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Abstract 

Introduction: Diabetes mellitus is an ever-increasing medical condition that 

currently suffers 1 of 11 adults who may have lifelong commitment with insulin 

injections. Cell-laden hydrogels releasing insulin may provide the ultimate means of 

correcting diabetes. Here, we provide insights of this cell-based approach including 

latest preclinical and clinical progress both from academia and industry.  

Area covered: The present article focuses on reviewing latest advances in cell-

laden hydrogels both from the technological and biological perspective. The most 

relevant clinical results including clinical trials are also discussed.  

Expert opinion: Current progress in technological issues (stem cells, devices, 

biomaterials) have contributed cell encapsulation science to have an very relevant 

progress in the field of diabetes treatment.  

 

Keywords: Diabetes mellitus, cell encapsulation, cell-laden hydrogels, alginate, drug 

delivery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

 

 

 

 

 

Article highlights 

- Cell-laden hydrogels enable long-term release of biological active agents 

such as insulin. 

- Biological, material and technological aspects are key to success.  

- Some approaches are being evaluated in clinical trials (Phase 1-2) 

- Adequate source of insulin producing cells remains a critical issue. 

- Stem-cell technologies have raised optimism about the scalable 

generation of insulin producing cell sources 

 

 

1. Introduction 

Diabetes mellitus is a serious worldwide medical condition impacting quality of life 

and the health care system. According to the International Diabetes Federation, 463 

million adults (1 of 11) were affected in 2019 and that number is expected to 

increase to 700 million by 2045. Furthermore, the incidence of type 1 diabetes (T1D) 

has increased 3-4% over the last 30 years which support the influence of 

environmental factors (1). Current total annual medical costs are enormous and may 

be as high as 760 billion dollars (2). In the case of type 1 diabetes (T1D), the 

National Diabetes Statistics Report has shown that it is increasing among people 

under 20 (3). In this type of diabetes, pancreatic β-cells are progressively lost, daily 

injections of insulin are associated with frequent hypoglycemia and threat for 

disabling hypoglycemic unawareness. Recent progress in the field has shown that a 

number of factors including β-cell gene expression, islet morphology and 

endoplasmic reticulum stress signaling have a critical role in β-cell failure in T1D 

(mostly IRE1 driven) and T2D (mostly PERK–eIF2α dependent) (4). 

From a therapeutic perspective, automated insulin pumps equipped with sensors to 

monitor blood glucose and mimic the natural insulin release could address the 

current challenges in the field. However, accurate monitoring of glycemia during 
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physical activity or at night can be difficult to achieve, which has prompted engineers 

to look for more accurate and more responsive systems (5).  

Implantation of insulin-producing islet cells may provide the ultimate means of 

correcting T1D. The technology of cell-laden hydrogels is fairly simple, it consists on 

enclosing insulin-secreting within semipermeable hydrogels, usually implantable, and 

coated with a polymeric thin cover, which permits nutrient exchange and exchange 

of cell-produced biologically active agents in the absence of immunological rejection. 

This approach is now being explored in a wide range of human diseases including 

blood disorders, acute liver failure, spinal cord injury, and diabetes(5). 

The technology, however, is not new. The leading concept dates to 1960, when 

T.M.S. Chang first proposed the idea of the “artificial cell” (6). Shortly thereafter, the 

therapeutic benefits of encapsulated pancreatic islets were demonstrated by Lim and 

Sun in diabetic rats and by Soon-Shiong in a diabetic patient (7). With those results, 

a few companies started developing devices for encapsulating pancreatic cells. 

Today, several industrial efforts remain underway including efforts by Seraxis, 

Pharmacyte, Semma Therapeutics, Sernova, and ViaCyte.  

Currently, some of these approaches are being evaluated in clinical trials (Phase 1-

2) (5), though none of them has moved forward into the clinics. “Good things take 

time” is apt proverb for this field but it is what has occurred during that time that 

leads many to the conclusion that we are on the brink of being able to at least finally 

test optimal (and hopefully prove) encapsulated islet-containing devices. This 

optimism is based largely on significant progress in the interface of biomaterials and 

cellular engineering. Many first encapsulation attempts were done without a global 

technogical/biological evaluation, optimized cell dose or non-suitable cell selection. 

Below we discuss, some of the pivotal advances and how they contribute to this 

optimism. 

 

2. Technological issues 

Several decades of research and clinical evaluations have uncovered the complexity 

of merging scientific fields as diverse as cell biology, engineering, biomaterials, and 

immunology to develop a therapeutic. The potential of cell encapsulation requires a 

partnership that takes advantage of the ingenuity of academia and the development 

experience of large pharma (8). As discussed in detail below, the manufacture of 

high-quality biocompatible material is available on reasonably large scales and in 
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combination with equally scalable human stem cell-derived beta cells are significant 

advancements if not true breakthroughs (9). 

