.3 contains the calculated WA parameters at the DHF, DFT (B3LYP),
MP2, and CCSD(T) levels of theory. In Figure 6.3, we show log10 (|WA|/RW )
as a function of log10(Z) for these systems. The results are fitted by a linear
function:

log10

( |WA|
RW

)
= a log10(Z) + b. (6.14)

For the four computational methods, the scaling factors a are more or less
identical (1.77 for DHF, 1.76 for B3LYP, 1.79 for MP2, and 1.80 for CCSD(T)),
in spite of very different WA values, implying that the trend is not sensitive
to the treatment of electron correlation. Gaul et al. report a similar finding
concerning the scaling of the P̂- and T̂ -violating parameters Wd and Ws in this
group of molecules [71]. It should be mentioned that for other sets of molecules
investigated in Ref. [71] (i.e. group 4 oxides and group 12 hydrides), this is not
the case, and the Hartree-Fock and DFT scaling differ significantly. The scaling
we obtain here is close (if slightly lower) to the expected Z2 dependence and in
good agreement with the scaling derived from the earlier DHF+DFT results [35]
and that of Ref. [32]. In this group of molecules, no additional enhancement
due to electronic structure effects is observed (unlike in group 12 fluorides, for
example, where the scaling is predicted to be 2.4 [35]).

6.4 Conclusions
In this work, we presented high accuracy relativistic coupled cluster calculations
for the nuclear spin dependent P̂-odd interaction constantWA of BaF. The effect
of various computational parameters on the obtained result was explored; these
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Figure 6.3: Scaling of log10(WA/RW ) with log10(Z) for the selected alkaline earth
metal fluorides.

include the choice of the basis set, treatment of electron correlation, number of
correlated electrons, size of the virtual space, and inclusion of the Gaunt term.
We find that inclusion of electron correlation raises the calculated WA value
by about 25%; the rest of the parameters have a much weaker effect on the
results, of the order of a single percent. Furthermore, performance of various DFT
functionals for this property was investigated and found lacking. We propose a
final recommended value ofWA = 147.7 Hz for the barium atom in BaF, obtained
from the CCSD(T) calculation using the optimised basis set and corrected for the
Gaunt contribution. This result, with its estimated uncertainty of 1.5% will be
useful for interpretation of future experiments on this system. We have also
investigated the scaling of the WA parameter for the alkaline-earth-metal atoms
in group 2 fluorides, and found it to be close to the expected Z2 behavior.
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Table 6.2: Calculated WA coefficient (Hz) of BaF (for the Ba atom) within dif-
ferent correlation approaches and compared to previous predictions. The present
recommended value (CCSD(T)+Gaunt) is given in bold font.

WA (Hz) Method Reference

112.32 DHF This work
138.28 MP2 This work
150.66 CCSD This work
148.40 CCSD(T) This work
147.89 CCSD+T This work
148.59 CCSD-T This work
148.84 FSCC(0,1)-Model space I This work
148.25 FSCC(0,1)-Model space II This work
151.98 FSCC(1,0) This work
147.71 CCSD(T)+Gaunt This work
123.50 DFT(SVWN5) This work
116.18 DFT(B3LYP) This work
116.08 DFT(PBE) This work
112.92 DFT(CAMB3LYP*) This work
210-240 Semiempirical [29]
111 RECP-SCF [30]
181 RECP-SCF+EOa [30]
164 Semiempirical [23]
135 DHF [31]
160 4c-RASCI [31]
111 ZORA-HF [32]
119 ZORA-DFT(B3LYP) [32]
190 Scaled ZORA-HFb [32]
112.9 DHF [35]
111.6 DFT(CAMB3LYP*) [35]
146.0 DHF/DFT+CPc [35]

a RECP-SCF+EO: RECP SCF calculation with an effective operator describing valence-
core correlations.
b ZORA-HF results with semiempirical scaling.
c Average of DHF and DFT values, scaled by a core-polarisation parameter.
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Table 6.3: Calculated WA coefficients (Hz) of alkaline-earth-metal fluorides (for
the alkaline-earth-metal atoms).

Molecule DHF B3LYP MP2 CCSD(T)

BeF 0.38 0.40 0.44 0.46
MgF 3.67 4.34 4.41 4.91
CaF 7.74 8.39 9.55 10.75
SrF 37.29 41.50 45.79 50.87
BaF 112.27 116.02 138.23 147.16
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Chapter 7

Nuclear anapole moment
effect in BeCla

7.1 Motivation
The nuclear anapole moment interaction is one of the three main sources ac-
counting for the nuclear spin dependent parity violating (NSD-PV) effects [2],
and comes from the interaction between the electromagnetic current and the nu-
clear weak current [3]. The effective Hamiltonian, which describes the nuclear
anapole moment interaction, takes the following form [4–6],

HA ≡
κAGF√

2

(
α · Î

)
ρ(r) (7.1)

where ρ(r) is the nuclear density distribution, GF is the Fermi weak interaction
constant [7], Î is the unit vector along the nuclear spin, and α are the Dirac
matrices. κA is a dimensionless effective coupling constant, which describes the
magnitude of the nuclear anapole moment interaction.

The nuclear anapole moment effect has been observed in the 133Cs atom [8, 9].
Some measurements have also been proposed on other atoms, such as 137Ba [10],
163Dy [11], 171Yb [12], and 212Fr [13]. In diatomic molecules with a 2Σ1/2 ground
state, the effect is strongly enhanced because of close-lying molecular levels with
opposite parity, where degeneracy can be very easily occur in external fields and
thus a dramatic amplification of the tiny parity-violating effect can be achieved

aThis chapter is based on our published paper [1]: Yongliang Hao, Miroslav Iliaš, and
Anastasia Borschevsky, Correlation trends in the nuclear anapole moment interaction of the
Be atom in BeCl, Proceeding of Science, International Conference on Precision Physics and
Fundamental Physical Constants, FFK2019, 057 (2019).
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[14]. Recently, measurements with improved sensitivity were demonstrated for
the BaF molecule [15, 16], and the corresponding theoretical investigations for
BaF as well as for its homologues have also been carried out [10, 17–21].

For a 2Σ1/2 ground state, Eq. (7.1) can be written as follows [5, 10],

HA = κAWAÎ ·
(
n̂× Seff

)
, (7.2)

where Seff stands for the effective spin of the open-shell electron, and n̂ is the
unit vector along the molecular axis. The effective coupling constant κA can
be obtained both experimentally and theoretically. On the one hand, κA can
be determined by measuring parity-violating transitions in atoms or molecules
when the WA parameter is known. On the other hand, κA can also be calculated
directly from nuclear theories. For instance, κA takes the following form in a
nuclear model [4–6],

κA ' 1.15× 10−3(−1)I−l+
1
2

(
I + 1/2

I + 1

)
µigiA

2
3 , (7.3)

where l is the orbital angular momentum of the unpaired valence nucleon, gi is
an interaction constant with values of around 4.6 [4] and 1 [22] for the proton-
nucleus and neutron-nucleus interactions, respectively, µi is the nuclear magnetic
moment, and A is the total number of nucleons in the nucleus.

From an experimental point of view, the WA parameter needs to be known
with high accuracy so that the effective coupling constant κA can be obtained
precisely from the measured signals. The determined values of κA from exper-
iments can be compared with the calculated values from nuclear theories. Any
deviation may suggest the incompleteness of our current knowledge concerning
nuclear structure. However, no meaningful comparison can be made unless κA
is precisely measured from experiments and accurately calculated from theories.
Molecules containing light elements, such as BeCl, etc., are also considered as
promising candidates for the study of the nuclear anapole moment effect. The
practical advantage of using such molecules is that nuclear calculations for light
elements are more computationally tractable. In this case, the effective coupling
constant κA can be more accurately calculated from nuclear theories and thus a
more meaningful comparison can be made.

The nuclear anapole moment interaction is only present in atoms or molecules
with unpaired nucleons and unpaired electrons. Due to the scaling factor in
Eq. (7.3), it is the dominating contribution to the NSD-PV effects in atoms or
molecules containing heavy elements [2]. However, in molecules containing light
elements, the observed NSD-PV signals may come from all three sources, but it is
still possible to distinguish the nuclear anapole moment signal from the remaining
NSD-PV signals by performing the measurements on different nuclei (or different
isotopes) [23].
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The WA parameter, which depends on the electronic structure of the atoms
or molecules, is defined by the following expression [24],

WA ≡
GF√

2

〈
+ 1

2

∣∣ ρ(r)α+

∣∣− 1
2

〉
, (7.4)

with

α+ = αx + iαy =

(
0 σx
σx 0

)
+ i

(
0 σy
σy 0

)
. (7.5)

Here, σx and σy represent the Pauli matrices, and
∣∣± 1

2

〉
are two Ω-states. The

WA parameter cannot be measured and can only be calculated using theoretical
molecular method. In Sec. 7.2, the calculations of the WA parameter for the
beryllium atom in BeCl will be discussed in more detail.

7.2 Method and computational details
In order to calculate the WA parameter with high accuracy, we need to take into
account the following three main factors: relativistic effects (Hamiltonian), basis
sets, and electron correlations. To begin with, we need to include relativistic
effects into our calculations so that high accuracy is assured. Furthermore, for a
good description of the electronic wavefunctions, large basis sets should be em-
ployed. More importantly, since electron correlations, which describe the instan-
taneous interaction among electrons, are crucial in the determination of molecular
properties, they should be treated properly in high-accuracy calculations. In this
work, we carry out the calculations using various electron correlation methods
and compare the corresponding results.

The calculations are performed using the developer’s version of the DIRAC
package [25] throughout this work. With respect to the treatment of relativistic
effect, the following (relativistic) Dirac-Coulomb Hamiltonian is employed,

H0 =
∑
i

[cαi · pi + βimec
2 + V (ri)] +

∑
i<j

e2

rij
, (7.6)

Here, the Coulomb potential takes into account the finite size of the nuclei, mod-
eled by a Gaussian type distribution [26].

In order to have a good description of the electronic wavefunctions, we use
Dyall’s relativistic standard basis sets [27, 28]. Throughout this work, all the cal-
culations are performed using the dyall.v4z basis set [27, 28] at the experimental
equilibrium bond length 1.7971 [29].

In order to further investigate the influence of electron correlation on the cal-
culatedWA parameter, various electron correlation approaches are employed. We
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Table 7.1: Calculated WA parameters (Hz) for the Be atom in BeCl at the
equilibrium bond length using various electron correlation methods.

Electron correlation methods WA (Hz) ∆ %

DHF 0.3961 0.0%
DFT(CAMB3LYP*) 0.3973 0.3%
DFT(B3LYP) 0.4138 4.5%
DFT(PBE) 0.4245 7.2%
DFT(SVWN5) 0.4282 8.1%
MP2 0.4626 16.8%
CCSD 0.4847 22.4%
CCSD(T) 0.4822 21.7%

first carry out the calculation using the open-shell single determinant average-
of-configuration Dirac-Hartree-Fock (DHF) [30] method, which does not include
electron correlation effects. The relativistic density functional theory (DFT) [31]
does not treat electron correlation in a robust way, and in order to further test
the performance of the DFT method, we perform the calculations with various
functionals, such as the Slater local exchange (SVWN5) functional [32], Perdew-
Burke-Ernzerhof (PBE) functional [33, 34], the Becke-Lee-Yang-Parr (B3LYP)
hybrid functional [35–37] and its adapted version (CAMB3LYP*) [38, 39]. Fi-
nally, we perform the calculations using the second-order Møller-Plesset (MP2)
method [40] and the relativistic coupled cluster method [41]. The relativistic
coupled cluster method is considered as the state-of-the-art method in the (rela-
tivistic) treatment of electron correlation. In this work, we employ the relativistic
coupled cluster method with single, double, and perturbative triple excitation,
namely CCSD and CCSD(T) [41]. The nuclear anapole moment interaction is
perturbatively added to the coupled cluster calculations using a finite field (FF)
approach [21, 42, 43]. In the coupled cluster calculations, the virtual energy cut-
off is 500 a.u. and all the electrons are included into the treatment of electron
correlation.

7.3 Results and conclusions
The calculated WA parameters (in units of Hz) for the Be atom in the BeCl
molecule using various methods, such as DHF, DFT, MP2, CCSD, and CCSD(T)
are presented in Tab. 7.1 and in Fig. 7.1. Such methods treat the electron
correlation on different levels. As can be seen from Tab. 7.1 and Fig. 7.1, the
calculated WA parameters (Hz) tend to increase from top to bottom, where the
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Electron correlation methods
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Figure 7.1: Calculated WA parameters (Hz) for the Be atom in BeCl at the equi-
librium bond length using various electron correlation methods. The calculated
WA values tend to increase with electron correlation.

treatment of electron correlation is steadily improving. The parameter ∆, which
describes the relative contributions from the electron correlation, is defined as
follows,

∆ =
100
(
Corr −DHF

)
DHF

. (7.7)

Here, Corr represents the calculated results from various electron correlation
methods, and DHF represents the calculated result from the DHF method.
The DHF method does not incorporate the electron correlation effect while the
CCSD(T) is considered as the state-of-the-art method in dealing with the electron
correlation. A direct comparison between the DHF and the CCSD(T) results sug-
gests that electron correlation contributes to the nuclear anapole moment effect
by approximately 20%, and thus it plays an important role in the determination
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of the WA parameter and should be taken into account in high-accuracy calcula-
tions. Interestingly, the calculated value from the CCSD method is higher than
the calculated value from the CCSD(T) method but the difference is very small.
This illustrates that, in our case, the perturbative triple excitation tends to lower
down the WA parameter but its contribution is not significant.

In summary, we have calculated the WA parameter, which can be used for
interpreting the measurement of the nuclear anapole moment effect, for the Be
atom in BeCl using various ab initio methods such as DHF, DFT, MP2, CCSD,
and CCSD(T) and using a large basis set. This is the first result of this effect
for the BeCl molecule using the relativistic coupled cluster method. Our results
show that electron correlation contributes to the WA parameter significantly and
should be treated properly in high-accuracy calculations.
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Chapter 8

Molecular spectra and
structure for eEDM
measurementsa

8.1 Motivation
Heavy diatomic molecules are currently considered to be the most sensitive sys-
tems used in the search for the electron electric dipole moment (eEDM) [2]. The
large effective electric field, which the valence electron in these molecules is ex-
posed to (Ref. [3]), allows for a huge sensitivity enhancement compared to a
measurement on an atom.

In the ongoing experiments on YbF [4] and ThO [5, 6], and the planned exper-
iment on BaF [7], precision measurements are performed on a beam of molecules
using the Ramsey separated oscillatory fields method [8]. In the region of the
experiment where the molecular beam interacts with carefully defined electric
and magnetic fields, the eEDM can become visible in the correlation of an en-
ergy level shift with the direction of the electric field. The sensitivity of such a
measurement scales with the square root of the total number of molecules used
in the experiment, and linearly with the coherent interaction time in the Ramsey

aThis chapter is reproduced from our published paper [1]: Yongliang Hao, Lukáš F. Pašteka,
Lucas Visscher, Parul Aggarwal, Hendrick L. Bethlem, Alexander Boeschoten, Anastasia
Borschevsky, Malika Denis, Kevin Esajas, Steven Hoekstra, Klaus Jungmann, Virginia R. Mar-
shall, Thomas B. Meijknecht, Maarten C. Mooij, Rob G. E. Timmermans, Anno Touwen, Wim
Ubachs, Lorenz Willmann, Yanning Yin, Artem Zapara, High accuracy theoretical investiga-
tions of CaF, SrF, and BaF and implications for laser-cooling, J. Chem. Phys. 151, 034302
(2019), with the permission of AIP Publishing.

128



Motivation

detection scheme. To optimize the sensitivity, the interaction time in these ex-
periments can be increased by reducing the longitudinal velocity of the molecular
beam by using a cryogenic beam source or by Stark deceleration. However, if the
transverse velocity spread of the molecular beam is not also reduced, the increase
in the interaction time will be offset by an increased transverse spreading of the
molecular beam during the transition of the interaction zone, and the sensitivity
of the experiment will not be improved. Transverse laser-cooling of molecular
beams can reduce the spread of the molecular beam to a negligible level, pro-
vided the internal structure of the molecule is suitable. This leads to an increase
in the number of molecules and thereby opens the way to experiments with very
long interaction times and an improved sensitivity for measuring the eEDM. The
possibility to exert both laser-cooling and Stark deceleration on the BaF molecule
makes this species a candidate for a successful measurement of the eEDM [7].

The prospects of laser-cooling and trapping of molecules [9] have led to a
considerable interest in both experimental and theoretical communities. The
first molecule to be laser cooled was SrF [10], followed by YO [11], CaF [12], and
YbF [13]. Recently, laser-cooling of the first polyatomic molecule, SrOH, was
demonstrated [14] and has been proposed for heavier molecules, such as RaOH
and YbOH, and larger polyatomic molecules like YbOCH3 [15, 16].

There are a number of key factors that determine whether a given molecule
is suitable for laser-cooling [9]. One is having strong one-photon transitions to
ensure the high photon-scattering rates needed for efficient momentum transfer.
The oscillator strengths of the transitions can be determined using the transition
dipole moments (TDMs) between the states. A second requirement is a rotational
structure with a closed optical cycle; this is available in 2Π−2 Σ+ and 2Σ+−2 Σ+

transitions. A third condition concerns the Franck-Condon factors (FCFs) which
govern the vibronic transitions between different electronic states. Highly diago-
nal FCFs provide a near-closed optical cycle in the vibronic structure, therewith
limiting the required repumping. Finally, there should either be no intervening
electronic states to which the upper state could radiate and cause leaks in the
cooling cycle, or the transitions to such states should be suppressed.

