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Abstract: 

 

Background - For most disease related traits the magnitude of the contribution of genetic factors 

in adolescents remains unclear.  

Methods - Twenty continuous traits related to anthropometry, cardiovascular and renal function, 

metabolism and inflammation were selected from the ongoing prospective TRAILS (TRacking 

Adolescents’ Individual Lives Survey) cohort in the Netherlands with measurements of up to 

five waves from age 11 to 22 years (n=1,354, 47.6% males) and all traits available at the third 

wave (mean age [SD] = 16.22 [0.66]). For each trait, unweighted and weighted genetic risk 

scores (GRSs) were generated based on significantly associated SNPs identified from literature. 

The variance explained by the GRSs in adolescents were estimated by linear regression after 

adjustment for covariates.  

Results - Except for alanine transaminase (ALT), all GRSs were significantly associated with 

their traits. The trait variance explained by the GRSs was highest for lipoprotein[a] (39.59%) and 

varied between 0.09% (ALT) and 18.49% (low-density lipoprotein (LDL)) for the other traits. 

For most traits the variances explained in adolescents were comparable with or slightly smaller 

than those in adults. Significant increases of trait levels (except ALT) and increased risks for 

overweight/obesity (OR 6.41, 95% CI 2.95-15.56) and hypertension (OR 2.86, 95% CI 1.39-6.17) 

were found in individuals in the top GRS decile compared with those at the bottom decile. 

Conclusions - Variances explained by adult-based GRSs for disease related traits in adolescents, 

although still relatively modest, were comparable with or slightly smaller than in adults offering 

promise for improved risk prediction at early ages.  

 
 
 
 
 
 
Key words genetics, human; young; risk score; genetic risk score; complex disease traits; 
variance explained  
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Nonstandard Abbreviations and Acronyms  

ALT             alanine transaminase  

BMI             body mass index  

CRP             C-reactive protein  

DBP             diastolic blood pressure  

eGFR             estimated glomerular filtration rate 

FG             fasting glucose 

FGadjBMI fasting glucose (BMI adjusted) 

FI             fasting insulin 

FIadjBMI fasting insulin (BMI adjusted) 

GRS             genetic risk score 

HbA1c             glycated hemoglobin  

HDL             high-density lipoprotein  

HR             heart rate  

IgE             Immunoglobulin E  

IOTF             The International Obesity Task Force  

LD             linkage disequilibrium 

LDL             low-density lipoprotein  

Lp(a)             lipoprotein(a)  

MAF             minor allele frequency  

meta-GWASs meta-analyses of genome-wide association studies 

PRS             polygenic risk score 

SBP             systolic blood pressure  

SNP             single nucleotide polymorphism 

TC             total cholesterol  

TG             triglycerides  

TRAILS TRacking Adolescents’ Individual Lives Survey 

TRAILSCC TRAILS clinical cohort  

uGRS             unweighted genetic risk score 

wGRS             weighted genetic risk score 

WHRadjBMI waist-to-hip ratio (BMI adjusted)     
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Introduction 

Recently, an increasing number of genetic variants - mostly single nucleotide polymorphisms 

(SNPs) - have been identified to be associated with human traits through meta-analyses of 

genome-wide association studies (meta-GWASs).1,2 To evaluate the overall contribution of these 

identified genetic variants, genetic risk scores (GRSs) were constructed for many disease related 

traits and were found to often explain a significant portion of the trait variation.3 As more SNPs 

continue to be discovered, such GRSs provide possibilities to predict complex disease risk at the 

individual level and have potential application in disease prevention.  

For example, many studies on blood pressure and body mass index (BMI) have shown 

that increased levels in youth track into adulthood and are associated with immediate and long-

term health risks.4-7 Applying GRSs at an early age to identify individuals at high genetic risk for 

hypertension and obesity might therefore aid in early prevention. As most SNPs were identified 

from meta-GWAS in adults, the question whether these adult based GRSs can be applied in 

youth needs to be answered. A longitudinal twin study on blood pressure showed that novel 

genetic effects emerged between ages 14 and 18 years and explained a significant part of the 

variation in blood pressure.8 Another study found that five loci had different effects on BMI 

during adolescence and young adulthood (16-25 years) compared with middle-age adults.9 These 

results support age-dependent genetic effects and suggest that GRSs derived from adults may not 

have the same effect in youth. Thus, there is the need to investigate to what extent adult based 

GRSs can predict disease related traits in youth.  