From an industrial perspective, we are now more able to address 2 overarching 

obstacles that have plagued the field of cell encapsulation; identifying a potentially 

therapeutic factor and being able to deliver it in a pharmacokinetically appropriate 

manner (5). For diabetes, the first issue is straightforward as insulin is a known 

commodity. Insulin replacement works and pancreatic transplants can cure the 

disease. This stands in contrast to other indications where delivering potentially 

efficacious molecules such as trophic factors or antibodies (often using genetically 

modified cells that are unrelated to the disease itself) requires a different starting 

point with unknown variables centered around dosing, efficacy, and toxicity (10).  

With increasingly large-scale human stem cell-derived beta cell production it should 

be possible to focus increasingly on the second issue. Without reliable, consistent, 

and readily available cells it has not possible to establish manufacturing and quality 

controls that enable the evaluation of chemical and structural changes in the 

configuration of cell containing devices (5). Insulin administration has known 

pharmacokinetic and glucose responsiveness requirements. But in the past, limited 

supplies of cell preparations, and lab to lab variability has made animal to human 

translations difficult (8). Of course, further refinements in differentiation protocols will 

optimize cell identify/composition (beta and other islet cell types) purity (removing 

unwanted cells), and potency (insulin control and responsiveness) (11). Moreover, 

other technologies including cellular engineering approaches such as CRISPR may 

allow future cellular tweeking to minimize host responses to grafting or facilitate the 

response of the encapsulated cells to environmental cues (12).  

 

3. Device considerations 

The 3 major encapsulation approaches for islet are intravascular macrocapsules, 

extravascular macrocapsules and extravascular microcapsules (13-15) (Figure 1). 

Intravascular devices are connected to the vascular system of the patient allowing 

rapid exchange of glucose, insulin and nutrients (16) (Figure 1.c). Although 

potentially efficacious, clinical application is compromised by high risk of thrombosis 

and infection. Although some new approaches for intravascular devices are under 

investigation (17) most current efforts are focused on extravascular devices. 

Extravascular devices can be safely implanted in readily accessible implantation 
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sites and can be retrieved/replaced if replenishable cell sources (stem or progenitor 

cells) are considered or if functional limitations such as poly-hormonal secretion, or 

excessive hormone secretion necessitate refilling (18, 19). 

Extravascular devices are available in macro- and microcapsules. Within 

macrodevices groups of islets are encapsulated and implanted into surgically 

accessible sites such as under the skin or intraperitoneally. A challenge in the field of 

macrocapsules has been a non-ideal surface to volume ratio (8). As a consequence, 

diffusion of oxygen can be slow and islet-cells compete for these nutrients, limiting 

seeding density to 5–10% of the volume of the device (13). Novel developments to 

overcome these issues include oxygen generators such as the so-called Beta-O2 

device which is a macrodevice connected to an oxygen port (20-22) (Figure 1.b). 

Another design are lipid membranes based on the cornea that facilitate diffusion of 

oxygen towards the islets (23). This same innovative device is supplied by 

atmospheric air and allows for easy retrieval and replacement of islets. The device 

has a port that is fixed on the skin through which the islets are loaded (23). Long 

term efficacy studies are required but this device configuration could be ideal for 

testing first generation insulin-producing cells obtained from stem cells. The other 

approach is encapsulation of islets in their own individual microcapsule. 

Microcapsules are spherical and suffer less from diffusion issues due to more 

optimal volume to surface ratios (24) (Figure 1.c). Furthermore, microcapsules 

display sufficient structural integrity and cell incorporation is possible via nontoxic 

molecules and reagents. The majority of the approaches in this direction rely on 

polysaccharides such as alginate as the primary material coupled with a thin poly-

amin coating to provide immunoprotection or to enhance mechanical stability even 

more (25). Biocompatibility can be enhanced by identification of alginate analogs that 

do not provoke strong inflammatory responses, application of anti-biofouling 

molecules such as polymer brushes, immunomodulating biomaterials such as 

zwitterions (26-28) as well as by intracapsular modifications to lower the 

susceptibility of cells to inflammatory stress (29). A challenge however is finding and 

documenting a proper relationship between surface properties and biological 

response in the body to better understand the impact of surface topographies (8).   

Overall, there is optimism about testing different device approaches in humans, but 

lack of an adequate source of insulin producing cells has hampered these tests. 

While a significant gap exist between availability and demand for cadaveric 
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pancreata (30) stem cell-derived insulin-producing cells or animal derived islets 

could eventually  bridge this gap (31).  