Thus, the suitability of BaF for laser-cooling depends critically on its energy
level structure, lifetimes of its excited states, vibrational branching ratios, and
electronic transition probabilities. This paper aims to determine these properties
at the highest possible level of computational accuracy, to conclude on the suit-
ability of BaF for laser-cooling, and to suggest the optimal laser-cooling scheme.

We perform high-accuracy relativistic Fock-space coupled cluster (FSCC)
calculations of the spectroscopic constants of BaF and its lighter homologues
CaF and SrF; based on these values we provide predictions of the FCFs of
the A2Π1/2 −X2Σ+

1/2 laser-cooling transition, the alternative cooling transition
B2Σ+

1/2 − X2Σ+
1/2, and the possible leak transition A2Π1/2 − A′2∆3/2. We also
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carry out calculations of the dipole moments (DMs) and transition dipole mo-
ments (TDMs) for the six lowest states of the selected molecules, using in this case
the relativistic multireference configuration interaction method (MRCI). These
are the first comprehensive relativistic high-accuracy investigations of the spectro-
scopic properties of these molecules. The ground and the excited state properties
are treated on the same footing, and similar accuracy is expected for all the levels
investigated here.

In the following, we start in Section 8.2 with a brief overview of previous exper-
imental and theoretical studies of the three molecules. In Section 8.3 the methods
employed in our calculations are introduced. Section 8.4 contains our theoreti-
cal results for spectroscopic constants, Franck-Condon factors, dipole moments,
transition dipole moments, and lifetimes of the excited states. The implications
of these results for possible laser-cooling schemes are discussed in Section 8.5.

8.2 Previous investigations
Numerous theoretical studies of the electronic structure and other properties of
BaF and its lighter homologues were carried out, using a variety of methods.
The majority of these investigations were performed in a nonrelativistic frame-
work. The main system of interest here, BaF, was recently investigated using the
effective core potential (ECP) based complete active space self-consistent field
approach combined with the multi-reference configuration interaction method
(CASSCF+MRCI) [17]. This study provides the spectroscopic constants, the
static and the transition dipole moments, and the static dipole polarizabilities of
the ground and the 41 lowest doublet and quartet electronic states of this sys-
tem. The drawbacks of this extensive investigation are in the rather limited size
of the employed basis sets and in the fact that spin-orbit coupling is neglected
altogether. Shortly after, Kang et al. [18] published a paper where a similar
approach (CASSCF+MRCI) was used to investigate the properties of BaF, in-
cluding the Franck-Condon factors for the transitions between the lowest states.
Here, much higher quality basis sets were used, and spin-orbit coupling (SOC)
effects were included at the MRCI level. The FCFs for the transition between
the low-lying states of BaF were reported by Chen et al. [19] using the Rydberg-
Klein-Rees (RKR) approach, and by Karthikeyan et al. [20] and Xu et al. [21]
within the Morse potential model (MPM). The DM of the ground state of BaF
was also studied using the relativistic restricted active space approach combined
with configuration interaction method (RASCI) [22], by relativistic coupled clus-
ter method (RCCSD/RCCSD(T)) [23–25], and using relativistic effective core
potential approach based on the restricted active space self-consistent-field the-
ory (AREP-RASSCF) [26].

Earlier, in the work of Westin et al. [27], the transition energies between low-
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lying electronic states of BaF were obtained based on density functional theory
(DFT) method. The spectroscopic constants (αe and ωeχe) and dipole moments
of the ground state of BaF and its homologues were calculated by Törring et
al. [28] using the ionic Rittner model [29]. Subsequently, these authors applied
an electrostatic polarisation model (EPM) [30] to evaluate the energies and the
dipole moments of the low-lying excited states of alkaline earth metal mono-
halides, including BaF. The transition energies as well as the DMs and TDMs of
the lowest excited states of CaF, SrF, and BaF were reported by Allouche et al.
[31] using the Ligand Field Method (LFM), where model potential functions are
used to describe the electronic structure of alkaline earth metal ions.

The majority of theoretical investigations on CaF and SrF were carried out
using the configuration interaction approach, either within its single reference
(CISD) [32] or multireference variant [33–35]. Most recently, two studies were
published, presenting the spectroscopic constants and the DMs of the two molecules
obtained both by the CASSCF+MRCI approach and using the second-order mul-
tireference Rayleigh-Schrödinger perturbation theory (CASSCF+RSPT2) [36,
37]. Some single reference coupled cluster studies are also available [24, 25, 38–
42]. Other approaches used for calculations of the spectroscopic constants, the
DMs, and the TDMs of CaF and SrF are the ligand field method [31, 43], the elec-
trostatic polarisation model [30, 44], the finite-difference Hartree-Fock (FDHF)
approach [45], the second order Møller-Plesset perturbation theory (MP2) [46],
the effective one-electron variational eigenchannel R-matrix method (EOVERM)
[47], and the ionic model [28]. Barry [10, 48] obtained the potential energy
curves of SrF using experimental spectroscopic constants within the first-order
Rydberg-Klein-Rees (RKR) approach and subsequently evaluated the FCFs for
the transition A2Π1/2 → X2Σ+

1/2.
Many spectroscopic constants of the ground and the lowest excited states of

BaF were determined experimentally with high precision [49–53], along with the
DM of its ground state [54] and electronic transition dipole moments between
its lowest levels [55, 56], which were extracted from the measured lifetimes using
calculated FCFs. There is also a significant amount of experimental data available
on the properties of its lighter homologues, CaF and SrF. Here, we cite the most
recent and precise values available: Refs. [49, 50, 57–68] for the spectroscopic
constants, Refs. [69–72] for the static and transition dipole moments, Refs. [58,
73] for the lifetimes, and a single measurement of the FCFs of the A−X(0− 0)
transition in CaF [74].

RaF, the heavier homologue of BaF, was also proposed for laser-cooling and
for use in experiments to search for physics beyond the Standard Model. Its
spectroscopic properties were investigated within the relativistic Hartree-Fock
and the density functional theory methods [75–79], and using the relativistic
coupled cluster approach [80]. This molecule, along with the lighter BeF and

131



Methods

MgF, is, however, outside the scope of the present work.

8.3 Methods
Relativistic effects can have a significant influence on atomic and molecular prop-
erties [81], in particular in case of heavier atoms and molecules, represented
by BaF in this study. Thus, we have carried out all the calculations within
the relativistic framework, using the DIRAC15 program package [82]. In order
to reduce computational effort, we have replaced the traditional 4-component
Dirac-Coulomb (DC) Hamiltonian by the exact 2-component Hamiltonian (X2C)
[83, 84]. This approach allows a significant decrease in computational time and
expense, while reproducing very well the results obtained using the 4-component
DC Hamiltonian, as tested for a variety of species and properties [85–87]. In this
work, we have used the molecular mean-field implementation of the approach,
X2Cmmf [86] and included the Gaunt interaction [88]. This interaction is part of
the Breit term, which corrects the 2-electron part of the Dirac-Coulomb Hamil-
tonian up to the order of (Zα)2 [89]. The Breit correction was shown to be of
importance even for light molecules [90]; we thus include the Gaunt term in our
calculations, for achieving optimal accuracy (the full Breit term is to date not
implemented in the DIRAC program). All the calculations were performed for
the 138BaF, 88SrF, and 40CaF isotopologues.

In order to obtain the spectroscopic constants of the ground and excited states
of the molecules and the Franck-Condon factors for transitions between these
states, we have calculated the potential energy curves using the multireference
relativistic Fock space coupled cluster approach [91]. FSCC is considered one of
the most powerful methods for high-accuracy calculations of atomic and molecu-
lar properties of small heavy species and it is particularly well suited for treating
excited states [92]. Within the framework of this approach an effective Hamil-
tonian (Heff) is defined and calculated in a low-dimensional model (P ) space,
constructed from zero-order wave functions (Slater determinants), with eigenval-
ues approximating some desirable eigenvalues of the physical Hamiltonian. The
effective Hamiltonian has the form [93]

Heff = PHΩP, (8.1)

where Ω is the normal-ordered wave operator,

Ω = exp(S). (8.2)

The excitation operator S is defined with respect to a closed-shell reference de-
terminant (vacuum state), and partitioned according to the number of valence
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holes (m) and valence electrons (n) with respect to this reference:

S =
∑
m>0

∑
n>0

 ∑
l>m+n

S
(m,n)
l

 . (8.3)

Here l is the number of excited electrons. Current implementation of the rela-
tivistic FSCC method [91] is limited to l 6 2, corresponding to single and double
excitations, and thus, m + n 6 2, which in practice means that we are able to
treat atoms and molecules with up to two valence electrons or holes.
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The molecules of interest all have a single valence electron and a 2Σ+
1/2 ground

state configuration. We thus start our calculations from the closed-shell positively
charged ions, CaF+, SrF+, and BaF+. After solving the coupled cluster equa-
tions for these closed-shell reference ions, we proceed to add an electron to reach
the neutral states, for which additional CC equations are solved to obtain the
correlated ground and excited state energies. In this work, we were interested
in the X2Σ+

1/2, A
2Π1/2, A2Π3/2, A′2∆3/2, A′2∆5/2, and B2Σ+

1/2 states. We have
thus defined the model space P to contain the appropriate σ, π, and δ orbitals.

In order to reach optimal accuracy very large basis sets were used in the cal-
culations, and higher angular momentum basis functions were added manually
to the available sets. For all the elements involved in our calculation, we have
employed the relativistic basis sets of Dyall [94, 95]. Singly augmented pVQZ
basis set (s-aug-pVQZ) was used for fluorine; for Sr and Ba we used the doubly
augmented pVQZ basis sets (d-aug-pVQZ), to which we manually added two h-
type functions with exponent values of 0.48 and 0.25. For CaF the pVQZ did
not provide sufficient quality for description of the ∆ states, while on the other
hand the h-type functions had very little effect on the calculated transition ener-
gies. We thus used the doubly augmented core-valence CVQZ basis set for this
element (this basis set has two additional d, one additional f and one additional
g functions compared to the d-aug-pVQZ basis). Convergence of the obtained
spectroscopic constants (in particular excitation energies) with respect to the ba-
sis set size was verified. We have correlated 34 electrons in case of BaF and SrF
and 24 electrons for CaF.

After obtaining the potential energy curves, we have used the Dunham [96]
programme (written by V. Kellö of the Comenius University, [97]) to calculate
the spectroscopic constants: the equilibrium bond lengths (Re), the harmonic
and anharmonic vibrational frequencies (ωe and ωeχe), the adiabatic transition
energies (Te), and the rotational constants (Be). The Frank-Condon factors be-
tween the low lying vibrational levels of the ground state and the excited states
were extracted using the LEVEL16 program of Le Roy [98].

The calculations of the dipole moments and the transition dipole moments
were carried out using the MRCISD method [99] as implemented in the LUCIA-
REL module [87, 100] of the DIRAC15 program package [82]. The change of
method is needed because calculation of TDMs is not yet implemented on the
Fock-space coupled cluster level in the present version of the DIRAC program.
Since the MF (M=Ca, Sr, Ba) molecule is considerably ionic [101], in first ap-
proximation we can describe this system as a metal cation M+ perturbed by the
presence of the F− anion [36]. Hence, the valence electronic structure of MF is
qualitatively similar to M+: ns1. All the excited states of interest can be simi-
larly described by the single unpaired valence electron being excited into the low
lying empty valence d shell of the M+ cation. The configuration space was thus
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defined as one electron spanning the 6 orbitals corresponding to the metal atomic
orbitals: ns and (n − 1)d, thus describing two 2Σ, one 2Π and one 2∆ state. In
order to describe the orbitals equally well for all states we used the average-of-
configuration DHF reference orbitals [102] with one electron occupying the same
6 orbitals as were included in the configuration space. The correlation space ex-
tended down to the (n−1) shell of the M+ cation and 2s, 2p orbitals of F− anion
(i.e. 8 additional occupied orbitals) and virtual orbitals with energies over 10 a.u
were cut off. For the DMs, both computational methods are appropriate; there
we use the FSCC values to test the performance and the validity of MRCI for the
TDM calculations. The same basis sets were employed as for the calculations of
the potential energy curves.

8.4 Results and discussion

8.4.1 Potential energy curves
The calculated potential energy curves of the ground and the low-lying excited
states of the three molecules are shown in Fig. 8.1. As expected, the energy
splitting between the Ω resolved states tends to be larger the heavier the molecule
becomes, due to the relativistic effects playing a more important role in heavier
species. An important difference in the electronic structure of the three molecules
is in the location of the A′2∆ states. For CaF and SrF, these states are higher
than the A2Π states, even higher than the B2Σ+ state, while for BaF they are
lower in energy and transitions to the A′2∆3/2 state could constitute a leak in
the cooling cycle.

8.4.2 Spectroscopic constants
Tables 8.1, 8.2, and 8.3 contain the calculated spectroscopic constants of the
three molecules, along with experimental values where available and earlier the-
oretical results. Throughout this paper, all the molecular constants are defined
in the usual way [103] (for further details, see Appendix A). Overall, our cal-
culations are in excellent agreement with experiment. For most of the values,
the error is less than 1%; the largest relative error (of a few percent) is for the
anharmonicity correction ωeχe. However, for these constants the experimental
uncertainty is often rather high. The calculated transition energies are generally
slightly overestimated due to the neglect of the triple excitations, which are to
date not implemented in the FSCC approach.

The present results can be compared to the most recent theoretical investiga-
tions. For CaF, these are the nonrelativistic MRCI calculations of Ref. [35] and
the nonrelativistic CASSCF+MRCI and CASSCF+RSPT2 values of Ref. [37].
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Figure 8.1: Potential energy curves for the low-lying states of CaF, SrF, and BaF
(Color online).

In both the previous studies the deviations from experiment were larger than
here; in case of Ref. [37] use of a limited basis set led to errors on the order of
2-10%, with MRCI performing better than the RSPT2 approach (MRCI transi-
tion energies reproduced the experiment quite well). In Ref. [35] the results were
extrapolated to the complete basis set limit, resulting in lower errors of 2-5%.

In case of SrF the nonrelativistic CASSCF+MRCI and CASSCF+RSPT2
[36] methods perform on a similar level, and generally somewhat better than for
CaF (overall errors of 2-6%). However, here the errors in excitation energies are
larger, due to the small basis set, which is probably insufficient for an adequate
description of Sr. In SrF, relativistic effects start coming into play: the spin-
orbit splitting of the A2Π state is almost 300 cm−1 and therefore, in order to
achieve optimal accuracy, including spin-orbit effects is important. The ground
state of SrF was also studied by the CCSD(T) approach [41]. As expected, these
results are in excellent agreement with the present values. To the best of our
knowledge, no experimental information is available for the A′2∆ states of SrF;
the high-accuracy of our results for the other levels in this system supports our
predictions of the properties of these states.

In BaF the order of the excited states is different to that in its lighter homo-
logues, and the A′2∆ states are below the A2Π levels. It is thus important to have
high-accuracy predictions of their properties in order to estimate whether they
will present a challenge in the cooling scheme. The spin-orbit splitting of the A2Π
state is around 630 cm−1 and of that of A′2∆ is around 420 cm−1. Our results re-
produce very well the level ordering, the magnitude of the fine-structure splitting,
and the absolute positions of the different levels as obtained from experiment.
The two recent theoretical investigations of BaF used the CASSCF+MRCI ap-
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proach [17, 18]. The results of Ref. [17] show the A2Π states below the A′2∆,
most likely due to the basis set limitations. In Ref. [18] a larger basis set was
used, and the correct ordering of the states was reproduced. This work also
included spin orbit coupling contributions, but their effect seems to be greatly
overestimated, in particular for the A2Π state, where the calculated splitting is
over 2000 cm−1.

The good performance of the relativistic FSCC approach for the spectroscopic
constants implies that this method is also successful in reproducing the shape of
the potential energy curves (Fig. 8.1). Therefore, we expect high-accuracy for
the Frank-Condon factors presented in the next section.

8.4.3 Frank-Condon factors
In this work, we employ the extensively used r-centroid approximation [104] for
analyzing the transition rates (see e.g. Ref. [105]). It factorises the transition
integrals into electronic transition dipole moments and Franck-Condon factors
representing the vibrational wave function overlap. Franck-Condon factors are
an important parameter needed for determining whether a given system is suit-
able for laser-cooling. Highly diagonal FCFs would allow to limit the number of
required lasers [9, 106]. Therefore, we use the potential energy curves presented
in the previous section to calculate the FCFs of the three molecules; the results
are shown in Table 8.4 for the A2Π1/2 −X2Σ+

1/2 transition, in Table 8.5 for the
A2Π1/2 − A′2∆3/2 transition, in Table 8.6 for the A′2∆3/2 −X2Σ1/2 transition,
and in Table 8.7 for the B2Σ+

1/2 −X2Σ+
1/2 transition. For completeness sake, we

also include the FCFs of the A2Π3/2 −X2Σ+
1/2 transition in Table 8.14.