However, so far only a few traits and diseases were explored, and the contributions of 

GRSs in adolescents for other traits remain unclear.10-12 Furthermore, as the list of identified 
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genetic markers has recently expanded dramatically, the effect of updated GRSs using the latest 

GWAS findings requires evaluation in adolescents. 

Therefore, the aim of the current study was to assess and evaluate the variance explained 

by adult based GRSs on a wide variety of disease related traits in adolescents from the 

Netherlands. We used 20 continuous traits from the TRacking Adolescents’ Individual Lives 

Survey (TRAILS) cohort, related to anthropometry, cardiovascular and renal function, 

metabolism and inflammation. For each trait we generated GRSs based on significantly 

associated SNPs identified from literature. Then we assessed how much of the phenotypic 

variance could be explained by these GRSs in adolescents and compared it with the phenotypic 

variance explained in adult populations. We also compared the trait levels and risks of 

hypertension and obesity between individuals in each of the upper nine deciles with those in the 

bottom decile of the GRSs distribution. Furthermore, we replicated findings of some major traits 

such as BMI and blood pressure in the TRAILS clinical cohort (TRAILSCC). 

 

Methods 

The research was conducted in TRAILS, an ongoing prospective population-based cohort which 

assesses physical and psychosocial health from preadolescence to adulthood in the 

Netherlands.13,14 Because of the personal nature of the data, the dataset is not online available. 

Requests to access the data may be submitted by means of a publication plan form for external 

users, which is available at https://www.trails.nl/en/hoofdmenu/data/data-use.  

The traits of interest and the literature from which SNPs were identified are presented in 

Table 1. All SNPs and their effect sizes for constructing GRS can be found in Supplementary 
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Table 1-21. Full descriptions of trait and SNP selection, participants and traits measurements, 

genotyping and imputation, and statistical analyses are available in the Supplementary Methods.  

All procedures were approved by the Dutch Central Committee on Research Involving 

Human Subjects. Written informed consent, including specific consent to undertake genetic 

analyses, was obtained from participants and their parents or custodians. 

 

Results 

Participants and traits description 

Table 2 shows the descriptive statistics of age and the quantitative traits we selected in the 

TRAILS cohort at the third wave (for all waves see Supplementary Table 22). A total of 1,354 

participants whose GWAS data were available were included in the analyses, 644 (47.6%) of 

whom being males. The mean ages (in years) of the five waves (T1 – T5) were 11.1, 13.5, 16.2, 

19.2 and 22.4, respectively. In total 20 traits, related to anthropometry, cardiovascular and renal 

function, metabolism and inflammation were selected.  

SNPs selection 

Figure 1 shows the process and results of SNP selection for the 20 traits of interest. We selected 

17 articles as sources of SNPs for the 20 traits, of which 13 used GWAS data, 2 used exome-

centric chips, and 2 used a combination of GWAS and gene-centric data. From these papers, we 

identified 8,183 SNP-phenotype associations. For 35 associations SNPs were missing in the 

TRAILS genotyped or imputed data, but we could successfully find proxies for 10 of them. 

Eighty one associations were removed because SNPs were in LD with another selected SNP. 

Finally, 8,077 SNP-phenotype combinations were included for constructing GRSs of the 20 traits 

(Figure 1; Supplementary Table 1-21).  
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Genetic risk score analysis 

Table 3 shows the results of weighted genetic risk score analysis at the third wave (for results of 

uGRS see Supplementary Table 23, for all waves see Supplementary Table 24). The number of 

SNPs included in the GRSs ranged from 4 (for ALT) to 3,290 (for height). Except for the GRSs 

for ALT, all GRSs were significantly associated with their traits and explained a significant part 

of the phenotypic variance. The variance explained by the GRSs for the traits varied greatly: the 

weighted GRS incorporating 49 SNPs for lipoprotein(a) (Lp(a)) explained 39.59% of its variance, 

while the wGRS for ALT only explained 0.10% and was not significant. Apart from Lp(a), GRSs 

for height, high-density lipoprotein (HDL), LDL and total cholesterol (TC) had relatively large 

contributions to their traits (above 10%). For blood pressure, the variance explained by the 

wGRS is 2.15% for SBP and 4.48% for DBP. For anthropometric traits that had repeated 

measurements (Figure 2, Supplementary Table 24), we found increases in variance explained by 

the GRSs for height with older age (e.g. from 9.34% at 14 years of age to 12.03% at the age of 

16 for the uGRS), but the differences were not significant. The variances explained remained 

similar for BMI from 11 to 22 years (between 5.79% and 6.55% for wGRS) and for 

WHRadjBMI from 16 to 22 years (between 1.38% and 1.95% for wGRS).  