 

4. Clinical proof-of-concept 

Clinical proof of concept for the therapeutic use of encapsulated islets has been 

obtained. Several groups have demonstrated long-term (ranging from 70 days to 6 

months) survival of micro-and macroencapsulated porcine islet transplants in non-

human primates (32, 33). Moreover, some success has been reported in humans 

transplanted with microencapsulated porcine islets (34). Improved HbA1c levels and 

reduced hypoglycemic episodes were noted in these patients for more than 600 days 

(34). Others reported that alginate encapsulated porcine islets reduced exogenous 

insulin requirements using a commercial product named Diabecell® (35). Most 

recently, stem-cell-derived β cells were transplanted into non-immunosuppressed 

T1D mouse models and reportedly induced normoglycemia for up to 174 days 

(27,36). These developments have led to the point where several companies are 

vigorously developing encapsulated islet products and evaluating them in clinical 

trials (see Table 1). 

 

5. Expert opinion 

The science of cell encapsulation for diabetes has progressed from basic research to 

a point of clinically evaluating therapeutically meaningful products on a potentially 

wide-scale basis. Current progress in device development has created 

biocompatible, long-term functioning, and retrievable cellular devices for 

replenishable insulin-producing cell sources. Oxygen and other essential nutrient 

supplying technologies have been developed that can contribute to long-term 

function of an efficacious glucose regulating concept. Also, current developments in 

stem-cell technologies have raised optimism about the scalable generation of insulin 

producing cell sources; although some issues still remain. These include production 

scale up, perfecting the interface between biomaterials, immunology, and cell 

function, and widening the availability of the few current stem-cell sources. Last but 

not least, this technology allows retrieval of implanted cell-loaded devices which 

represents a critical safety aspect and a unique advantage of encapsulation devices. 

This may especially relevant when living medicines are implanted into accessible 

sites such as the omental pouch. Progress on some of the key parameters described 
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herein may help to accelerate the translation of insuling releasing cell-laden 

hydrogels into medical reality. 
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Figures 

Figure 1: Schematic illustration of the various islet delivery schemes on the market 

today. (A) Islet cells are implanted within a biomaterial device in the vicinity of a 

vascular network. (B) Other schemes capitalize upon more ingenious devices that 

can deliver oxygen to the entrapped cells from outside the body. (C) Hydrogel 

microencapsulation provide a more biomimetic approach, wherein islet cells are 

injected into the patient within a native-like matrix that protects them from harm, 

while providing them with optimal growth and functioning conditions. 
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Table 1. Current clinical trials summary. Developed devices for diabetes application. 
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RODUCT DEVICE DESCRIPTION  CLINICAL TRIALS (clinicaltrials.gov) STUDY ESTIMATED DATES CUR

C-01 

Encaptra® drug delivery 
system allows pancreatic 
precursor cells to deliver, 
differentiate and mature 
after surgical implantation 

One-Year Follow-up Safety Study in Subjects 
Previously Implanted With VC-
01™.NCT02939118 

-Cohort study 
-200 participants 2016-2021 Enr

A Safety, Tolerability, and Efficacy Study of 
VC-01™ Combination Product in Subjects 
With Type I Diabetes Mellitus.NCT02239354 

-Phase 1/2  
-69 participants 2014-2021 Act

C-02 

A system designed to allow 
blood vessels to enter the 
device and directly interact 
with the implanted 
pancreatic precursos cells.  

A Safety, Tolerability, and Efficacy Study of 
VC-02™ Combination Product in Subjects 
With Type 1 Diabetes Mellitus and 
Hypoglycemia Unawareness. NCT03163511 

-Cohort study 
-75 participants 2017-2022 Rec

A Safety and Tolerability Study of VC-02™ 
Combination Product in Subjects With Type 1 
Diabetes Mellitus. NCT03162926 

-Phase 1/2 
-3 participants 2017-2018 Com

EG-
ncapsulated 
et Allografts 

Encapsulated islets 
Safety and Efficacy of PEG-Encapsulated Islet 
Allografts Implanted in Type I Diabetic 
Recipients. NCT00260234 

-Phase 1/ 2 
-12 participants 2005-2014 Ter

ABECELL ® Encapsulated pig beta cells 
Open-label Investigation of the Safety and 
Effectiveness of DIABECELL® in Patients With 
Type 1 Diabetes Mellitus.NCT01739829 

-Phase 2 
- 8 participants 2011-2014 Com

ell Pouch™ 

An implantable medical 
device which provides a 
vascularized environment 
for therapeutic cells 

A Safety, Tolerability and Efficacy Study of 
Sernova's Cell Pouch™ for Clinical Islet 
Transplantation.NCT03513939 

-Phase 1/2 
-7 participants (July 
2019) 

2019-2022 Rec

Air® 
A device that allows 
encapsulated cells to be 
properly oxygenated. 

An Open Label, Pilot Investigation, to Assess 
the Safety and Efficacy of Transplantation of 
Macro-encapsulated Human Islets Within 
the Bioartificial Pancreas Beta-Air in Patients 
With Type 1 Diabetes Mellitus.NCT02064309

-Phase 1/2 
-4 participants 2014-2019 Act
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