For the three molecules, the FCFs of the A2Π1/2 − X2Σ+
1/2 transitions (the

intended cooling transition for BaF) exhibit a highly diagonal behaviour, as can
also be seen from Fig. 8.2. This is due to the very similar equilibrium bond
lengths of the ground and the A2Π states in all the molecules investigated here,
and it makes these molecules excellent species for laser-cooling.

Wall et al. [74] have measured the FCF of the A − X(0 − 0) band in CaF
using the saturation of laser-induced fluorescence. Our result (0.974) is consistent
with the experimental value (0.968-1.000). We find that the diagonal FCF is
largest for the SrF molecule, and the off-diagonal decay in the (0 − 1) band the
smallest. Our results for the diagonal (0 − 0) and off-diagonal FCF for BaF
(0.960 and 0.039 respectively) predict a slightly less diagonal character for this
system. Our calculations are also in good agreement with previous theoretical
works [18–21, 34, 48].

The A−A′ transition constitutes a possible leak in the cooling cycle of BaF;
for CaF and SrF the A′∆3/2 state is higher than the A2Π1/2 and therefore not a
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Figure 8.2: Calculated Franck-Condon factors for the vibronic transitions be-
tween the |A2Π 1

2
, v′〉 and the |X2Σ+

1
2

, v〉 states of CaF, SrF, and BaF (Color
online).

concern in this context. To the best of our knowledge no previous calculations or
measurements were performed for the FCFs between these two states. The FCF
of the A−A′(0−0) transition in BaF is 0.986 (Table 8.5 and Fig. 8.3), due to the
similar equilibrium bond length of the two states. We also present the FCFs for
the decay of the A′2∆ states of the three species to the ground state (Table 8.6).
Implications of these results for the laser-cooling of BaF are discussed below.

The B2Σ+
1/2 −X2Σ+

1/2 transition was demonstrated as an alternative cooling
route for CaF [107]. We thus explore the FCFs of this transition in the three
molecules (Table 8.7 and Fig. 8.4). In case of CaF, the FCFs are indeed highly
diagonal, with the B −X(0 − 0) FCF extremely close to unity, and in SrF it is
0.996. BaF, however, has an FCF of about 0.800 for the same transition, caused
by a significantly larger Re of the B2Σ+

1/2 state compared to the ground state.

8.4.4 Static and transition dipole moments
The calculated DMs at experimental bond lengths Re are given in Tables 8.8,
8.9, and 8.10 and compared to experimental values (where available) and to
previous theoretical investigations.

The majority of previous theoretical investigations of the DMs of these molecules
were carried out in a nonrelativistic framework; the only exception being the rel-
ativistic coupled cluster studies of the ground state DMs of the three molecules
[23–25, 38, 40, 42]. This is the first relativistic study of the DMs of the ex-
cited states. We have performed the calculation using two approaches: FSCC
and MRCI. The results obtained using the two methods are within a few per-
cent of each other for most of the states considered here, with the exception of
the B2Σ+

1/2 states of the three molecules, where the differences are significantly
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Figure 8.3: Calculated Franck-Condon factors for the vibronic transitions be-
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larger.
In case of the ground state DMs our results are generally in good agree-

ment with the majority of the earlier theoretical publications (in particular, as
expected, with the relativistic coupled cluster values [23–25, 38, 40, 42]), and
within 10% of the measured values. For the excited states, previous data are
more scarce. For the A2Π state in CaF and SrF, our FSCC and MRCI results
overestimate the experimental values somewhat (5-12%); the error is smaller for
MRCI. In case of the B2Σ+

1/2 state of SrF, FSCC performs on the same level, but
the MRCI results are too low almost by a factor of 2; this is consistent with the
deviation of the MRCI and the FSCC values for this state in all the molecules. For
BaF, there is no experiment available for the DMs of the excited states. For these
states, our DMs are generally lower than those from the earlier calculations, with
the best agreement obtained where MRCI approach was also employed [17, 18];
the discrepancy can be attributed to neglect of relativistic effects in the previous
works, or the use of a significantly smaller basis set in Ref. [17]. We expect the
present predictions to be the most accurate, due to the quality of the methods
employed here.

The good agreement of the MRCI DM results with the FSCC values (which
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Figure 8.4: Calculated Franck-Condon factors for the vibronic transitions be-
tween the |B2Σ+

1
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, v′〉 and the |X2Σ+
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, v〉 states of CaF, SrF, and BaF (Color
online).

are expected to be more accurate) and with experiment validates the use of this
method for calculation of the TDMs, where FSCC is not yet applicable.

The calculated transition dipole moments between the ground and the excited
states and in between the different excited states are collected in Table 8.11. Ex-
perimental verification of the TDM values can be obtained from comparison with
measured lifetimes of excited states, as discussed in the next subsection. Also,
good agreement is found with previous theoretical investigations, in particular
where MRCI approach was used [17, 18]. The new results presented here are,
however, the first relativistic calculations of the TDMs of these molecules.

No experimental and limited theoretical information is available for the TDMs
between the A2Π1/2 and the A′2∆3/2 states, the latter being a possible leak
channel in the laser-cooling cycle. In case of CaF, our prediction is somewhat
higher than the ligand field method calculation of Ref. [43], but of particular
note is the discrepancy of almost two orders of magnitude with the predictions
of Kang et al. [18] for BaF. Our predicted TDM for this transition is 2.33 a.u.,
which is close to that of CaF and SrF, as expected. The low value presented
in Ref. [18] (0.04 a.u.) is appropriate for a forbidden transition, which is not
the case for A2Π1/2 to A′2∆3/2; thus, we view the present prediction as more
reliable. We note that the avoided crossing between the A2Π3/2 and A′2∆3/2

states of BaF, an artifact introduced by the MRCI method, somewhat lowers
the expected accuracy of the TDMs for the weak transitions A′2∆5/2 −A′2∆3/2,
X2Σ1/2 −A′2∆3/2, A2Π3/2 −A′2∆3/2 and A2Π3/2 −A2Π1/2. Comparing results
obtained from different basis sets, we estimate the size of this error to be up to
20%. This only affects the A′2∆5/2 and A′2∆3/2 lifetimes of BaF presented in
the following subsection.
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8.4.5 Lifetimes of excited states
The transition rate of a vibronic transition is defined as

Γn′v′n′′v′′ =
16π3e2a2

B

3hε0
ν3
n′v′n′′v′′ |〈v′|Mn′n′′(R)|v′′〉|2. (8.4)

Here, n′v′ and n′′v′′ denote the upper and lower vibronic states (with n for the
electronic and v for the vibrational part), h is the Planck constant, aB is the
Bohr radius, ε0 is the permittivity of free space, Mn′n′′(R) is the electronic TDM
function, and νn′v′n′′v′′ is the corresponding transition frequency. In the Franck-
Condon (FC) approximation, one assumes the TDM to be independent of R, such
that the integral can be factorized to become [108, 109]

Γn′v′n′′v′′ ' 16π3e2a2B
3hε0

ν3
n′v′n′′v′′ |〈v′|v′′〉|2M2

n′n′′

=
16π3e2a2B

3hε0
ν3
n′v′n′′v′′qv′v′′M

2
n′n′′ . (8.5)

The squared overlaps of vibrational wavefunctions |〈v′|v′′〉|2 = qv′v′′ are the FCFs
obtained in Section 8.4.3. The transition rates Γn′v′n′′v′′ were calculated using
the program LEVEL16 [98] and were subsequently used to calculate the lifetimes.

The lifetime τn′′v′′ of an excited level can be derived by summing over all
vibronic decay channels:

τn′′v′′ =
1∑

n′v′
Γn′v′n′′v′′

. (8.6)

All lifetimes listed below were calculated from the transition rates according to
Eq. (8.4). However, the FC approximation would also be very appropriate for
these molecules, as all errors that would be introduced in the transition rates by
the FC approximation lie below 3.5%. This includes the values for the branch-
ing ratios of relevance for laser-cooling. This justifies the use of FCFs for the
interpretation of the investigated transitions in Sections 8.4.3 and 8.5.

The lifetimes of the excited states of CaF, SrF, and BaF are listed in Ta-
ble 8.12. The calculated lifetimes are lower by 15-30 % than the experimental
values [55, 56, 58, 73], with the discrepancies highest for BaF (the uncertainty on
the experimental CaF and SrF lifetimes was estimated as ∼2-4 ns [58], and as low
as ∼1 ns for BaF [55, 56]). Furthermore, the calculated difference between the
A2Π1/2 and the A2Π3/2 lifetimes is lower than that obtained in the experiment.
Interestingly, for CaF the experimental lifetimes of the two states differ by 3.5 ns,
which is higher than the corresponding difference in SrF (1.5 ns), in spite of CaF
being a lighter system. A new measurement of the lifetimes in question would
thus be instrumental in elucidating the source of the discrepancies between ex-
periment and theory and in verifying the surprising trend in the lifetimes. From
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the theory side, a development that would allow calculations of TDMs within the
coupled cluster approach would be beneficial in this and in other important ap-
plications. We observe a sizeable discrepancy between our value for the lifetime
of the A′2∆3/2 state of BaF, 5.3 µs, and the theoretical result from Ref. [19],
220 ns. However, the latter value is an estimate based on the A′2∆3/2 −A2Π3/2

mixing obtained from an effective Hamiltonian matrix, while our results comes
from direct ab initio calculations.

Finally, the products of transition rates Γn′v′n′′v′′ in Eq. (8.4) with the corre-
sponding lifetimes τn′′v′′ in Eq. (8.6) give the radiative branching ratios (relative
decay fractions) shown in the Figure 8.5.

8.5 Impact on laser-cooling
In this section we use the results of our molecular structure calculations to discuss
the impact of laser-cooling applications for BaF molecules, and compare it to CaF
and SrF, for which it has been demonstrated that laser-cooling works efficiently.
Typically, scattering of a few thousand photons is sufficient to transversely cool
heavy molecules in a molecular beam. In order to slow molecules from a buffer
gas beam to below the capture velocity of a magneto-optical trap (MOT), tens of
thousands of photons need to be scattered. The requirements for a MOT are even
more stringent as the molecules need to continuously scatter photons to remain
trapped (at a rate of typically 106 photons per second).

Molecules usually exhibit multiple decay paths from the excited state. The
excited states under consideration here, the A2Π and the B2Σ+ states, have their
lowest vibrational levels below the first dissociation limit, so that pre-dissociation
is absent, and decay is purely radiative. As for rotation, the level structure is
such that when exciting from an N = 1 ground state level, in both 2Π −2 Σ+

and 2Σ+ −2 Σ+ electronic transitions, an excited rotational level can be chosen
that due to parity and angular momentum selection rules can only decay back to
the N = 1 ground state level (where it is assumed that rotational mixing due to
external electric fields or due to nuclear spin can be neglected) [110]. Therefore,
the main problem is decay to vibrationally excited levels in the ground state
which are not governed by strict selection rules.

Based on the calculated absolute decay rates associated with the lifetimes
listed in Table 8.12, relative decay fractions (branching ratios) have been calcu-
lated, taking into account decay from the B2Σ+ to the A2Π1/2 state and (for
BaF) the decay from the A2Π state to the metastable A′2∆ state. The results
are depicted in Fig. 8.5. Note that, in principle, laser-cooling via the A2Π3/2

state is also possible; however, the small Λ-splitting in this state would require
reduction of the external electric fields to an impractically low level, and hence
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Figure 8.5: The most important energy levels for laser-cooling and the calculated
relative decay fractions for CaF, SrF, and BaF.

we will not consider this path further. From the relative decay fractions and the
(experimental) transition frequencies, the transition rates have been calculated
for the CaF, SrF, and BaF. For BaF, these are depicted in Figure 8.6.

In principle the procedure to find the optimal cooling scheme for each of
these molecules is straightforward: start with the strongest transition with good
Franck-Condon overlap, and add re-pump lasers to fix the leaks in order of im-
portance. However, strong lasercooling via one excited state leads to an equal
distribution of the molecules over all states involved which reduces the maximum
optical scattering rate [111]. Hence, for smaller leaks it is more attractive to use
an alternative route back to the ground state [112].

Table 8.13 lists the number of photons that can be scattered from CaF, SrF,
and BaF via the A2Π1/2 and the B2Σ+ states, determined from the calculated
transition rates. These numbers represent the maximum number of times that
a given transition can be excited before on average half of the molecules will
have decayed through a leak to another level. A number of observations can be
made from this table. First of all, the large Franck-Condon factor (0.9992) of the
B −X(0-0) in CaF allows one to scatter on average 8.4 × 102 photons before a
molecule decays to an unwanted state. It should be noted that specifically this
number is very sensitive to small deviations, since the FCF is so close to unity.
According to our calculations, adding a re-pumper from the v = 1 of the ground
state gives only a limited increase as the decay from the B-state to the A-state is
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Figure 8.6: Laser cooling level scheme of the A2Π1/2 − X2Σ+
1/2 system in BaF

with the loss channel via the A′2∆3/2 state. The absolute transition rates are
given in units of s−1.

a significant loss channel. The Franck-Condon factors for the A−X transition in
CaF are somewhat less favorable, but still allow to scatter 2.7×104 photons using
2 lasers for re-pumping from the first and second vibrationally excited states of
the ground state. The Franck-Condon factors of the B−X transition of SrF are
not as optimal as those of CaF, but the leak to the A state is reduced. On the
other hand, the Franck-Condon factors of the A − X transitions are somewhat
better than those of CaF, allowing to scatter on average 6.2× 104 photons using
2 re-pumpers. Finally, the Franck-Condon factors of the B − X transition of
BaF are much smaller than those of CaF and SrF making laser-cooling on the
B−X transition impractical. The A−X transition in BaF can be used to scatter
2.0× 103 photons using 2 re-pumpers. Adding a laser to close the leak from the
v = 1 in the excited state to the v = 3 in the ground state will not change much
because decay to the A′2∆ state is a larger limiting factor. If one could close this
leak to the A′2∆, the number of scattered photons would increase to 7.2 × 104.
However, with an energy separation of ∼900 cm−1 this is not straightforward
technically. We conclude from this that although the A − X transition is too
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leaky to be used for longitudinal slowing, sufficient photons can be scattered to
perform transverse cooling. We note that due to its long lifetime, the A′2∆ state
has a narrow linewidth. As a consequence, laser-cooling on the X −∆ transition
may be used to reach a very low Doppler limit temperature [113].

8.6 Conclusion
The main goal of this work was investigation of the electronic structure of BaF,
which will be used in an experiment to measure the electric dipole moment of the
electron. Transverse laser-cooling of the BaF beam is an important component of
the planned experiment, and knowledge of the internal structure of the molecule
is necessary for identification of an efficient cooling scheme.

We present high-accuracy relativistic Fock space coupled cluster calculations
of the potential energy curves and the spectroscopic constants of the ground and
the lower excited states of the CaF, SrF, and BaF molecules. Our results for
spectroscopic constants are in excellent agreement with experiment, where avail-
able, which gives credence to our predictions where no measurements were per-
formed. Using the calculated potential energy curves, we obtain Franck-Condon
factors for the A2Π1/2 − X2Σ+

1/2, B
2Σ+

1/2 − X2Σ+
1/2, A

2Π1/2 − A′2∆3/2, and
A′2∆3/2−X2Σ+

1/2 transitions. The first two are possible cooling transitions that
were previously successfully employed in laser-cooling of CaF and SrF. The in-
vestigation of the A′2∆3/2 state is due to the fact that it constitutes a potential
leak in the BaF cooling cycle. We have also calculated the TDMs of these transi-
tions, using relativistic multireference configuration interaction approach. Based
on the calculated TDMs and experimental transition energies we determined the
lifetimes of the excited states in BaF and its lighter homologues. The calcu-
lated FCFs and TDMs were also used to calculate the relative decay fractions
and the transition rates for the three molecules. Finally, using the obtained
molecular properties, we investigate the possible cooling schemes in BaF. The
B2Σ+

1/2 −X2Σ+
1/2 cooling transition was shown to be extremely efficient in CaF;

however, due to the non-diagonal nature of the FCFs for this transition in BaF,
laser-cooling on this transition is impractical. The A2Π1/2 −X2Σ+

1/2 transition,
on the other hand, seems much more promising. We have estimated that it is
possible to scatter about 2000 photons on this transition (if two re-pump lasers
are added to close the leaks to higher vibrational levels), which is sufficient for
transverse laser-cooling.
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Table 8.4: Frank-Condon factors (FCFs) for the vibronic transitions between the
|A2Π 1

2
, v′〉 and the |X2Σ+

1
2

, v〉 states of CaF, SrF, and BaF.