The variance explained by GRSs increased when using the wGRSs compared to the 

uGRSs for most traits (Supplementary Table 23, Supplementary Figure 1), with the biggest 

increase for LDL. The uGRS for LDL explained 8.88% of the variance compared with 18.49% 

by the wGRS, an increase of almost 10%. For the traits that needed correction for ‘the TRAILS’ 

result, wGRSs using corrected effect sizes explained slightly less variance (range: 0.01% - 0.43%) 

than wGRSs using uncorrected effect sizes from the literature as expected (Supplementary Table 

25). 
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For 17 traits, variances explained in adolescents were compared with variance explained 

in adults that were extracted from literature (Figure 3, Table 3 and Supplementary Table 26). 

Generally, variances explained in adolescents were similar or slightly less than those in adults, 

with the biggest difference for C-reactive protein (CRP). The variance explained for CRP was 

3.69% in adolescents compared with 11% in adults.   

For all traits except ALT, significant increases of trait levels were found in individuals at 

the top wGRS decile compared with those at the bottom decile (Table 3). For instance, 

individuals at the top decile of the wGRS for SBP had on average a 6.30 mmHg higher SBP (95% 

CI 3.54 to 9.07 mmHg) than those at the bottom decile. For most traits levels of trait increased 

along with increases in the GRS decile (Supplementary Figure 2). Furthermore, over six-fold 

higher risk of overweight/obesity (OR 6.41, 95% CI 2.95-15.56) and around three-fold higher 

risk of hypertension (OR 2.86, 95% CI 1.39-6.17) were observed between top and bottom deciles 

of the GRS (Figure 4). 

Replication in TRAILSCC 

From TRAILSCC, 341 participants (69.2% males) with available DNA were included in 

replication analyses for height, BMI, WHRadjBMI, HR, SBP, DBP, HbA1C(%). Generally, 

GRSs also explained significant proportions of phenotypic variance in TRAILSCC 

(Supplementary Table 27). 

Additional analyses for BMI and blood pressure 

Fifteen SNPs were identified in meta-GWAS of childhood BMI and two SNPs for SBP in 

children or adolescents.32,33 For childhood BMI, six SNPs showed significant associations with 

BMI at 11 years in TRAILS (P<0.05) and 14 SNPs had directionally consistent effects with 

those reported by meta-GWASs (Supplementary Table 28). For childhood SBP, the two SNPs 
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were not significantly associated with SBP in TRAILS, but they had the same direction of effect 

as those in the meta-GWAS (Supplementary Table 28). Comparing with the uGRSs only 

including SNPs identified in adults, the uGRSs combining SNPs identified in adults and in 

children/adolescents explained slightly more variance of SBP and BMI at 11 years and 14 years 

(e.g. SBP, R2=1.69% compared to 1.67%)  (Supplementary Table 29). 

 

Discussion 

In this study, we investigated in 1,354 Dutch adolescents how much of the variance of 20 

complex disease traits could be explained by adult based GRSs. Our results showed that almost 

all adult based GRSs were significantly associated with their respective traits in adolescents. The 

trait variance explained by the GRSs varied from 0.09% to 39.59%, with weighted GRSs 

generally explaining a larger proportion of variance than the unweighted GRSs. For most traits 

the variance explained in adolescents was comparable with or slightly less than in adults. 

Significant increases of trait levels (except ALT) and increased risks for overweight/obesity and 

hypertension were found in individuals in the top wGRS decile compared with those at the 

bottom decile. 

Among metabolism traits, the variance explained by GRSs varied greatly, which may be 

caused by the differences in trait heritabilities and genetic architecture. For example, the wGRS 

for ALT explained 0.01% of variance which was not significant, while the wGRS for Lp(a) 

explained nearly 40%. The small variance explained for ALT is likely due to moderate 

heritability (22%-40% estimated from twin-family studies) and the GRS including only 4 SNPs 

as many ALT-associated SNPs may not yet have been identified due to insufficient power of the 

discovery GWAS.34,35 For some other liver enzymes, such as alkaline phosphatase (ALP) and γ-
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glutamyl transferase (GGT), more SNPs were identified in the original GWAS, but these traits 

were not measured in TRAILS.22 On the other hand Lp(a) is highly heritable (~90%), with 48 

identified SNPs located in the LPA gene region and only one SNP in another gene (APOE), 

indicating that this trait is not (very) polygenic in its architecture.29,36,37 For lipid traits (HDL, 

LDL, TC and Triglycerides (TG)), we selected SNPs from both genome-wide and exome-centric 

association studies including some rare variants (minor allele frequency (MAF) <1%). We found 

that the GRSs excluding rare variants explained slightly less variance of the lipid traits than the 

GRSs including rare variants, which indicates that even these rare variants with low imputation 

quality in TRAILS contribute to lipid trait variance (Supplementary Table 30-31). For repeatedly 

measured traits, no significant change was found between different waves. This is probably due 

to insufficient power of our sample or relatively stable influences of genetic factors during this 

age period (11 to 22 years).  

The associations between adult based GRSs and their respective traits in adolescents 

suggest that many of SNPs identified in adults also have effects in adolescents. Similar findings 

were reported before for GRSs based on blood pressure and BMI loci.10,12 Another study found a 

genetic correlation of 0.73 between childhood and adult BMI as calculated by LD score 

regression, indicating large but not perfect genetic overlap between childhood and adult BMI.32 

These results indicate the potential of applying adult-based GRSs to disease related traits for 

prediction at an early age. Besides, additional analyses for BMI and blood pressure suggested 

that combining SNPs identified in adults and in children/adolescents can increase the predictive 

ability of GRS. If more SNPs will be identified in future GWASs of children or adolescents, 

GRSs of these traits will likely explain more variance of their traits. In addition,  Evangelou et al. 

discovered that the wGRS for blood pressure was associated with increased risk of 
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cardiovascular events during adulthood.19 Our study showed that the adult-based GRSs for blood 

pressure and BMI could also predict hypertension and overweight/obesity, respectively, during 

adolescence. Therefore, GRSs for blood pressure and BMI may have the potential to guide 

preventative measures for hypertension and obesity in youth. For example, lifestyle interventions 

such as diet and physical activity could be targeted in individuals who are identified at high 

genetic risk already in early life.  

Furthermore, we found that the effects of adult based GRSs are similar or slightly smaller 

in adolescents compared with adults. The similarities of effects between adolescents and adults 

suggest that for some traits the influence of genetic factors may remain relatively stable from 

adolescence to adulthood. One reason for the small differences of effects between adolescents 

and adults may be age-dependent genetic effects (different genes may play a role or the 

magnitude of effects of the same genes on the phenotypes may change over time). For instance, 

variance explained for SBP was less in adolescents than in adults (2.15% vs 5.70%).19 Other 

studies on blood pressure confirmed that not all individual SNPs identified in adults were 

significantly associated with BP in adolescents and that adult-based GRSs explained less 

variance in adolescents.12,33 Another reason may be lack of stability of phenotypes for some traits. 

Levels of some traits during adolescence may be quite different from levels in adulthood as 

adolescence is a period of rapid anthropometric change. The growth rate varies between 

individuals as indicated by the less than perfect tracking (e.g., the correlation between height at 

11 and 22 years old was only 0.414) indicating that during adolescence individuals may be at 

different stages of development (Supplementary Table 32). Finally, we observed a much smaller 

explained variance for CRP in adolescents compared to adults. However, the original meta-

GWAS in adults applied the formula 2*MAF(1-MAF)b2/var to estimate variance explained rather 
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than performing an out-of-sample prediction in an independent validation cohort, which may 

have caused an overestimate of their explained CRP variance in adults.30 For some traits our 

results were not completely comparable with those from literature, as they used different 

methods or included not exactly the same SNPs as we did to estimate variance explained in 

adults (Supplementary Table 26). Nonetheless, the comparisons indicate that for most traits 

genetic markers identified in GWASs of adults may explain similar or slightly less variance in 

adolescents than in adults. 

One statistical issue is that in spite of testing GRSs for twenty different traits we have 

chosen not to apply a multiple testing correction in our study, because our aim was to replicate 

significant results from previous studies. We simply provided exact p values of GRSs for all 

traits in Table 3. However, it is important to point out that the GRSs for most traits would remain 

significant even if we used a corrected significance threshold of 0.0025 for 20 independent tests. 