A2Π 1
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3 Method Reference

v′ = 0 9.739× 10−1 2.523× 10−2 8.742× 10−4 3.588× 10−5 X2C-FSCC This work
0.964 0.036 0.000 0.000 MRCI [34]

0.968− 1.000 Experiment [74]
v′ = 1 2.610× 10−2 9.236× 10−1 4.770× 10−2 2.482× 10−3 X2C-FSCC This work

0.035 0.895 0.070 0.000 MRCI [34]
v′ = 2 4.427× 10−5 5.107× 10−2 8.763× 10−1 6.760× 10−2 X2C-FSCC This work

0.001 0.065 0.830 0.103 MRCI [34]
v′ = 3 2.016× 10−7 1.253× 10−4 7.494× 10−2 8.318× 10−1 X2C-FSCC This work

0.000 0.004 0.092 0.767 MRCI [34]

(a) CaF

A2Π 1
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3 Method Reference

v′ = 0 9.789× 10−1 2.054× 10−2 5.117× 10−4 1.530× 10−5 X2C-FSCC This work
0.98 0.018 4.30× 10−4 1.26× 10−5 RKR [10, 48]

v′ = 1 2.102× 10−2 9.377× 10−1 3.969× 10−2 1.489× 10−3 X2C-FSCC This work
0.019 0.945 0.035 0.001 RKR [10, 48]

v′ = 2 4.741× 10−5 4.158× 10−2 8.978× 10−1 5.749× 10−2 X2C-FSCC This work
2.72× 10−5 0.037 0.910 0.051 RKR [10, 48]

v′ = 3 6.203× 10−9 1.411× 10−4 6.168× 10−2 8.592× 10−1 X2C-FSCC This work
1.60× 10−8 8.15× 10−5 0.054 0.876 RKR [10, 48]

(b) SrF

A2Π 1
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3 Method Reference

v′ = 0 9.601× 10−1 3.892× 10−2 9.899× 10−4 1.318× 10−5 X2C-FSCC This work
0.93 0.07 RKR [55]
0.951 0.048 0.002 0.000 MPM [20]
0.951 0.048 0.002 2.7× 10−5 RKR [19]
0.981 0.019 3.96× 10−4 2.98× 10−6 CASSCF+MRCI+SOC [18]
0.947 0.051 0.002 0.000 MPM [21]

v′ = 1 3.923× 10−2 8.807× 10−1 7.695× 10−2 3.051× 10−3 X2C-FSCC This work
0.049 0.854 0.093 0.005 MPM [20]
0.048 0.854 0.093 0.005 RKR [19]
0.019 0.940 0.039 0.001 CASSCF+MRCI+SOC [18]
0.052 0.845 MPM [21]

v′ = 2 6.894× 10−4 7.812× 10−2 8.011× 10−1 1.137× 10−1 X2C-FSCC This work
0.000 0.096 0.758 0.135 MPM [20]

9.1× 10−4 0.096 0.758 0.135 RKR [19]
7.10× 10−5 0.040 0.896 0.060 CASSCF+MRCI+SOC [18]

v′ = 3 3.405× 10−6 2.224× 10−3 1.162× 10−1 7.219× 10−1 X2C-FSCC This work
0.003 0.141 0.666 MPM [20]

1.9× 10−6 0.003 0.141 0.664 RKR [19]
1.14× 10−6 2.88× 10−4 0.063 0.849 CASSCF+MRCI+SOC [18]

(c) BaF

151



Conclusion

Table 8.5: Frank-Condon factors (FCFs) using X2C-FSCC method for the
vibronic transitions between the |A2Π 1

2
, v′〉 and the |A′2∆ 3

2
, v〉 states of BaF

(present work, X2C-FSCC).

A2Π 1
2

A′2∆ 3
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 9.856× 10−1 1.404× 10−2 3.359× 10−4 9.470× 10−6

v′ = 1 1.438× 10−2 9.578× 10−1 2.685× 10−2 9.624× 10−4

v′ = 2 2.512× 10−6 2.818× 10−2 9.314× 10−1 3.851× 10−2

v′ = 3 1.443× 10−7 6.325× 10−6 4.143× 10−2 9.063× 10−1
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Table 8.6: Frank-Condon factors (FCFs) for the vibronic transitions between
the |A′2∆ 3

2
, v′〉 and the |X2Σ+

1
2

, v〉 states of CaF, SrF, and BaF (present work,
X2C-FSCC).

A′2∆ 3
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 8.544× 10−1 1.354× 10−1 9.884× 10−3 4.105× 10−4

v′ = 1 1.331× 10−1 6.018× 10−1 2.355× 10−1 2.801× 10−2

v′ = 2 1.180× 10−2 2.270× 10−1 4.009× 10−1 3.035× 10−1

v′ = 3 7.600× 10−4 3.271× 10−2 2.860× 10−1 2.475× 10−1

(a) CaF

A′2∆ 3
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 9.696× 10−1 2.990× 10−2 4.924× 10−4 3.376× 10−6

v′ = 1 2.992× 10−2 9.089× 10−1 5.961× 10−2 1.522× 10−3

v′ = 2 4.660× 10−4 5.969× 10−2 8.477× 10−1 8.896× 10−2

v′ = 3 2.975× 10−6 1.476× 10−3 8.903× 10−2 7.863× 10−1

(b) SrF

A′2∆ 3
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 9.007× 10−1 9.480× 10−2 4.361× 10−3 1.087× 10−4

v′ = 1 9.333× 10−2 7.196× 10−1 1.739× 10−1 1.269× 10−2

v′ = 2 5.678× 10−3 1.683× 10−1 5.623× 10−1 2.381× 10−1

v′ = 3 2.597× 10−4 1.619× 10−2 2.261× 10−1 4.276× 10−1

(c) BaF
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Table 8.7: Frank-Condon factors (FCFs) for the vibronic transitions between
the |B2Σ+

1
2

, v′〉 and the |X2Σ+
1
2

, v〉 states of CaF, SrF, and BaF (present work,
X2C-FSCC).

B2Σ+
1
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 9.992× 10−1 7.270× 10−4 3.809× 10−5 9.834× 10−8

v′ = 1 7.396× 10−4 9.973× 10−1 1.814× 10−3 1.176× 10−4

v′ = 2 2.473× 10−5 1.873× 10−3 9.945× 10−1 3.322× 10−3

v′ = 3 7.981× 10−7 6.775× 10−5 3.481× 10−3 9.907× 10−1

(a) CaF

B2Σ+
1
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 9.961× 10−1 3.866× 10−3 3.604× 10−6 7.685× 10−9

v′ = 1 3.856× 10−3 9.881× 10−1 8.000× 10−3 1.190× 10−5

v′ = 2 1.343× 10−5 7.959× 10−3 9.796× 10−1 1.241× 10−2

v′ = 3 7.913× 10−8 4.258× 10−5 1.231× 10−2 9.705× 10−1

(b) SrF

B2Σ+
1
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 7.995× 10−1 1.811× 10−1 1.832× 10−2 1.073× 10−3

0.81a 0.17a

v′ = 1 1.760× 10−1 4.782× 10−1 2.924× 10−1 4.915× 10−2

v′ = 2 2.221× 10−2 2.751× 10−1 2.570× 10−1 3.482× 10−1

v′ = 3 2.105× 10−3 5.717× 10−2 3.156× 10−1 1.159× 10−1

(c) BaF

a Previous study using the RKR method [55].
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Table 8.8: Calculated dipole moments (a.u.) of CaF at the experimental bond
length Re, compared to previous calculations and experiment.

State DM Method Reference
X2Σ+

1/2 1.18 X2C-MRCISD This work
1.25 X2C-FSCC This work
1.31 Ionic model [28]
1.18 LFM [43]
1.02 CISD [32]
1.26 EPM [44]
1.18 MRCI [33]
1.32 LFM [31]
1.26 MP2 [46]
1.04 FDHF [45]
1.24 EOVERM [47]
1.20 RCCSD(T) [38]
1.24 RCCSD [23]
1.30a CASSCF+MRCI [37]
1.26 RCCSD(T) [24]
1.20 RCCSD(T) [42]
1.21(3) Experiment [69]

A′2∆3/2 2.44 X2C-MRCISD This work
2.57 X2C-FSCC This work

A′2∆5/2 2.44 X2C-MRCISD This work
2.57 X2C-FSCC This work

A′2∆ 2.98 LFM [43]
3.04 EPM [30]
3.2 CASSCF+MRCI [37]

A2Π1/2 1.04 X2C-MRCISD This work
1.08 X2C-FSCC This work

A2Π3/2 1.04 X2C-MRCISD This work
1.08 X2C-FSCC This work

A2Π 1.61 LFM [43]
1.01 EPM [30]
1.00 EOVERM [47]
0.96(2) Experiment [71]

B2Σ+
1/2 0.69 X2C-MRCISD This work

0.89 X2C-FSCC This work
2.25 LFM [43]
0.63 EPM [30]
0.73 EOVERM [47]

a This is evaluated around the equilibrium bond distance from Fig. 4 in Ref. [37].
155



Conclusion

Table 8.9: Calculated dipole moments (a.u.) of SrF at the experimental bond
length Re, compared to previous calculations and experiment.

State DM Method Reference

X2Σ+
1/2 1.26 X2C-MRCISD This work

1.36 X2C-FSCC This work
1.44 Ionic model [28]
0.99 CISD [32]
1.42 EPM [44]
1.49 LFM [31]
1.01 FDHF [45]
1.42 CASSCF+RSPT2 [36]
1.32 CASSCF+MRCI [36]
1.36 RCCSD [40]
1.42 CCSD [23]
1.42 RCCSD(T) [24]
1.38 RCCSD [25]
1.3643(4) Experiment [70]

A′2∆3/2 2.39 X2C-MRCISD This work
2.50 X2C-FSCC This work

A′2∆5/2 2.39 X2C-MRCISD This work
2.50 X2C-FSCC This work

A′2∆ 3.36 EPM [30]
3.18 LFM [31]
3.27 CASSCF+MRCI [36]

A2Π1/2 0.85 X2C-MRCISD This work
0.91 X2C-FSCC This work

A2Π3/2 0.82 X2C-MRCISD This work
0.88 X2C-FSCC This work

A2Π 0.85 EPM [30]
1.29 LFM [31]
1.53 CASSCF+RSPT2 [36]
1.64 CASSCF+MRCI [36]
0.81(2) Experiment [72]

B2Σ+
1/2 0.19 X2C-MRCISD This work

0.40 X2C-FSCC This work
0.41 EPM [30]
1.33 LFM [31]
1.26 CASSCF+MRCI [36]
0.36(2) Experiment [72]
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Table 8.10: Calculated dipole moments (a.u.) of BaF at the experimental bond
length Re, compared to previous calculations and experiment.

State DM Method Reference

X2Σ+
1/2 1.14 X2C-MRCISD This work

1.27 X2C-FSCC This work
1.26 RASCI [22]
1.35 Ionic model [28]
1.54 LFM [31]
1.15 AREP-RASSCF [26]
1.16 CASSCF+MRCI [17]
1.33 CASSCF+MRCI+SOC [18]
1.34 RCCSD [23]
1.34 RCCSD(T) [24]
1.34 RCCSD [25]
1.247(1) Experiment [54]

A′2∆3/2 2.31 X2C-MRCISD This work
2.38 X2C-FSCC This work

A′2∆5/2 2.31 X2C-MRCISD This work
2.38 X2C-FSCC This work

A′2∆ 3.57 EPM [30]
3.31 LFM [31]
2.47 CASSCF+MRCI [17]
2.64 CASSCF+MRCI [18]

A2Π1/2 0.40 X2C+MRCISD This work
0.53 X2C-FSCC This work

A2Π3/2 0.34 X2C+MRCISD This work
0.47 X2C-FSCC This work

A2Π 1.95 EPM [30]
1.36 LFM [31]
0.86 CASSCF+MRCI [17]
1.01 CASSCF+MRCI [18]

B2Σ+
1/2 0.58 X2C-MRCISD This work

0.32 X2C-FSCC This work
1.61 EPM [30]
1.31 LFM [31]
0.54 CASSCF+MRCI [17]
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Table 8.11: Calculated transition dipole moments (a.u.) between state 1 and
state 2 at the ground state experimental bond length Re. Present results in
italics, experimental values in bold font.

State 1 State 2
A2Π1/2 A2Π3/2 A′2∆3/2 A′2∆5/2 B2Σ+

1/2

CaF
X2Σ+

1/2 2.406 2.406 0.004 1.881
2.32*a 1.73a
2.17*b 1.64b
2.34*c 1.85c

1.79d
2.34*e 1.71e

A2Π1/2 0.012 2.473 0.373
A2Π3/2 0.000 2.476 0.370
A2Π 1.76*a
A′2∆3/2 0.001 0.036
SrF
X2Σ+

1/2 2.626 2.627 0.012 2.054
2.37*b 1.86b
2.45*e

2.45f
A2Π1/2 0.035 2.711 0.210
A2Π3/2 0.004 2.728 0.195
A′2∆3/2 0.009 0.173
BaF
X2Σ+

1/2 2.810 2.797 0.272 2.226
2.18*b 1.85b
3.20*†g 2.40†g
2.73*h 0.20*h

2.57i 2.10i
2.41j

A2Π1/2 0.242 2.332 0.100
A2Π3/2 0.166 2.375 0.178
A2Π 0.04*h
A′2∆3/2 0.193 0.316

*Ω-unresolved transitions; †This is evaluated around the equilibrium bond distance from
Fig. 10 in Ref. [17]; aLFM [43]; bLFM [31]; cEOVERM [47]; dMRCI [37]; eExperiment
[58]; fExperiment [73]; gCASSCF+MRCI [17]; hCASSCF+MRCI [18]; iExperiment [55];
jExperiment [56].
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Table 8.12: Calculated lifetimes (ns) of the excited states of CaF, SrF, and BaF.

Mol.
State

A2Π 1
2

A2Π 3
2

B2Σ+
1
2

A′2∆ 3
2

Ref.

CaF 18.3 18.1 19.7 546 Present
19.48e 19.48e [34]
21.9(4.0)a 18.4(4.1)a 25.1(4.0)a Exp.

SrF 20.7 19.6 22.4 1130 Present
24.1(2.0)a 22.6(4.7)a 25.5(0.5)c Exp.

BaF 40.4 34.7 37.0 5289 Present
37.8f 37.8f [18]

220 [19]
56.0(0.9)d 46.1(0.9)b 41.7(0.3)b Exp.

aRef. [58]; bRef. [55]; cRef. [73]; dRef. [56]; e This is derived from the calcu-
lated TDM using MRCI wave function; f This is derived from the calculated TDM with
CASSCF+MRCI+SOC method for transition A2Π−X2Σ+.

Table 8.13: Estimated number of photons scattered on a cycling transition before
half of the molecules are lost.

Transition Repump CaF SrF BaF

X −A no repump 29 36 19
v = 1 repump 9.5× 102 1.6× 103 6.2× 102

v = 2 repump 2.7× 104 6.2× 104 2.0× 103

∆ repump 7.2× 104

X −B no repump 8.4× 102 1.9× 102 3.4
v = 1 repump 4.3× 103 3.8× 104 42
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Table 8.14: Frank-Condon factors (FCFs) for vibronic transitions between the
|A2Π 3

2
, v′〉 and the |X2Σ+

1
2

, v〉 states of CaF, SrF, and BaF (present work, X2C-
FSCC).

A2Π 3
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 9.733× 10−1 2.574× 10−2 9.036× 10−4 3.745× 10−5

v′ = 1 2.663× 10−2 9.220× 10−1 4.861× 10−2 2.564× 10−3

v′ = 2 4.763× 10−5 5.208× 10−2 8.738× 10−1 6.882× 10−2

v′ = 3 2.099× 10−7 1.347× 10−4 7.639× 10−2 8.286× 10−1

(a) CaF

A2Π 3
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 9.769× 10−1 2.245× 10−2 5.955× 10−4 1.864× 10−5

v′ = 1 2.301× 10−2 9.320× 10−1 4.324× 10−2 1.728× 10−3

v′ = 2 6.225× 10−5 4.541× 10−2 8.886× 10−1 6.243× 10−2

v′ = 3 4.937× 10−9 1.850× 10−4 6.723× 10−2 8.468× 10−1

(b) SrF

A2Π 3
2

X2Σ+
1
2 v = 0 v = 1 v = 2 v = 3

v′ = 0 9.640× 10−1 3.515× 10−2 8.858× 10−4 1.122× 10−5

v′ = 1 3.554× 10−2 8.917× 10−1 6.994× 10−2 2.742× 10−3

v′ = 2 5.060× 10−4 7.144× 10−2 8.183× 10−1 1.040× 10−1

v′ = 3 9.061× 10−7 1.670× 10−3 1.072× 10−1 7.443× 10−1

(c) BaF

160



REFERENCES

References
[1] Y. Hao, L. F. Pašteka, L. Visscher, P. Aggarwal, H. L. Bethlem,

A. Boeschoten, A. Borschevsky, M. Denis, K. Esajas, S. Hoekstra, et al., J.
Chem. Phys. 151, 034302 (2019).

[2] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko,
and C. W. Clark, Rev. Mod. Phys. 90, 025008 (2018).

[3] V. A. Dzuba and V. V. Flambaum, Int. J. Mod. Phys. E 21, 1230010 (2012).

[4] J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and
E. A. Hinds, Nature 473, 493 (2011).

[5] J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V.
Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary,
C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and
A. D. West, Science 343, 269 (2014).

[6] V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner,
N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda,
A. D. West, E. P. West, and X. Wu, Nature 562, 355 (2018).

[7] The NL-eEDM collaboration, P. Aggarwal, H. L. Bethlem, A. Borschevsky,
M. Denis, K. Esajas, P. A. B. Haase, Y. Hao, S. Hoekstra, K. Jungmann,
T. B. Meijknecht, M. C. Mooij, R. G. E. Timmermans, W. Ubachs, L. Will-
mann, and A. Zapara, Eur. Phys. J. D 72, 197 (2018).