Therefore, the interpretation of the results would not change if we would have adjusted for 

multiple testing.  

A limitation of our study is that we included only known genome-wide significant SNPs 

in our GRSs, instead of using approaches which include all available SNPs like a polygenic risk 

score (PRS) or LDpred. PRS is similar to GRS but includes larger number of independent SNPs 

by using more lenient significance thresholds.38 LDpred includes all SNPs below a certain 

significance threshold and accounts for linkage disequilibrium (LD) among SNPs to reduce loss 

of information.39 Conducting PRS or LDpred requires GWAS summary statistics that were not 

available for all twenty traits we investigated, so we chose to use the GRS approach, which only 

needs a list of significant SNPs as published in the literature. As such, our results are 

conservative; polygenic scores generated by PRS or LDpred are likely to explain more variance. 
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In addition, we selected only SNPs identified from European ancestry and applied GRSs in 

adolescents of the same ancestry. Our results may not be applicable to adolescents from other 

ethnicities.    

Despite these limitations, our research contributes to the understanding of genetic 

influence on twenty traits during a specific life period. To our knowledge, we are the first to 

evaluate the variance explained by adult-based GRSs for a wide range of disease-related traits in 

one homogeneous adolescent cohort. Even with a relatively small sample size, we detected 

associations between adult based GRSs and 19 traits in adolescents. In addition, as we had 

repeated measurements for some traits such as height, BMI and WHR, we could observe the 

contributions of known SNPs to these traits at different ages during the critical time period from 

childhood to early adulthood. Further, we calculated GRSs using the latest GWAS findings, so 

we could evaluate the value of applying updated adult based GRSs in adolescence. With the help 

of larger GWAS studies, more GWASs in children or adolescents and improved approaches for 

calculating genetic predictors, genetic risk prediction is likely to further gain accuracy. As 

genetic predictors can be calculated for many diseases simultaneously from birth onwards, 

genetic risk prediction provides opportunities to identify high-risk strata for many diseases at an 

early age, which is especially important for diseases with known effective interventions.  

In conclusion, we demonstrated that almost all adult based GRSs for 20 continuous 

disease trait were significantly associated with their respective traits in adolescents. Overall, 

these adult based GRSs explained a small to moderate part of phenotypic variance in adolescents 

and their effects appeared comparable with or slightly smaller than in adults. Larger GWAS 

studies and improved approaches to calculating genetic predictors in combination with efforts to 
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integrate genetic, environmental, clinical and molecular risk factors may offer promise for 

improvement of disease prevention. 
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Table 1. Details on the transformations, covariates and exclusions used for genetic risk score 
analysis of the 20 selected traits in TRAILS 
 
Trait Abbreviation transform Covariates Reference TRAILS 

correction 
Anthropometry      

Height   Height INR Sex, age 15 Yes 
Body mass index  BMI INR Sex, age 15 Yes 
Waist-to-hip ratio      
(BMI adjusted) WHRadjBMI INR Sex, age, age2, BMI 16 Yes 

Cardiovascular and renal function 
Heart rate  HR  Sex, age, age2, BMI 17,18  
Systolic blood pressure  SBP  Sex, age, age2, BMI 19 Yes 
Diastolic blood pressure  DBP  Sex, age, age2, BMI 19 Yes 
Estimated glomerular  
filtration rate      eGFR ln Sex, age 20 Yes 

Metabolism      
Glycated hemoglobin*  HbA1c  Sex, age, age2 21 Yes 
Alanine transaminase  ALT Log10 Sex, age 22  
Fasting glucose†  FG  Sex, age 23,24 Yes 
Fasting glucose  
(BMI adjusted)† FGadjBMI  Sex, age, BMI 24,25 Yes 

Fasting insulin†  FI ln Sex, age 24 Yes 
Fasting insulin  
(BMI adjusted)† FIadjBMI ln Sex, age, BMI 24 Yes 

High-density lipoprotein  HDL INR Sex, age, age2 26-28  
Low-density lipoprotein  LDL INR Sex, age, age2 26-28  
Total cholesterol  TC INR Sex, age, age2 26-28  
Triglycerides  TG ln, INR Sex, age, age2 26-28  
Lipoprotein(a)  Lp(a) INR Sex, age 29  

Inflammation      
C-reactive protein  CRP ln Sex, age 30 Yes 
Immunoglobulin E  IgE Log10 Sex, age 31  

 
*excluding individuals with diagnosed diabetes or high fasting glucose (≥7 mmol/l). 
†excluding individuals with diagnosed diabetes or high fasting glucose (≥7 mmol/l) or non-fasting.  
Abbreviations: ln, natural logarithm; INR, inverse normal of residuals.  
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Table 2. Descriptive statistics of age and the 20 quantitative traits at the third wave (16y) in the 
TRAILS cohort 
 
Trait (unit) total (n=1354)* Male (n=644)* Female (n=710)* 

Age (year) 16.22 (0.66) 16.21 (0.64) 16.23 (0.68) 
Anthropometry    
Height (cm) 174.58 (8.87) 180.27 (7.65) 169.29 (6.27) 
Body mass index (kg/m2) 20.75 (19.13-22.55) 20.27 (18.75-21.92) 21.25 (19.54-23.11) 
Waist-to-hip ratio 0.83 (0.79-0.87) 0.83 (0.80-0.87) 0.83 (0.78-0.86) 
Cardiovascular and renal function    
Heart rate (bpm) 68.03 (11.98) 66.40 (12.12) 69.54 (11.67) 
Systolic blood pressure (mmHg) 118.29 (12.53) 122.33 (12.60) 114.57 (11.26) 
Diastolic blood pressure (mmHg) 61.09 (6.95) 60.40 (7.06) 61.72 (6.79) 
Estimated glomerular filtration rate† 

(mL/min per 1.73 m2) 97.65 (89.28-107.41) 95.63 (86.91-105.73) 99.56 (91.41-108.32) 

Metabolism    
HbA1c (%) 5.17 (0.45) 5.23 (0.47) 5.13 (0.42) 
Alanine transaminase (U/I) 14.00 (12.00-18.00) 16.00 (13.00-20.00) 13.00 (11.00-16.00) 
Fasting glucose (mmol/l) 4.54 (0.42) 4.61 (0.45) 4.47 (0.38) 
Fasting insulin (mU/I) 12.00 (9.10-16.00) 11.05 (8.50-15.00) 12.00 (9.50-16.00) 
High-density lipoprotein (mmol/l) 1.40 (1.20-1.60) 1.40 (1.20-1.60) 1.50 (1.30-1.70) 
Low-density lipoprotein (mmol/l) 2.20 (1.80-2.60) 2.10 (1.70-2.50) 2.40 (2.00-2.79) 
Total cholesterol (mmol/l) 3.70 (3.30-4.23) 3.50 (3.10-4.00) 4.00 (3.50-4.40) 
Triglycerides (mmol/l) 0.69 (0.52-0.93) 0.64 (0.49-0.90) 0.72 (0.55-0.96) 
Lipoprotein(a) (mg/l) 69.50 (30.25-220.50) 60.00 (25.00-175.00) 81.00 (35.00-260.00) 
Inflammation    
C-reactive protein (mg/l) 0.40 (0.20-1.00) 0.30 (0.20-0.80) 0.50 (0.20-1.40) 
Immunoglobulin E (kU/I) 67.05 (22.23-213.00) 67.20 (22.70-225.00) 66.30 (21.90-205.00) 
 

*Descriptives are either mean (SD) or median (interquartile range) depending on the distribution of the variable. 
†eGFR=41.3 * (height/SCr), SCr, serum creatinine in mg/dl. 
T1 – T5, wave 1 – 5. The number of participants of the five waves were 1354, 1349, 1346, 1291, 1259, respectively.  
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Table 3. The result of genetic risk scores analyses at the third wave (16 y) 
 
Trait N in 

TRAILS 
Number 
of SNPs 

variance explained 
(wGRS) in TRAILS 
adolescents 

variance 
explained in 
adults (%)* 

difference of traits  between 
top and bottom wGRS 
decile† 

R2 (%) P 
Anthropometry 

    
 

  Height 1292 3290 13.68 1.41E-71 19.70 10.82 (9.32, 12.32)*** 
  BMI 1289 941 6.47 3.59E-21 5.00 2.21 (1.46, 2.97)*** 
  WHRadjBMI 1285 462 1.38 9.26E-06 3.90 0.03 (0.02, 0.05)*** 