[8] N. F. Ramsey, Rev. Mod. Phys. 62, 541 (1990).

[9] M. D. Di Rosa, Eur. Phys. J. D 31, 395 (2004).

[10] E. S. Shuman, J. F. Barry, and D. DeMille, Nature 467, 820 (2010).

[11] M. Hummon, M. Yeo, B. Stuhl, A. Collopy, Y. Xia, and J. Ye, Phys. Rev.
Lett. 110, 143001 (2013).

[12] V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson,
E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, Phys. Rev. A 89, 053416
(2014).

[13] J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E.
Sauer, M. R. Tarbutt, and E. A. Hinds, Phys. Rev. Lett. 120, 123201
(2018).

[14] I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P.
Sedlack, and J. M. Doyle, Phys. Rev. Lett. 118, 173201 (2017).

161

http://dx.doi.org/ 10.1063/1.5098540
http://dx.doi.org/ 10.1063/1.5098540
http://dx.doi.org/ 10.1103/RevModPhys.90.025008
http://dx.doi.org/10.1142/S021830131230010X
http://dx.doi.org/ 10.1038/nature10104
http://dx.doi.org/10.1126/science.1248213
http://dx.doi.org/10.1038/s41586-018-0599-8
http://dx.doi.org/10.1140/epjd/e2018-90192-9
http://dx.doi.org/10.1103/RevModPhys.62.541
http://dx.doi.org/10.1140/epjd/e2004-00167-2
http://dx.doi.org/10.1038/nature09443
http://dx.doi.org/ 10.1103/PhysRevLett.110.143001
http://dx.doi.org/ 10.1103/PhysRevLett.110.143001
http://dx.doi.org/ 10.1103/PhysRevA.89.053416
http://dx.doi.org/ 10.1103/PhysRevA.89.053416
http://dx.doi.org/ 10.1103/PhysRevLett.120.123201
http://dx.doi.org/ 10.1103/PhysRevLett.120.123201
http://dx.doi.org/ 10.1103/PhysRevLett.118.173201


REFERENCES

[15] T. A. Isaev, A. V. Zaitsevskii, and E. Eliav, J. Phys. B 50, 225101 (2017).

[16] I. Kozyryev and N. R. Hutzler, Phys. Rev. Lett. 119, 133002 (2017).

[17] S. Tohme and M. Korek, J. Quant. Spec. Rad. Trans. 167, 82 (2015).

[18] S. Kang, F. Kuang, G. Jiang, and J. Du, Mol. Phys. 114, 810 (2016).

[19] T. Chen, W. Bu, and B. Yan, Phys. Rev. A 94, 063415 (2016).

[20] B. Karthikeyan, K. Balachandrakumar, V. Raja, and N. Rajamanickam,
J. Appl. Spec. 80, 790 (2013).

[21] L. Xu, B. Wei, Y. Xia, L. Deng, and J. Yin, Chin. Phys. B 26, 033702
(2017).

[22] M. K. Nayak and R. K. Chaudhuri, J. Phys. B 39, 1231 (2006).

[23] V. S. Prasannaa, S. Sreerekha, M. Abe, V. Bannur, and B. P. Das, Phys.
Rev. A 93, 042504 (2016).

[24] M. Abe, V. S. Prasannaa, and B. P. Das, Phys. Rev. A 97, 032515 (2018).

[25] N. M. Fazil, V. S. Prasannaa, K. V. P. Latha, M. Abe, and B. P. Das,
Phys. Rev. A 98, 032511 (2018).

[26] M. G. Kozlov, A. V. Titov, N. S. Mosyagin, and P. V. Souchko, Phys. Rev.
A 56, R3326 (1997).

[27] E. Westin and A. Rosen, Chem. Phys. Lett. 149, 239 (1988).

[28] T. Törring, W. E. Ernst, and S. Kindt, J. Chem. Phys. 81, 4614 (1984).

[29] E. S. Rittner, J. Chem. Phys. 19, 1030 (1951).

[30] T. Törring, W. Ernst, and J. Kändler, J. Chem. Phys. 90, 4927 (1989).

[31] A. R. Allouche, G. Wannous, and M. Aubert-Frécon, Chem. Phys. 170,
11 (1993).

[32] S. R. Langhoff, C. W. Bauschlicher Jr., H. Partridge, and R. Ahlrichs, J.
Chem. Phys. 84, 5025 (1986).

[33] P. Bündgen, B. Engels, and S. D. Peyerimhoff, Chem. Phys. Lett. 176,
407 (1991).

[34] M. Pelegrini, C. S. Vivacqua, O. Roberto-Neto, F. R. Ornellas, and F. B.
Machado, Braz. J. Phys. 35, 950 (2005).

162

http://dx.doi.org/10.1088/1361-6455/aa8f34
http://dx.doi.org/10.1103/PhysRevLett.119.133002
http://dx.doi.org/10.1016/j.jqsrt.2015.08.006
http://dx.doi.org/ 10.1080/00268976.2015.1121294
http://dx.doi.org/ 10.1103/PhysRevA.94.063415
http://dx.doi.org/10.1007/s10812-013-9845-x
http://dx.doi.org/ 10.1088/1674-1056/26/3/033702
http://dx.doi.org/ 10.1088/1674-1056/26/3/033702
http://dx.doi.org/10.1088/0953-4075/39/5/020
http://dx.doi.org/ 10.1103/PhysRevA.93.042504
http://dx.doi.org/ 10.1103/PhysRevA.93.042504
http://dx.doi.org/10.1103/PhysRevA.97.032515
http://dx.doi.org/10.1103/PhysRevA.98.032511
http://dx.doi.org/10.1103/PhysRevA.56.R3326
http://dx.doi.org/10.1103/PhysRevA.56.R3326
http://dx.doi.org/10.1016/0009-2614(88)85020-6
http://dx.doi.org/10.1063/1.447394
http://dx.doi.org/10.1063/1.1748448
http://dx.doi.org/10.1063/1.456589
http://dx.doi.org/10.1016/0301-0104(93)80087-P
http://dx.doi.org/10.1016/0301-0104(93)80087-P
http://dx.doi.org/10.1063/1.450651
http://dx.doi.org/10.1063/1.450651
http://dx.doi.org/10.1016/0009-2614(91)90228-2
http://dx.doi.org/10.1016/0009-2614(91)90228-2
http://dx.doi.org/10.1590/S0103-97332005000600007


REFERENCES

[35] C. Yang, X. Zhang, F. Gao, and T. Ren, J. Mol. Struct. 807, 147 (2007).

[36] F. Jardali, M. Korek, and G. Younes, Canad. J. Phys. 92, 1223 (2014).

[37] N. El-Kork, F. Korjieh, J. A. Chtay, and M. Korek, Spectrochim Acta A:
Mol. Biomol. Spectrosc. 177, 170 (2017).

[38] J. F. Harrison, R. W. Field, and C. C. Jarrold, “Comparison of CaF, ZnF,
CaO, and ZnO,” in Low-lying potential energy surfaces, edited by M. R.
Hoffmann and K. G. Dyall (American Chemical Society, 2002) pp. 238–
259.

[39] V. S. Prasannaa, M. Abe, and B. Das, Phys. Rev. A 90, 052507 (2014).

[40] S. Sasmal, H. Pathak, M. K. Nayak, N. Vaval, and S. Pal, Phys. Rev. A
91, 030503 (2015).

[41] M. B. Kosicki, D. Kedziera, and P. S. Zuchowski, J. Phys. Chem. A 121,
4152 (2017).

[42] S. Hou and P. F. Bernath, J. Quant. Spec. Rad. Trans. 210, 44 (2018).

[43] S. F. Rice, H. Martin, and R. W. Field, J. Chem. Phys. 82, 5023 (1985).

[44] J. M. Mestdagh and J. P. Visticot, Chem. Phys. 155, 79 (1991).

[45] J. Kobus, D. Moncrieff, and S. Wilson, Phys. Rev. A 62, 062503 (2000).

[46] A. D. Buckingham and R. M. Olegário, Chem. Phys. Lett. 212, 253 (1993).

[47] S. Raouafi, G. H. Jeung, and C. Jungen, J. Chem. Phys. 115, 7450 (2001).

[48] J. F. Barry, Laser cooling and slowing of a diatomic molecule, Ph.D. thesis,
Yale University (2013).

[49] P. J. Linstrom and W. G. Mallard (Eds.), NIST chemistry webbook: NIST
standard reference database number 69 (National Institute of Standards
and Technology, 2018).

[50] K. P. Huber and G. Herzberg, Molecular spectra and molecular structure:
IV. Constants of diatomic molecules (Springer US, 1979).

[51] C. Ryzlewicz and T. Törring, Chem. Phys. 51, 329 (1980).

[52] R. F. Barrow, A. Bernard, C. Effantin, J. d’Incan, G. Fabre, A. El Hachimi,
R. Stringat, and J. Vergès, Chem. Phys. Lett. 147, 535 (1988).

163

http://dx.doi.org/ 10.1016/j.theochem.2006.12.016
http://dx.doi.org/10.1139/cjp-2013-0670
http://dx.doi.org/10.1016/j.saa.2017.01.035
http://dx.doi.org/10.1016/j.saa.2017.01.035
https://pubs.acs.org/doi/book/10.1021/bk-2002-0828
http://dx.doi.org/10.1103/PhysRevA.90.052507
http://dx.doi.org/ 10.1103/PhysRevA.91.030503
http://dx.doi.org/ 10.1103/PhysRevA.91.030503
http://dx.doi.org/10.1021/acs.jpca.7b01523
http://dx.doi.org/10.1021/acs.jpca.7b01523
http://dx.doi.org/10.1016/j.jqsrt.2018.02.011
http://dx.doi.org/10.1063/1.448676
http://dx.doi.org/10.1016/0301-0104(91)87008-J
http://dx.doi.org/10.1103/PhysRevA.62.062503
http://dx.doi.org/10.1016/0009-2614(93)89322-9
http://dx.doi.org/10.1063/1.1405118
https://search.proquest.com/docview/1496011189?pq-origsite=gscholar
https://webbook.nist.gov/chemistry/
https://webbook.nist.gov/chemistry/
https://link.springer.com/book/10.1007/978-1-4757-0961-2
https://link.springer.com/book/10.1007/978-1-4757-0961-2
http://dx.doi.org/10.1016/0301-0104(80)80107-8
http://dx.doi.org/ 10.1016/0009-2614(88)80263-X


REFERENCES

[53] A. Bernard, C. Effantin, E. Andrianavalona, J. Verges, and R. Barrow, J.
Mol. Spec. 152, 174 (1992).

[54] W. E. Ernst, J. Kändler, and T. Törring, J. Chem. Phys. 84, 4769 (1986).

[55] L. E. Berg, T. Olsson, J. C. Chanteloup, A. Hishikawa, and P. Royen, Mol.
Phys. 79, 721 (1993).

[56] L. E. Berg, N. Gador, D. Husain, H. Ludwigs, and P. Royen, Chem. Phys.
Lett. 287, 89 (1998).

[57] R. F. Barrow and J. R. Beale, Chem. Commun. (London) 12, 606a (1967).

[58] P. J. Dagdigian, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 60, 2330
(1974).

[59] R. W. Field, D. O. Harris, and T. Tanaka, J. Mol. Spec. 57, 107 (1975).

[60] T. C. Steimle, P. J. Domaille, and D. O. Harris, J. Mol. Spec. 68, 134
(1977).

[61] J. Nakagawa, P. J. Domaille, T. C. Steimle, and D. O. Harris, J. Mol. Spec.
70, 374 (1978).

[62] W. E. Ernst and J. O. Schröder, Chem. Phys. 78, 363 (1983).

[63] J. Verges, C. Effantin, A. Bernard, A. Topouzkhanian, A. R. Allouche,
J. d’Incan, and R. F. Barrow, J. Phys B 26, 279 (1993).

[64] T. C. Steimle, D. A. Fletcher, and C. T. Scurlock, J. Mol. Spec. 158, 487
(1993).

[65] P. Colarusso, B. Guo, K. Q. Zhang, and P. F. Bernath, J. Mol. Spec. 175,
158 (1996).

[66] L. A. Kaledin, J. C. Bloch, M. C. McCarthy, and R. W. Field, J. Mol.
Spec. 197, 289 (1999).

[67] C. Nitsch, J. O. Schröder, and W. E. Ernst, Chem. Phys. Lett. 148, 130
(1988).

[68] P. M. Sheridan, J. Wang, M. J. Dick, and P. F. Bernath, J. Phys. Chem.
A 113, 13383 (2009).

[69] W. J. Childs, L. S. Goodman, U. Nielsen, and V. Pfeufer, J. Chem. Phys.
80, 2283 (1984).

164

http://dx.doi.org/ 10.1016/0022-2852(92)90127-A
http://dx.doi.org/ 10.1016/0022-2852(92)90127-A
http://dx.doi.org/10.1063/1.449961
http://dx.doi.org/10.1080/00268979300101571
http://dx.doi.org/10.1080/00268979300101571
http://dx.doi.org/ 10.1016/S0009-2614(98)00149-3
http://dx.doi.org/ 10.1016/S0009-2614(98)00149-3
http://dx.doi.org/10.1039/C1967000606A
http://dx.doi.org/10.1063/1.1681366
http://dx.doi.org/10.1063/1.1681366
http://dx.doi.org/10.1016/0022-2852(75)90045-4
http://dx.doi.org/10.1016/0022-2852(77)90429-5
http://dx.doi.org/10.1016/0022-2852(77)90429-5
http://dx.doi.org/10.1016/0022-2852(78)90175-3
http://dx.doi.org/10.1016/0022-2852(78)90175-3
http://dx.doi.org/10.1016/0301-0104(83)85123-4
http://dx.doi.org/ 10.1088/0953-4075/26/2/011
http://dx.doi.org/10.1006/jmsp.1993.1094
http://dx.doi.org/10.1006/jmsp.1993.1094
http://dx.doi.org/10.1006/jmsp.1996.0019
http://dx.doi.org/10.1006/jmsp.1996.0019
http://dx.doi.org/10.1006/jmsp.1999.7909
http://dx.doi.org/10.1006/jmsp.1999.7909
http://dx.doi.org/10.1016/0009-2614(88)80288-4
http://dx.doi.org/10.1016/0009-2614(88)80288-4
http://dx.doi.org/10.1021/jp9020855
http://dx.doi.org/10.1021/jp9020855
http://dx.doi.org/10.1063/1.447005
http://dx.doi.org/10.1063/1.447005


REFERENCES

[70] W. E. Ernst, J. Kändler, S. Kindt, and T. Törring, Chem. Phys. Lett.
113, 351 (1985).

[71] W. E. Ernst and J. Kändler, Phys. Rev. A 39, 1575 (1989).

[72] J. Kändler, T. Martell, and W. E. Ernst, Chem. Phys. Lett. 155, 470
(1989).

[73] L. E. Berg, K. Ekvall, T. Hansson, A. Iwamae, V. Zengin, D. Husain, and
P. Royen, Chem. Phys. Lett. 248, 283 (1996).

[74] T. E. Wall, J. F. Kanem, J. J. Hudson, B. E. Sauer, D. Cho, M. G. Boshier,
E. A. Hinds, and M. R. Tarbutt, Phys. Rev. A 78, 062509 (2008).

[75] T. A. Isaev, S. Hoekstra, and R. Berger, Phys. Rev. A 82, 052521 (2010).

[76] T. A. Isaev and R. Berger, Phys. Rev. A 86, 062515 (2012).

[77] A. Borschevsky, M. Iliaš, V. A. Dzuba, K. Beloy, V. V. Flambaum, and
P. Schwerdtfeger, Phys. Rev. A 85, 052509 (2012).

[78] A. Borschevsky, M. Iliaš, V. A. Dzuba, V. V. Flambaum, and P. Schw-
erdtfeger, Phys. Rev. A 88, 022125 (2013).

[79] T. Isaev and R. Berger, J. Mol. Spec. 300, 26 (2014).

[80] A. D. Kudashov, A. N. Petrov, L. V. Skripnikov, N. S. Mosyagin, T. A.
Isaev, R. Berger, and A. V. Titov, Phys. Rev. A 90, 052513 (2014).

[81] P. Pyykko, Chem. Rev. 88, 563 (1988).

[82] DIRAC, A relativistic ab initio electronic structure program, Release
DIRAC15 (2015), written by R. Bast, T. Saue, L. Visscher, and H. J.
Aa. Jensen, with contributions from V. Bakken, K. G. Dyall, S. Dubillard,
U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, O. Foss-
gaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, Ch. R. Jacob,
S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S.
Lee, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, Y.
C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P.
Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J.
van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (see
http://www.diracprogram.org).

[83] M. Iliaš and T. Saue, J. Chem. Phys. 126, 064102 (2007).

[84] T. Saue, J. Chem. Phys. Phys. Chem. 12, 3077 (2011).

165

http://dx.doi.org/ 10.1016/0009-2614(85)80379-1
http://dx.doi.org/ 10.1016/0009-2614(85)80379-1
http://dx.doi.org/10.1103/PhysRevA.39.1575
http://dx.doi.org/10.1016/0009-2614(89)87188-X
http://dx.doi.org/10.1016/0009-2614(89)87188-X
http://dx.doi.org/10.1016/0009-2614(95)01330-X
http://dx.doi.org/10.1103/PhysRevA.78.062509
http://dx.doi.org/10.1103/PhysRevA.82.052521
http://dx.doi.org/10.1103/PhysRevA.86.062515
http://dx.doi.org/10.1103/PhysRevA.85.052509
http://dx.doi.org/10.1103/PhysRevA.88.022125
http://dx.doi.org/10.1016/j.jms.2014.01.014
http://dx.doi.org/ 10.1103/PhysRevA.90.052513
http://dx.doi.org/10.1021/cr00085a006
http://www.diracprogram.org
http://dx.doi.org/10.1063/1.2436882
http://dx.doi.org/10.1002/cphc.201100682


REFERENCES

[85] R. Bast, A. J. Thorvaldsen, M. Ringholm, and K. Ruud, Chem. Phys. 356,
177 (2009).

[86] J. Sikkema, L. Visscher, T. Saue, and M. Iliaš, J. Chem. Phys. 131, 124116
(2009).

[87] S. Knecht, H. J. A. Jensen, and T. Fleig, J. Chem. Phys. 132, 014108
(2010).

[88] J. A. Gaunt, Proc. R. Soc. Lond. A 122, 513 (1929).

[89] G. Breit, Phys. Rev. 34, 553 (1929).

[90] O. Visser, L. Visscher, P. Aerts, and W. Nieuwpoort, Theor. Chim. Acta
81, 405 (1992).

[91] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724 (1994).

[92] A. B. E. Eliav and U. Kaldor, “High-accuracy relativistic coupled-cluster
calculations for the heaviest elements,” in Handbook of Relativistic Quantum
Chemistry , edited by W. Liu (Springer, 2017).

[93] I. Lindgren and J. Morrison, Atomic many-body theory (Springer, Berlin,
1982).

[94] K. G. Dyall, J. Phys. Chem. A 113, 12638 (2009).

[95] K. G. Dyall, Theor. Chem. Account. 135, 128 (2016).

[96] J. L. Dunham, Phys. Rev. 41, 721 (1932).

[97] V. Kellö, private communication (2018).

[98] R. J. Le Roy, J. Quant. Spec. Rad. Transf. 186, 167 (2017).

[99] I. Shavitt, “The method of configuration interaction,” in Methods of elec-
tronic structure theory , edited by H. F. Schaefer III (Springer-Verlag, 1977)
pp. 189–275.

[100] T. Fleig, J. Olsen, and L. Visscher, J. Chem. Phys. 119, 2963 (2003).

[101] L. B. Knight Jr, W. C. Easley, W. Weltner Jr, and M. Wilson, J. Chem.
Phys. 54, 322 (1971).

[102] J. P. Desclaux, Comp. Phys. Commun. 9, 31 (1975).

[103] G. Herzberg,Molecular spectra and molecular structure, Vol. 1 (Read Books
Ltd., 2013).

166

http://dx.doi.org/10.1016/j.chemphys.2008.10.033
http://dx.doi.org/10.1016/j.chemphys.2008.10.033
http://dx.doi.org/ 10.1063/1.3239505
http://dx.doi.org/ 10.1063/1.3239505
http://dx.doi.org/10.1063/1.3276157
http://dx.doi.org/10.1063/1.3276157
http://dx.doi.org/10.1098/rspa.1929.0037
http://dx.doi.org/10.1103/PhysRev.34.553
http://dx.doi.org/ 10.1007/BF01134864
http://dx.doi.org/ 10.1007/BF01134864
http://dx.doi.org/10.1103/PhysRevA.49.1724
https://link.springer.com/referenceworkentry/10.1007/978-3-642-41611-8_34-1
https://link.springer.com/referenceworkentry/10.1007/978-3-642-41611-8_34-1
http://www.springer.com/it/book/9783642966163
http://dx.doi.org/10.1021/jp905057q
http://dx.doi.org/10.1007/s00214-016-1884-y
http://dx.doi.org/10.1103/PhysRev.41.721
http://dx.doi.org/10.1016/j.jqsrt.2016.05.028
https://link.springer.com/chapter/10.1007/978-1-4757-0887-5_6
https://link.springer.com/chapter/10.1007/978-1-4757-0887-5_6
http://dx.doi.org/10.1063/1.1590636
http://dx.doi.org/10.1063/1.1674610
http://dx.doi.org/10.1063/1.1674610
http://dx.doi.org/10.1016/0010-4655(75)90054-5


REFERENCES

[104] R. W. Nicholls and W. R. Jarmain, Proc. Phys. Soc. A 69, 253 (1956).

[105] J. C. McCallum, J. Quant. Spectros. Rad. Transfer 21, 563 (1979).

[106] J. H. V. Nguyen, C. R. Viteri, E. G. Hohenstein, C. D. Sherrill, K. R.
Brown, and B. Odom, New J. Phys. 13, 063023 (2011).

[107] S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A.
Hinds, B. E. Sauer, and M. R. Tarbutt, Nat. Phys. 13, 1173 (2017).

[108] M. Larsson, Astron. Astrophys. 128, 291 (1983).

[109] R. Li, X. Zhang, M. Jin, H. Xu, and B. Yan, Chin. Phys. B 23, 053101
(2014).

[110] B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Phys. Rev. Lett. 101,
243002 (2008).

[111] M. R. Tarbutt, B. E. Sauer, J. J. Hudson, and E. A. Hinds, New J. Phys.
15, 0530034 (2013).

[112] I. J. Smallman, F. Wang, T. C. Steimle, M. R. Tarbutt, and E. Hinds, J.
Mol. Spec. 300, 3 (2014).

[113] A. L. Collopy, M. Hummon, M. Yeo, B. Yan, and J. Ye, New J. Phys. 17,
055008 (2015).

167

http://dx.doi.org/10.1088/0370-1298/69/3/308
http://dx.doi.org/10.1016/0022-4073(79)90097-9
http://dx.doi.org/10.1088/1367-2630/13/6/063023
http://dx.doi.org/ 10.1038/nphys4241
http://dx.doi.org/ 10.1088/1674-1056/23/5/053101
http://dx.doi.org/ 10.1088/1674-1056/23/5/053101
http://dx.doi.org/ 10.1103/PhysRevLett.101.243002
http://dx.doi.org/ 10.1103/PhysRevLett.101.243002
http://dx.doi.org/10.1088/1367-2630/15/5/053034
http://dx.doi.org/10.1088/1367-2630/15/5/053034
http://dx.doi.org/ 10.1016/j.jms.2014.02.006
http://dx.doi.org/ 10.1016/j.jms.2014.02.006
http://dx.doi.org/ 10.1088/1367-2630/17/5/055008
http://dx.doi.org/ 10.1088/1367-2630/17/5/055008


Chapter 9

Variation of fundamental
constantsa

9.1 Motivation
Several unification theories and standard model (SM) extensions predict varia-
tion of fundamental constants (VFC) in space and in time [2, 3]. It has also
been hypothesized that interaction of ordinary matter with a massive scalar dark
matter (DM) field can produce slow temporal drifts or oscillations in the values
of the fundamental constants [4–6], while topological defects in the dark matter
field can produce transient VFC [7–9]. The first transient DM detection limits
were recently discussed by Wcisło et al. [10]. A possible route to observe such
drifts or transient effects is through systematic measurements of transitions in
atomic and molecular spectra that are sensitive to the variation of dimension-
less fundamental quantities such as the fine structure constant α = e2/~c or the
proton-to-electron mass ratio µ = mp/me [11–16].

Laser interferometers now reach precision far exceeding that of any spectro-
scopic apparatus and thus offer a new promising direction in the search for VFC
[17]. This line of research is directly connected to the dependence of material size
on VFC, through the use of resonant-mass detectors [18–21] or cryogenic sapphire
and silicon oscillators [22–27]. In order to interpret such experiments, knowledge
of dependence of the crystal size on the fundamental constants is needed.

Theoretical investigations of size dependence of molecules and bulk materials
on fundamental constants are scarce. Some studies were carried out in the con-

aThis chapter is reproduced from our published paper [1]: Lukáš F. Pašteka, Yongliang
Hao, Anastasia Borschevsky, Victor V. Flambaum, and Peter Schwerdtfeger, Material size
Dependence on fundamental constants, Phys. Rev. Lett. 122, 160801 (2019).
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text of relativistic effects and corresponding changes in periodic trends, where
the dependence on the fine structure constant is considered [28, 29]. More re-
cently, King et al. investigated the dependence of structure and bonding in small
molecules on both α and µ, with the objective of finding the hypothetical (α, µ)
regimes that support biochemistry and therefore life on our planet [30]. Brax-
maier et al. [31] performed an investigation of the variation of the resonance
frequencies of monolithic crystal cavities with possible variation of fundamental
constants through the dependence of the refractive index of the medium on α and
µ. To the best of our knowledge, no prior investigations of direct size dependence
of bulk materials on fundamental constants have been carried out.

In non-relativistic physics, the size of molecules and solids is proportional to
the Bohr radius aB . This dependence cancels out in the ratio of the sizes. The
individual dependence of different compounds on the fine structure constant is
determined by the difference in the relativistic effects, which are proportional to
Z2α2 (and higher powers of Z2α2). Thus, considering the ratio of the resonance
frequencies in two optical cavities made from different materials, in the non-
relativistic approximation there is no dependence on α, but such dependence
appears due to relativistic corrections.

The situation is different when we compare the resonance frequency of an
optical cavity with an atomic optical frequency. For example, one measures the
ratio of the Sr atomic clock frequency and the resonance frequency in a silicone
cavity of length L [10]. Here, the ratio is proportional to α already in the non-
relativistic approximation since the resonator frequency depends on the speed of
light c. Indeed, the resonator frequency is ωr = ck ∼ c/λ ∼ c/L ∼ c/aB , atomic
frequency ωa ∼ e2/(~aB), therefore ωa/ωr ∼ e2/~c = α. In this case, relativistic
corrections produce additional α dependence.

Another dimensionless ratio which affects the properties of different com-
pounds is the ratio of nuclear and electron masses; the nuclear mass is approx-
imately proportional to the proton mass, and thus we consider the proton-to-
electron mass ratio µ.

In this work we present a systematic investigation of the variation of crystal
lattice parameters (ae and ce) and molecular bond lengths (Re) due to variation
of the fine structure constant and the proton-to-electron mass ratio for selected
solid state and molecular systems.

9.2 Diatomic results
For our solid-state study, we have selected several elemental and compound crys-
tals. The choice of Cu, Si, Al, Nb and Al2O3 was motivated by highly precise
experimental setups measuring effects of physics beyond the SM: silicon and sap-
phire oscillators [22–27] and resonance of Cu, Al and Nb bars [18–20]. In order
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Table 9.1: Experimental and calculated bond lengths Re and their corresponding
calculated fractional variation with varying fine-structure constant α and proton-
to-electron mass ratio µ.

Mol. State Re (Å) dRe
Re

/dαα
dR0

R0
/dµµ

dRe
Re

/dµµ

Exp.a CC DFT CC DFT Eq. (9.3) DBOC-CC

Cu2
1Σ+

g 2.2197(1) 2.216 2.215 –3.19×10−2 –3.18×10−2 –7.15×10−4 –7.31×10−6

Ag2
1Σ+

g 2.5303(2) 2.522 2.565 –7.66×10−2 –8.21×10−2 –5.34×10−4 –3.38×10−6

Au2
1Σ+

g 2.4719(1) 2.471 2.501 –3.15×10−1 –3.37×10−1 –2.95×10−4 9.16×10−7

C2
1Σ+

g 1.24253(2) 1.243 1.254 –2.65×10−4 –3.88×10−4 –1.17×10−3 –6.94×10−6

Si2 3Σ−g 2.246 2.255 2.309 8.66×10−5 1.94×10−4 –7.08×10−4 –6.63×10−6

Ge2
3Σ−g 2.3667(6)b 2.361 2.430 –6.74×10−3 –6.48×10−3 –4.37×10−4 –4.46×10−6

Sn2 0+
g 2.746(1) 2.722 2.814 –2.24×10−2 –2.17×10−2 –3.25×10−4 –3.82×10−6

Pb2 0+
g 2.9271(2) 2.869 2.960 –1.05×10−1 –1.58×10−1 –3.37×10−4 3.32×10−7

a Experimental values from Refs. [32–37].
b For Ge2, only R0 was available experimentally. This was used together with the ex-
perimental B0 and αe value of 2.84 × 10−4 cm−1 from our CC calculations to calculate
Re.

to illustrate periodic trends, we have also chosen to study the group 11 and 14
elemental solids.

However, we initially investigated the dependence of the equilibrium inter-
atomic distance Re of diatomic molecules on α and µ. This gave us the opportu-
nity to test the methodology used for the investigation of solids. For molecules,
we have the option of using high-level ab-initio methodology such as relativistic
coupled cluster (CC) theory as a benchmark to our density functional theory
(DFT) results. For this part of the study we chose dimers of group 11 and group
14 elements.

In order to investigate the dependence on the fine structure constant, we
performed a series of optimizations of the equilibrium bond lengths Re varying
the relativistic parameter x = (α/α0)2 − 1. In case of the closed shell Cu2, Ag2,
Au2, and C2 we employed the single-reference CCSD(T) method, and for the
remaining open-shell systems (Si2, Ge2, Sn2, Pb2) the Fock space CCSD method
was used. For the DFT part, we have used the PBE functional [38, 39] to keep the
methodology consistent with the solid-state calculations described below. Dyall’s
v4z basis sets [40–42] were used for all the systems except Au2, where the v3z basis
was used to conserve computational effort. All the calculations were carried out
in the 4-component framework using the relativistic molecular program package
DIRAC15 [43]. The results are collected in Table 9.1.

Both CC and DFT calculated bond lengths agree with experiment. The mean
absolute symmetric percentage error (MASPE) of CC results with respect to
experiment is 0.5%. Correspondingly for DFT, the MASPE is 1.6%. Comparing
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the two methods to one another, we obtain the MASPE value of 1.9%, i.e. DFT
recovers the more rigorous CC results very well. In case of the derivative property,
the α-variation of bond lengths, there are no experimental results. However,
comparing the DFT to CC results gives the MASPE of 22%, which we use to
evaluate the uncertainty on the predicted DFT α-variation of lattice parameters
presented below.

Generally, the magnitude of the α-dependence on Re increases with increasing
atomic number Z, as one expects. In group 11 (Cu, Ag, Au), the effect follows
the well-known ∼ Z2 dependence as is the case with many other properties [44].
For group 14 elements (C, Si, Ge, Sn, Pb), we observe a non-monotonous trend,
although the tendency of increasing α-sensitivity magnitude for heavier elements
is clearly present. This is not surprising, as we note the changes in the ground-
state electronic structure in the group 14 element sequence.

The main source of the mass dependence of molecular bond lengths comes
from the vibrational motion. Assuming that the rotational constant and bond
length relationship is B ∼ R−2, and the vibrationally averaged rotational con-
stant is

B0 = Be −
αe
2
, (9.1)

whereBe is the equilibrium rotational constant and αe is the vibrational-rotational
coupling constant, we can express the vibrationally averaged bond length R0 as

R0 = Re

√
1 +

αe
2Be − αe

. (9.2)

Following the scaling of equilibrium constants with reduced mass M , Be ∼M−1

and αe ∼M−
3
2 [45], we arrive at the fractional variation of R0 with varying µ

dR0

R0
= − αe

4(2Be − αe)
dµ

µ
. (9.3)

This simple but useful estimate can be evaluated using readily available experi-
mental spectroscopic constants [32–37]. Resulting values are shown in Table 9.1.
Due to the negative sign in Eq. (9.3) and the fact that αe � Be in all realistic
diatomics, these are always negative. The magnitude of the effect is relatively
uniform in all investigated systems. Following the Pekeris formula [46] derived
for the Morse potential,

αe =
6B2

e

ωe

(√
ωexe
Be
− 1

)
, (9.4)

we can expect larger fractional variation of R0 with µ for shallow or strongly
anharmonic interatomic potentials.
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A small contribution to bond length mass dependence arises from the nuclear
kinetic energy terms which are neglected in the Born-Oppenheimer approxima-
tion (BOA). Within the BOA, the nuclear motion is separated from the elec-
tronic motion, and coupling terms are in practice completely neglected. As a
consequence, equilibrium bond lengths are independent of the mass and this near
mass-invariance is widely used in the experimental determination of bond lengths
from rotational spectra of different isotopologues of the same molecule. Taking
the nuclear kinetic energy term into account the Re is in fact weakly linearly de-
pendent on the inverse reduced mass of the molecule [47]. This directly translates
into the µ-dependence Re ∼ µ−1.

To estimate the non-BOA contribution to µ-sensitivity of bond lengths, we
included the perturbative diagonal Born-Oppenheimer corrections (DBOC) in
optimizations of the investigated molecules. We employed the CCSD method-
ology as implemented in the program package CFOUR [48, 49] together with
Jorge’s TZP basis set [50–53]. The current implementation only allows for a
non-relativistic treatment of DBOC, and the results for heavier molecules should
be considered with some caution. Relativistic effects are known to increase the
DBOC in atoms by up to about 40% for the heavy elements considered in this
work; however, the trends calculated for diatomic molecules in Ref. [54] are not
systematic.