Cardiovascular and renal function 
   

 
  HR 1280 80 1.46 9.39E-06 2.50 6.50 (3.66, 9.35)*** 
  SBP 1280 970 2.15 5.22E-09 5.70 6.30 (3.54, 9.07)*** 
  DBP 1280 962 4.48 1.14E-14 5.32 5.61 (3.93, 7.28)*** 
  eGFR 1074 253 5.04 4.28E-14 7.01 10.85 (7.40, 14.31)*** 
Metabolism 

     
 

  HbA1C 1074 43 2.83 1.62E-08 4.19 0.29 (0.18, 0.40)*** 
  ALT 1082 4 0.10 2.86E-01 0.10 0.01 (-0.03, 0.06) 
  FG 978 31 3.67 1.01E-09 3.28 0.25 (0.15, 0.36)*** 
  FGadjBMI 968 19 0.95 2.06E-03 

 
0.25 (0.15, 0.36)*** 

  FI 969 12 1.45 1.37E-04 1.20 0.28 (0.15, 0.40)*** 
  FIadjBMI 959 12 0.69 5.70E-03 

 
0.23 (0.11, 0.34)*** 

  HDL 1082 247 11.49 1.70E-32 12.80 0.36 (0.28, 0.43)*** 
  LDL 1082 194 18.49 2.38E-52 19.50 1.04 (0.89, 1.20)*** 
  TC 1082 234 12.95 3.50E-38 18.80 0.94 (0.77, 1.12)*** 
  TG 1082 190 6.56 4.63E-18 9.30 0.47 (0.36, 0.58)*** 
  LPA 1079 49 39.59 4.94E-123 36.00 39.76 (35.78, 43.75)*** 
Inflammation 

     
 

  CRP 1078 77 3.69 8.90E-11 11.00 0.82 (0.51, 1.14)*** 
  IgE 1060 7 2.06 2.52E-06 

 
0.36 (0.18, 0.54)*** 

 
see Table 1 for abbreviations. 
* These results were extracted from the literature. 
† The transformations and unit of phenotypes: height (cm), BMI (Kg/m2), HR (bpm), SBP (mmHg), DBP (mmHg), 
eGFR (mL/min per 1.73 m2), HbA1C (%), ALT (U/I, log10 transformation), FG (mmol/l), FGadjBMI (mmol/l), FI 
(mmol/l, ln transformation), FIadjBMI (mmol/l, ln transformation), HDL (mmol/l), LDL (mmol/l), TC (mmol/l), TG 
(mmol/l, ln transformation), LPA (mg/l), CRP (mg/l, ln transformation), IgE (kU/l, log10 transformation). 
***P<0.001.   
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Figure Legends: 

 

Figure 1. Flowchart showing the process and results of SNP selection of the 20 traits of interest 

 

Figure 2. Variance explained by uGRSs and wGRSs for anthropometric traits at different ages.  

 

Figure 3. The comparison between variances explained in adolescents and in adults. At the red 

dashed line the variances explained in adolescents and adults are the same. Seventeen traits are 

shown: height, BMI, WHR, HR, SBP, DBP, eGFR, HbA1c, ALT, FG, FI, HDL, LDL, TC, TG, 

Lp(a), CRP (see Table 1 for abbreviations). For some traits our results were not completely 

comparable with those from literature as different methods compared to ours were used for some 

traits to estimate variance explained in adults. In the literature, the method that included all SNPs 

into a linear regression model, adjusted for covariates and calculated the adjusted R2 was used for 

WHRadjBMI, SBP, DBP, HbA1c, FI, HDL, LDL, TC, and TG. The formula ((2*MAF(1-

MAF)b2)/var) was used for eGFR and CRP. In addition, for some traits not exactly the same 

SNPs as ours were included to evaluate variance explained in adults. Some traits included a few 

more SNPs than ours (SBP, DBP, eGFR, HbA1c, FI), while some traits included a few less 

(WHRadjBMI, HR, HDL, LDL, TC, TG, Lp(a)). See Supplementary Table 26 for more details. 

 

Figure 4. Odds ratios of overweight/obesity and hypertension comparing each of the upper nine 

GRS deciles with the lowest decile. Deciles of wGRS for BMI was used for overweight/obesity, 

and deciles of wGRS for SBP was used for hypertension (as most cases of hypertension resulted 

from high SBP). 
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