Results for the µ sensitivity of the fractional variation of Re are collected
in Table 9.1. Generally, the size of this effect is comparable in all investigated
diatomics. This contribution is at least two orders of magnitude smaller than
the fractional variation of R0 in all investigated systems and therefore it can
be safely neglected when considering the µ-sensitivity of vibrationally averaged
bond lengths. One can expect this conclusion to be even more justified in solids,
where the atoms are further confined by the lattice. We note Lutz and Hutson
investigated the role of DBOC in other aspects of diatomic spectroscopy and
ultracold physics [55].

We estimate our µ-sensitivity results to be accurate within ±5%, consider-
ing error bars from experimental determination of spectroscopic parameters and
errors introduced by neglecting the higher-order spectroscopic constants (γe, εe,
etc.) and the non-BOA effects. The error in αe determination dominates the
resulting compound error of the µ-sensitivity.

9.3 Solid state results
The investigation of the α and µ-sensitivity of lattice parameters of solids was
conceptually analogous to the initial study on diatomics. For the α-dependence,
series of optimizations of the ae and ce equilibrium lattice parameters were per-
formed varying the relativistic parameter x. Technically, this means the value
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Table 9.2: Experimental and calculated lattice constants ae and ce (ce shown in
the second line for the respective structure) and their corresponding calculated
fractional variation with varying fine-structure constant α and proton-to-electron
mass ratio µ.

Solid Structure Spc. group ae, ce (Å) dae
ae
/dαα

da0
a0
/dµµExp. (RT)a Exp. (0K)b Calc.

Cu Fcc Fm3̄m 3.6146(2) 3.6029(2) 3.634 –1.97×10−2 –1.12×10−3

Ag Fcc Fm3̄m 4.0857(2) 4.0681(2) 4.160 –4.97×10−2 –8.32×10−4

Au Fcc Fm3̄m 4.0782(2) 4.0646(2) 4.059 –1.61×10−1 –4.33×10−4

C Dia. Fd3̄m 3.5669(2) 3.5667(2) 3.576 –2.39×10−4 –2.22×10−3

Si Dia. Fd3̄m 5.4306(2) 5.4259(2) 5.479 –2.17×10−4 –8.56×10−4

Ge Dia. Fd3̄m 5.6574(2) 5.6487(2) 5.779 6.21×10−4 –6.02×10−4

Sn Dia. (α) Fd3̄m 6.4892(2) 6.4752(2) 6.678 –4.46×10−4 –3.29×10−4

Tet. (β) I41/amd 5.8318(2) 5.8048(2) 5.956 7.61×10−3 –7.09×10−4

3.1818(2) 3.1671(2) 3.251 1.16×10−3

Pb Fcc Fm3̄m 4.9502(2) 4.9142(2) 4.715 –2.94×10−1 –5.65×10−4

Al Fcc Fm3̄m 4.0496(2) 4.0321(2) 4.042 3.65×10−4 –2.11×10−3

Nb Bcc Im3̄m 3.3004(2) 3.2955(2) 3.317 –2.35×10−3 –3.74×10−4

Ti Hcp P63/mmc 2.9506(2) 2.9461(2) 2.935 –1.18×10−3 –7.06×10−4

4.6835(2) 4.6764(2) 4.685 –3.47×10−3

Al2O3 Hex. R3̄c 4.7540(5) 4.7507(5) 4.825 –4.06×10−4 –2.06×10−3

12.9820(6) 12.9731(6) 13.142 –4.88×10−4

SiC 3C (β) F 4̄3m 4.3596(1) 4.3582(1) 4.392 –3.54×10−4 –1.56×10−3

6H (α) P63mc 3.0806(1) 3.0795(1) 3.105 –3.73×10−4 –1.47×10−3

15.1173(1) 15.1121(1) 15.225 –3.41×10−4

WC Hex. P 6̄m2 2.9059(1) 2.9051(1) 2.923 –4.39×10−2 –1.26×10−3

2.8377(1) 2.8369(1) 2.857 –3.19×10−2

a Experimental values from Refs. [56–59].
b Finite-temperature experimental lattice parameters extrapolated to 0K [60] using exper-
imental data from Refs. [58, 59, 61–69].
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Figure 9.1: Dependence of the lattice constants ae, ce (full and open circles,
respectively) of bulk Ti on the relativistic parameter x. Slopes are shown to
scale.

of the speed of light c was varied in the computations. All calculations were
carried out using the relativistic DFT solid-state program package FPLO 14.0,
which implements the full-potential local-orbital minimal-basis scheme [70, 71].
We tested several DFT functionals and decided to use the gradient corrected PBE
functional [38, 39], which had the smallest error in the equilibrium lattice param-
eters compared to the available experimental values. In all systems, reciprocal
sampling used a k-mesh of 12 × 12 × 12 and 200-point radial mesh. Both were
saturated with respect to the equlibrium lattice constants and their derivatives.
Optimizations of the lattice constants were performed within a fully relativistic
framework, while the internal parameters (atomic positions within the unit cell)
were optimized using scalar relativity in each step due to the limitation of the
current implementation (the latter only applies to Al2O3 and α-SiC). Optimal
lattice parameters were determined from minima of polynomial fits through grids
of calculated points with nummerical accuracy of 10−7 Å. Additionally, we com-
pared the results of our FPLO calculations on Cu, C (diamond), and Si to those
obtained from an independent program package SPRKKR 6.3 [72, 73] based on
the spin polarized relativistic Korringa-Kohn-Rostoker methodology [74]. The
agreement between the two data sets was excellent with discrepancies below 2%.

The results of our DFT solid-state calculations are collected in Table 9.2.
The calculated equilibrium lattice parameters are in a very good agreement with
experimental values, giving the MASPE value of 1.3%, which is slightly smaller
than in the case of diatomic molecules. Relying on the error analysis of diatomics,
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Figure 9.2: Z-scaling of (dae/ae)/(dα/α) for group 11 elements (note the log-log
scale). Dashed line shows the ideal Z2 fit.

we thus expect the calculated α-dependence of lattice constants to be accurate
within ±20%. Figure 9.1 demonstrates that the lattice parameters exhibit close
to ideal α2 scaling, i.e. their dependence on x is almost perfectly linear across
a wide range of α values (in the present study,

√
0.5 α0 6 α 6

√
1.5 α0). We

note that the values of fractional variation (dae/ae)/(dα/α) are relatively small
(� 1).

We once more observe the general increase of the α-sensitivity with Z. In the
case of group 11 elements, this increase follows the ∼ Z2 scaling (Figure 9.2). For
group 14, the overall effect is highly non-monotonous. This is also true if we only
compare crystal structures with the same space group Fd3̄m (C, Si, Ge, α-Sn),
as the bonding character changes significantly along this sequence from strongly
covalent to semi-metallic [75]. Another interesting feature is that the α-sensitivity
of diamond, the lightest element in the group, is larger than expected from the
simple scaling law, and larger than that of its heavier homologue, Si. Comparing
the two allotropes of tin, we observe opposite sign of the size dependence on α.
Furthermore, the absolute α-sensitivity of β-Sn is higher than that of α-Sn. This
can be ascribed to relativistic effects more strongly influencing the distorted-
close-pack structure of β-Sn, which has higher s character compared to fully sp3-
hybridized diamond structure of α-Sn [76]. Relativistic effects are strongest in s
orbitals with the highest density in the vicinity of the nucleus. Population analysis
gives 5s:1.54e, 5p:2.34e for α-Sn and 5s:1.73e, 5p:2.14e for β-Sn, supporting this
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interpretation. For the non-cubic crystal structures (corundum, β-tin, α-SiC,
WC), we see different α-dependence of the lattice constants ae and ce; especially
in the case of β-Sn, where the α-sensitivity of ae is roughly 6× larger than that of
ce. Thus, the character of bonding has a very strong influence on the dependence
of the crystal structure parameters on α, and in the general case scaling laws are
not sufficient to estimate the size of the effect.

A general practice for removing the dependence on the unit system is to use
the ratio of two observed quantities instead of measuring a property of a single
system. In this case, we can either compare two different materials (preferably
with opposite signs of their α-dependencies, to enhance the sensitivity) or even
compare the α-sensitivity in two different directions of a single material (for
non-cubic crystals). Additionally, in interferometry, the observed quantity is the
phase shift, which is unitless in itself, and one type of measurement would suffice
for topological DM detection.

The mass dependence of lattice parameters is due to the vibrational motion
of the crystal lattice. It was extensively studied theoretically and experimentally
using isotopic substitution. For monoatomic solids at zero temperature (where
the mass dependence is largest [77]), London derived an expression for fractional
variation of molar volume V with varying isotopic molar mass M [78]

MdV

V dM
= − 9

16

γκ

V
RΘD, (9.5)

where γ is the thermodynamic Grüneisen parameter, κ is the compressibility, R
is the gas constant, and ΘD is the Debye temperature. This translates to a final
expression for the µ-variation of the lattice constant

da0

a0
/
dµ

µ
= − 3

16

γ

BV
kBΘD, (9.6)

where B is the isothermal bulk modulus, V is atomic volume and kB is Boltzmann
constant. Since all numbers entering this formula are positive, the resulting values
are negative for all realistic crystals. Note, the bulk modulus and hence also the
µ-variation are assumed to be isotropic.

Results obtained using Eq. (9.6) and available experimental parameters [58,
59, 61–69] are listed in Table 9.2. Considering the errors in experimental determi-
nation of solid-state parameters, we estimate the overall presented µ-sensitivity
values to be accurate within±20%. Our µ-sensitivity estimates compare well with
the results derived from available experimental measurements on diamond, silicon
and germanium (–1.8×10−3, –7.8×10−4 and –5.5×10−4, respectively) [79–82], as
well as with results derived from theoretical path-integral Monte Carlo simu-
lations (C: –1.94×10−3; Si: –1.13×10−3; Ge: –6.55×10−4; β-SiC: –1.37×10−3)
[83–86]. The MASPE value of our estimates with respect to the referenced results
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is 15%, supporting our error analysis. Out of the investigated materials, diamond,
Al and Al2O3 (i.e. corundum or sapphire) have the highest µ-sensitivity. All re-
sults lie in a relatively small range spanning 1 order of magnitude. Within this
range, however, there are no clear systematic trends.

9.4 Conclusion
Precision interferometry can now provide relative sensitivity of parameters such
as δL/L to VFC beyond that of any other physical apparatus. Combining this
with the calculated fractional variation of crystal sizes and the use of silicon,
sapphire or other single crystal oscillators or optical cavities offers a new and
independent path to testing VFC and search for scalar low-mass dark matter
beyond the most stringent limits [17]. For a progress in this field, accurate values
for α- and µ-dependence of lattice constants of solid-state materials are required,
which we provide in this work.

To illustrate the expected experimental sensitivity to the variation of the
fundamental constants, we present an example. Assume that δα/α = 10−17

yr−1 (this value is close to the present best limit on the variation of α [87]).
We may compare variation of relative sizes L of two materials with different
sensitivity to α-variation, for example, Au and Si with Kα(Au) = −0.161 and
Kα(Si) = −0.000217, where the sensitivity coefficients K = (dae/ae)/(dα/α) are
presented in Table 9.2. The relative variation of the ratio of the sizes is then
[δ(LAu/LSi)]/[(LAu/LSi)] = [Kα(Au)−Kα(Si)](δα/α) = −1.6× 10−18.

This is comparable to the precision of the recent optical cavity experiments
[88–90], where the crystal-size variation directly affects the measurement. The
highest reported precision for an optical cavity is 5.8(3) × 10−19 after an hour
of averaging [91]. Longer averaging times may lead to an even higher precision.
Therefore, the results presented here support the proposed method as an alterna-
tive avenue to test the VFC. Performing a wider search and identifying suitable
materials with higher sensitivity coefficients in the future would further improve
the prospects of the proposed method.

Currently, the highest instrumental precision is achieved in the large-scale
interferometer setups (LIGO, VIRGO), reaching 10−22 levels [92]. However, since
here the effect of the crystal-size variation is not as direct as for the optical
cavities, application of the present method would require some modification of
the detection scheme.

As explained in the beginning of this chapter, the sensitivity coefficient for
comparison of a resonator frequency and an atomic clock frequency in the non-
relativistic limit is given by the difference Kresonator−Kclock = 1; i.e., the effect is
equal to δα/α = 10−17. To include the relativistic corrections, we should add to
the sensitivity coefficients of the resonator the values presented in Table 9.2 and
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for the clock the values presented in Ref. [11]. For the Si optical cavity and Sr
clock, the relativistic corrections are not significant; however, for clocks based on
heavy elements (such as Hg+ and Yb+) relativistic effects increase the sensitivity
to δα/α several times.
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Chapter 10

Conclusion and Outlook

The present work focuses on theoretical aspects of testing fundamental symme-
tries of the SM and searching for new phenomena beyond the SM using diatomic
molecules. Although the SM provides a successful description of existing data
to a remarkably high precision at the electroweak energy scale, it is considered
as an incomplete theory, due to the fact that it cannot answer many open ques-
tions. In order to answer such questions, many new physics models that extend
the SM have been proposed. Compared with the SM, some new physics models
beyond the SM are characterized by more significant symmetry-breaking effects,
such as a larger electron electric dipole moment (eEDM), etc. In other cases,
the new physics models, such as quantum gravity, etc., which attempt to unify
gravity with the remaining fundamental interactions are characterized by novel
physical phenomena such as the variation of fundamental constants. In this work,
we have demonstrated that diatomic molecules have a very promising applica-
tion to the tests of fundamental symmetries of the SM and to the searches for
new phenomena beyond the SM. To be more specific, the measurements of the
symmetry-breaking effects, such as the ones arising from the nuclear anapole mo-
ment and the electron electric dipole moment, can be used to test fundamental
symmetries of the SM. The searches for the new physical phenomena, such as the
variation of fundamental constants, can put constraints on new physics models
that extend the SM and can also provide new insights into the construction of new
physics theories that attempt to unify gravity with the remaining fundamental
interactions.

In order to extract the magnitude of nuclear anapole moment effect from
measurements, a P̂-odd interaction parameter WA, which depends on molecular
structure, needs to be calculated with high accuracy. The accuracy of the calcula-
tions is demonstrated with application to the selected diatomic molecules such as
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BaF, BeCl, etc. In this work, the interplay of various computational parameters
has been explored. We find that, compared with other factors, electron correla-
tion plays a dominant role in accurately determining WA, because inclusion of
electron correlation raises the calculatedWA value by about 20%. For this reason,
we focus our attention on the performance of various electron correlation meth-
ods that have been widely employed, including DFT, MP2, CCSD, CCSD(T),
FSCC, etc. Among such methods, the coupled cluster method is considered as
a powerful tool for the treatment of electron correlation and thus is suitable for
calculating WA with high accuracy. Since the difference between the CCSD and
CCSD(T) values is very small, we conclude that triple excitations are not impor-
tant in determining WA. We have also investigated the scaling behavior of the
WA parameter for the alkaline-earth-metal fluorides, and found it to be close to
the expected Z2 behavior. In addition to examining various correlation methods,
we also analyze the effects from the truncation of the occupied and virtual or-
bitals on the calculated WA parameter. We find that the inner orbitals are very
important for determining WA and thus all the electrons should be included into
correlation scheme. In order to extract the final values of the nuclear anapole mo-
ment effect from experiments, the measured quantities need to be combined with
the calculated WA parameters, where the total uncertainty needs to be included
by summing the experimental and theoretical uncertainties in quadrature. For
the calculated WA parameter of BaF, we have devised a new scheme that allows
us to set uncertainties on the calculated WA values. The small uncertainties of
∼ 2% will help us to put strong constraints on the measured effects. Finally,
we have also pointed out that different factors contribute differently to the un-
certainty for different molecules. For light molecules, the theoretical uncertainty
might be dominated by the basis set effects while for molecules containing heavy
elements, the leading contribution to the theoretical uncertainty may come from
the correlation and relativistic effects.

In the search for the eEDM, one of the paths to a successful measurement
requires the molecules under study to be effectively laser-cooled so that longer
coherent interaction time could be achieved, resulting in an increase in the mea-
surement sensitivity. In order to develop laser systems more efficiently, highly
accurate theoretical calculations of the molecular spectroscopic constants are
necessary. In order to determine the spectroscopic constants accurately, the po-
tential energy curves (PECs) of diatomic molecules need to be calculated using
a sufficiently accurate method. We demonstrate that the X2C Hamiltonian can
decrease the computational effort considerably without losing too much accuracy.
We show that our calculated spectroscopic constants are in excellent agreement
with available experimental values. This indicates that our calculation has suf-
ficient predictive accuracy to propose a scheme for laser cooling. In practice, a
good candidate for laser-cooling should satisfy a number of requirements such as
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strong one-photon transitions, highly-diagonal Franck-Condon factors, absence of
intervening electronic states (or suppressed transition leaks), etc. We examine dif-
ferent possible schemes for laser-cooling and identify the ones that satisfy these
requirements. An important difference in the electronic structure of the three
molecules (CaF, SrF, and BaF) is in the location of the A′2∆ states. For CaF
and SrF, these states are higher in energy than the A2Π states, and even higher
than the B2Σ+ states. However, for BaF, the A′2∆ states are lower in energy
than the A′2∆ states and thus transitions to the A′2∆3/2 state could constitute a
leak in the cooling cycle. We conclude that although the B2Σ+

1/2−X2Σ+
1/2 cool-

ing transition was shown to be extremely efficient for CaF, laser-cooling on this
transition is impractical for BaF, due to the non-diagonal nature of the FCFs
for this transition. The location of the A′2∆ states in BaF gives rise to leaks
and restricts the number of scattered photons for the A2Π1/2 −X2Σ+

1/2 cooling
transition, making it unsuitable for longitudinal cooling. However, based on our
estimate, this cooling transition in BaF can scatter sufficient number of photons
for transverse laser-cooling, if two repump lasers are added to higher vibrational
levels to compensate for the leaks.

New physics models that attempt to unify gravity with the remaining fun-
damental interactions are usually featured with new phenomena, such as the
variation of fundamental constants. As a new alternative method to the analysis
of atomic clocks and quasar spectra, precision laser interferometry may provide
competitive sensitivity to the variation of fundamental constants through the
comparison of the phase differences between two light beams. The variation of
fundamental constants could influence the crystal lattice parameters in a solid.
Therefore, it could change the size of the solid-state materials employed in the
optical cavity of a laser interferometer and lead to a shift in the phase between
two light beams. Ideally, the dependence of the crystal lattice parameters on
fundamental constants in a solid needs to be examined by highly accurate compu-
tational methods, such as the coupled cluster method, etc. Such studies can help
to identify promising candidate materials which lead to great discovery potential.
However, comprehensive and systematic calculations on solid-state materials us-
ing the coupled cluster method are not computationally affordable or tractable.
Instead, the DFT method has been widely used to predict the solid-state prop-
erties, but the accuracy of the DFT results should be assessed. In principle, the
exact lattice parameters in a solid depend on the specific crystal structure and
on the actual thermal environment. Nonetheless, if we assume that the distance
between two nearest atoms (lattice points) in a solid can be approximated by the
equilibrium bond distance in a diatomic molecule formed by these two atoms,
the coupled cluster calculations of the equilibrium bond distances for diatomic
molecules can be used to benchmark the performance of the DFT calculations
of the lattice parameters for solid-state materials. Our calculations show that
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the material sizes can be well modeled by the equilibrium bond distances of di-
atomic molecules and the DFT calculations can provide the expected accuracy
in predicting the dependence of the material sizes on the variation of fundamen-
tal constants. We also provide the accurate values for the dependence of lattice
constants on α and µ in a variety of solid-state materials, such as Cu, Si, Al,
Nb, Al2O3, etc. The choice of these solid-sate materials is motivated by the
highly precise experimental setups aiming to search for new physics beyond the
SM [1]. Finally, we present the possible experimental setups for the detection of
the variation of fundamental constants and reveal the corresponding discovery
potential.

In the measurements of symmetry-breaking effects, the improvement in the
measurement sensitivity cannot be accomplished without high-accurate determi-
nation of the needed parameters. For example, in the measurement of the nuclear
anapole moment effect, the measured quantities have to be combined with the-
oretical values, where the total uncertainty needs to be included by combining
the experimental and theoretical uncertainties together. In order to extract the
effective coupling constant κA precisely from the measured signals, the WA pa-
rameter needs to be known with high accuracy. From a theoretical point of
view, significant improvement in the accuracy of the calculated parameters can
be achieved in a number of ways. First of all, the development of various elec-
tron correlation methods that can handle correlation effects more accurately and
more efficiently could be an active research area in the future. Our calculated
excitation energies Te are generally higher than the experimental values for the
selected alkaline-earth-metal fluorides, although the relative discrepancy is very
small (only a few percent). This might be due to the fact that the triple and
higher-order excitations have not been implemented into the CC equations in an
iterative way in the present version of the DIRAC program. As a matter of fact,
the triple excitations have been only added into the calculations perturbatively
based on the CCSD amplitudes. The lack of iterative triple and higher-order
excitations may also help to explain the fact that although our calculated results
show a good agreement with the experimental data for all the electronic states,
the agreement is slightly worse in such results for the excited states, compar-
ing with the ground state. Therefore, implementation of triple or higher-order
excitations into the CC equations in an iterative way could be the subject of
intensive research. Remarkably, there is a large discrepancy between the calcu-
lated and measured lifetimes for the molecules under discussion. This might be
due to the fact that the calculated transition dipole moments (TDMs) for the al-
lowed transitions are generally too large to account for the experimental values,
while the calculated TDMs for the forbidden transitions are too small. Since the
calculations of TDMs involve the transition moment integral between different
electronic states, electronic structure methods which are capable of calculating
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multiple electronic states simultaneously are preferable. In the present version of
the DIRAC program, the FSCCSD and CISD methods are two tractable frame-
works for the calculation of TDMs. Since, currently, the implementation of TDMs
with the FSCC method is not available, the calculations of TDMs in the present
work are carried out using the CISD method. However, the CISD method faces
numerous problems such as the lack of size-consistency and size-extensivity. Fur-
thermore, in the CISD method, all the electron correlation effects beyond double
excitations are excluded. In order to overcome such deficiencies, new implemen-
tations of the TDM using the state-of-the-art correlation methods, such as the
FSCCSD method, are needed. In this improvement effort, the computation of
the TDM can be accomplished by two steps. In the first step, the perturbed
wavefunctions can be obtained by adding the TDM term as a perturbation to
the coupled cluster equations. Then, the TDM can be evaluated by taking the
transition moment integral between two perturbed wavefunctions. Besides the
above directions, inclusion of high order relativistic corrections and construction
of high quality basis sets may also help to significantly improve the accuracy of
the calculated parameters.

Recent advances in precision measurements and availability of highly accu-
rate computational methods have provided a unique window for the tests of the
SM and for new physics searches using molecular properties. Identification of
promising molecular candidates that allow precision measurements of the P̂ or T̂
violating interactions with sufficiently high sensitivity could be another subject of
future work. It has been demonstrated that triatomic molecules (or polyatomic
molecules) have significant additional advantages in the precision measurement
of the P̂ or T̂ violating effects [2, 3]. This is mainly due to the fact that triatomic
molecules have opposite-parity molecular levels with their energies a few orders
of magnitude closer than the ones for diatomic molecules, making them easier to
be brought into degeneracy by smaller magnetic fields. Smaller magnetic fields
allow the elimination of the inhomogeneities more easily upon the reversal of the
fields and thus can help to decrease the systematic uncertainties and increase the
measurement sensitivities. Furthermore, the existence of internal comagnetome-
ter states in triatomic molecules, such as YbOH, etc., enables the measurement
of the eEDM without reversing the external fields and allows us to control sys-
tematic errors more easily [2]. In addition, because of the favorable electronic
structure, such molecules can achieve full polarization in smaller electric fields,
where the measurement sensitivity can be improved. Finally, the use of triatomic
molecules, such as BeNC, MgNC, etc. [3], might help to distinguish the nuclear
anapole moment effect from the remaining NSD-PV effects by measuring the ef-
fects on different nuclei. Due to these considerations, extending the applications
to triatomic molecules might be a promising direction of future work.

Besides triatomic molecules, molecules containing light elements, such as
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BeCl, BeI, etc., are also considered as promising candidates for the measurement
of the nuclear anapole moment effect. The nuclear anapole moment effect can
be used to test nuclear theories by a direct comparison between the experimen-
tal and theoretical values of the effective coupling constant κA. Any deviation
may suggest the incompleteness of our knowledge about nuclear models or even
imply hints for new physics beyond the SM. However, no meaningful comparison
can be made unless κA is precisely determined from experiments and accurately
calculated from theories. The practical advantage of using such molecules is that
nuclear calculations for light elements are more computationally tractable. In
this case, the effective coupling constant κA can be more accurately calculated
from nuclear theories and thus a more meaningful comparison can be made. Fur-
thermore, molecules containing heavy elements, such as RaF [4], etc., are also
considered as good candidates for the measurement of the nuclear anapole mo-
ment effect. This is due to the fact that the nuclear anapole moment effect tends
to increase dramatically with the nuclear mass number and a larger effect allows
easier detection and easier separation from the remaining NSD-PV effects. In
addition, the searches for exotic phenomena with molecules cover a wide range of
research topics, such as the test of the ĈP̂T̂ and Lorentz invariance, and would
become very active in the future. Last but not least, in precision measurements
like the search for the eEDM, some important hyperfine structure parameters
need to be known to a very high degree of precision. Among such parameters,
the nuclear electric quadrupole moment (NQM) is related to a term in the mul-
tipole expansion of nuclear charge distribution and plays an important role in
nuclear structure research. A non-zero NQM indicates that the charge distribu-
tion of a nucleus is not spherically symmetric. With the help of the theoretically
determined electric field gradients (EFG) from molecular calculations, the NQM
can be extracted from the experimentally determined nuclear quadrupole cou-
pling constants through the analysis of rotational spectra [5]. Another important
parameter is the magnetic hyperfine structure constant, which plays a significant
role in precision measurements and in benchmark assessment of the accuracy of
ab initio calculations. Theoretical investigations of such hyperfine structure pa-
rameters with high accuracy could possibly be the fruitful directions for future
work.

Search for new physics beyond the SM with diatomic molecules is an exciting
field and has attracted enormous attention recently [6]. In the present work, we
show that theoretical investigations of molecular properties play a crucial role in
the successful measurements of symmetry-breaking effects and in the searches for
new physical phenomena. To begin with, the theoretically determined molecular
properties can help to design an experimental setup for precision measurements
with enhanced sensitivity. For example, highly accurate calculations of molecular
properties can help to develop laser systems more efficiently in the measurement
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of the eEDM so that the molecules can be effectively laser-cooled throughout
the measurements. In this case, longer interaction time can be achieved and im-
proved sensitivity can be gained. Furthermore, highly accurate calculations of
molecular properties can be used to interpret the results of the precision measure-
ments more correctly. For example, in the measurement of the nuclear anapole
moment effect, a P̂-odd interaction parameter WA, which depends on molecular
structure, needs to be calculated with high accuracy in order to extract the fi-
nal values of the effective coupling constant from the measured signals. In this
case, the total uncertainty is contributed by both the experimental part and the
theoretical part. The evaluation of theoretical uncertainty can help us to make a
valid comparison between theories and experiments so that reliable conclusions
can be obtained. Thirdly, the advanced computational methods enable care-
ful examinations of electronic structure and can help to understand the possible
mechanisms for the influence of new physics interactions on molecular properties.
In this case, based on highly accurate calculations, comprehensive strategies for
new physics searches can be designed and promising candidates with enhanced
sensitivity can be identified. Last but not least, in the search for the variation of
fundamental constants, the calculations of molecular properties can be used to
find new measurement strategies and identify promising candidate materials. To
conclude, theoretical efforts with diatomic molecules would have great potential
to provide new insights on the problems that cannot be answered by the SM and
thus open a window to new physics beyond the SM.
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Appendix A: Dunham
expansion

The vibrational-rotational levels of a diatomic molecule can be expressed by the
Dunham expansion [1–6],

E(v, J) ≡
∑
α,β∈Z

Yαβ

(
v +

1

2

)α[
J(J + 1)

]β
, Yαβ ∈ R, (X.1)

where Yαβ represents the Dunham coefficients, which depend on molecular struc-
ture. The parameter v is the vibrational quantum number and the parameter J
is the rotational quantum number. In practice, the following Dunham expansion
has been widely used to model the potential energy curves [1–3, 7–12],

E(R) = Te + a0

(R−Re
Re

)2[
1 +

∞∑
k=1

ak

(R−Re
Re

)k]
, (X.2)

where E(R) represents the potential energy as a function of the internuclear
distance R. Re represents the equilibrium internuclear distance (bond length).
Te represents the potential energy at Re. The parameters ak (ak ∈ R) are the
expansion coefficients.

One the one hand, the Dunham coefficients Yαβ are related to the conventional
spectroscopic constants [1, 3–6]. On the other hand, by ignoring higher order
corrections, the spectroscopic constants can be calculated from the expansion
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coefficients according to the following expressions [1, 3, 4, 12, 13]:

Be ' Y01 '
h

8π2µcR2
e

, (X.3)

ωe ' Y10 ' 2
(
a0Be

) 1
2

, (X.4)

ωeχe ' −Y20 '
3Be

2

(5a2
1

4
− a2

)
, (X.5)

αe ' −Y11 ' −
6B2

e

ωe

(
1 + a1

)
, (X.6)

De ' −Y02 '
4B3

e

ω2
e

. (X.7)

Here, µ is the reduced mass of the molecule. Be represents the rotational constant.
ωe and ωeχe represent the harmonic and anharmonic frequencies, respectively.
αe represents the vibration-rotation coupling constant. De is the centrifugal
distortion constant.
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Appendix B: Units

Throughout the present work, different systems of units are involved. In Section
2.2, all the equations are expressed in the natural units (~ ≡ 1, c ≡ 1). In
the field of parity-violating effects, all the equations are expressed in the atomic
units (~ ≡ 1, me ≡ 1, e ≡ 1, etc.) or equivalently in the natural units a.
Except for the above-mentioned equations, all other equations, mainly associated
with the electromagnetic interactions and the electronic structure, are expressed
in the system of Gaussian units. Since in the computational packages all the
equations are implemented in the system of atomic units, the calculated molecular
properties are expressed in atomic units.

aThis is because, except for ~, the constants me and e are not involved in such equations.
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Samenvatting

Samengevat richt dit proefschrift zich op het theoretisch onderzoek voor het testen
van de fundamentele symmetrieën van het Standaardmodel (SM) met behulp
van diatomaire moleculen. In Hoofdstuk 1 geven we de achtergrond en moti-
vatie voor dit onderzoek. Hoewel het SM erg succesvol is in het beschrijven
van de fundamentele deeltjes en hun interacties, zijn er veel openstaande vragen
die dit model niet kan beantwoorden en daarom wordt het als een onvolledige
theorie beschouwd. Theoretisch onderzoek met moleculen heeft grote potentie
om nieuwe inzichten te bieden in de vragen die het SM niet kan beantwoor-
den, wat een deur opent naar nieuwe natuurkunde voorbij het SM. In Hoofd-
stuk 2 bespreken we in het kort enkele belangrijke concepten van het SM en de
relevante aspecten van fundamentele symmetrieën daarin. Vervolgens introduc-
eren we de aard van symmetrie-brekende effecten die kunnen worden gebruikt
om het SM te testen en om nieuwe natuurkunde voorbij het SM te vinden. In
Hoofdstuk 3 bespreken we de computationele methoden die voor de berekening
van moleculaire eigenschappen worden gebruikt. We geven een overzicht van
de factoren die de nauwkeurigheid van het theoretische onderzoek bepalen, en
demonstreren de bepaling van de theoretische onzekerheid. In Hoofdstuk 4 in-
troduceren we een aantal moleculaire symbolen die voor dit werk relevant zijn
en behandelen we de algemene vorm van de moleculaire Hamiltoniaan, die de
basis vormt voor de rest van dit onderzoek. In Hoofdstuk 5 vatten we de be-
langrijkste onderwerpen van het huidige werk samen, waaronder het meten van
het nucleaire anapoolmoment en het elektron-elektrisch dipoolmoment (eEDM)
en het zoeken naar variatie van fundamentele constanten. We benadrukken dat
het belangrijkste doel van dit onderzoek is om de benodigde moleculaire pa-
rameters te bepalen voor succesvolle metingen van verschillende constanten en
voor rigoureuze interpretaties van de metingen, met behulp van toonaangevende
computationele methoden. In Hoofdstuk 6 presenteren we relativistische coupled-
cluster-berekeningen van hoge nauwkeurigheid van de P̂-oneven WA-parameter
voor het BaF molecuul. De invloed van verschillende rekenparameters op de
berekende WA-parameter wordt geanalyseerd. In dit hoofdstuk wordt ook de
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berekening van de onzekerheid uitgevoerd. In Hoofdstuk 7 bespreken we de de-
tails van de correlatietrends van de nucleaire anapoolmomentwisselwerking voor
het BeCl-molecuul. We benadrukken het belang van elektronencorrelatie bij de
bepaling van de WA-parameter door de berekende resultaten met een verschil-
lende behandeling van elektronencorrelatie te vergelijken. In Hoofdstuk 8 presen-
teren we zeer nauwkeurig theoretisch onderzoek naar de spectroscopische constan-
ten voor bepaalde aardalkalimetaalfluoriden en bespreken we hun toepassing op
laserkoeling. We laten zien dat bij het zoeken naar het eEDM met een langzame
bundel van koude BaF-moleculen kennis van de moleculaire eigenschappen van
BaF nodig is om de metingen te plannen, en in het bijzonder om de optimale
laserkoelingsschema’s te bepalen. In Hoofdstuk 9 richten we ons op theoretisch
onderzoek naar de variatie van fundamentele constanten door te onderzoeken hoe
kristalparameters in vaste stoffen en de evenwichtsbindingsafstand in diatomaire
moleculen variëren aan de hand van fundamentele constanten (α en µ). Als
we aannemen dat de afstand tussen twee dichtstbijzijnde atomen (roosterpun-
ten) in een vaste stof kan worden benaderd door de evenwichtsbindingsafstand
in een door deze twee atomen gevormd diatomair molecuul, dan kunnen de cou-
pled cluster-berekeningen van de evenwichtsbindingsafstanden voor diatomaire
moleculen worden gebruikt om de kwaliteit van de DFT-berekeningen van de
roosterparameters voor vaste stoffen te beoordelen. Ten slotte presenteren we
in Hoofdstuk 10 de conclusie van dit onderzoek en geven we perspectieven voor
toekomstig werk.
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