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A B S T R A C T

Depressive symptoms following a stressful life event, such as a relationship breakup, are common, and constitute
a potent risk factor for the onset of a major depressive episode. Resting-state neuroimaging studies have in-
creasingly identified abnormal whole-brain communication in patients with depression, but it is currently un-
clear whether depressive symptoms in individuals without a clinical diagnosis have reliable neural under-
pinnings. We investigated to what extent the severity of depressive symptoms in a non-clinical sample was
associated with imbalances in the complex dynamics of the brain during rest. To this end, a novel intrinsic
ignition approach was applied to resting-state neuroimaging data from sixty-nine participants with varying
degrees of depressive symptoms following a relationship breakup. Ignition-based measures of integration,
hierarchy, and metastability were calculated for each participant, revealing a negative correlation between these
measures and depressive ratings. We found that the severity of depressive symptoms was associated with deficits
in the brain’s capacity to globally integrate and process information over time. Furthermore, we found that
increased depressive symptoms were associated with reduced spatial diversity (i.e., hierarchy) and reduced
temporal variability (i.e., metastability) in the functional organization of the brain. These findings suggest the
merit of investigating constrained dynamical complexity as it is sensitive to the level of depressive symptoms
even in a non-clinical sample.

1. Introduction

The experience of a stressful life event, such as a relationship
breakup, can lead to the development of depressive symptoms (Field
et al., 2009; Kendler et al., 1999; Najib et al., 2004; Verhallen et al.,
2019). Even in the non-clinical population, these can have serious ef-
fects on the quality of life (World Health Organization, 2017), and in-
crease the risk for the onset of a major depressive disorder (MDD)
(Cuijpers and Smit, 2004; Karsten et al., 2011). The main method to
understand the neural basis of depression involves highlighting the
differences between healthy and patient populations. Therefore, it re-
mains unclear whether the depressive symptoms in individuals without

a clinical diagnosis have reliable neural underpinnings. In this study,
we investigated whether individual differences in the severity of de-
pressive symptoms after a relationship breakup were associated with
changes in the resting-state whole-brain dynamics.

Resting-state functional magnetic resonance imaging (fMRI) has
been increasingly applied to investigate alterations in the intrinsic form
of brain functional connectivity across discrete neural systems.
Substantial evidence suggests that depressive symptoms may evolve
due to imbalanced communication of large-scale brain networks (for a
review see Mulders et al., 2015), and some of these alterations have also
been reported in mild levels of depression. For example, previous
findings reported reduced functional connectivity of the cognitive
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control network, suggesting deficits in cognitive processing and cog-
nitive biases in subclinical depression (Hwang et al., 2015; Schultz
et al., 2019; Wei et al., 2014). Similarly, abnormal communication
between the frontoparietal and the default network may underlie in-
creased attention to internal thoughts and ongoing rumination, which
are commonly linked to increased depressive symptoms (Grimm et al.,
2009; Kaiser et al., 2015). Likewise, weaker functional dominance in
the dorsal attention network may reflect less goal-directed attention to
the external world and may contribute to sadness and depressive
symptoms (Petrican et al., 2015). Alterations involving the frontolimbic
network, which plays a key role in emotion regulation and memory,
have also been linked to the poor cognitive performance observed in
depressive disorders (Qi et al., 2018). Together, these studies indicate
that abnormal functional network connectivity during rest may con-
tribute to altered cognitive and affective functioning, considered to
underlie depressive symptoms. However, it is still unclear how exactly
these network alterations relate to the functional deficits at the global
level.

Advances in the field of connectomes have provided further insight
into the mechanisms implicated in global neural communication and
how these mechanisms shape brain function in health and disease. An
essential property for brain function involves the integration of neural
information across specialized brain regions within distributed net-
works (Lord et al., 2017). A widely used approach to explore integra-
tion relies on graph theoretical analysis. In graph theory, topological
integration relates to the efficiency in which distributed information is
incorporated to enable global communication (Rubinov and Sporns,
2010). In the context of depression, numerous studies have reported
changes in different properties of the network, such as increased
characteristic path length (i.e., it takes more steps to go from a brain
region to any other) and reduced global efficiency (i.e., less efficient
exchange of information at the global level). Another relevant property
of the neural networks, which is also involved in depression (Gong and
He, 2015), is the so-called rich club. This is a set of highly inter-
connected regions (van den Heuvel and Sporns, 2011) whose cen-
tralization of connectivity plays an important role in information in-
tegration (Senden et al., 2014; van den Heuvel et al., 2012).

While neuroimaging research on network integration using graph
theory, has yielded valuable insights into the topological aspects of
brain organization, it might also be beneficial to explore the temporal
variability underlying information integration. Accumulating evidence
indicates that the levels of integration dynamically change over time
(Cohen and D’Esposito, 2016; Deco et al., 2015; Lord et al., 2017; Shine
et al., 2016). Furthermore, there is increasing awareness of the re-
levance of these time-varying properties in clinical settings (Ponce-
Alvarez et al., 2015) as they potentially play a central role in supporting
cognitive function (Allen et al., 2014; Bassett et al., 2011; Calhoun
et al., 2014; Hutchison et al., 2013). Indeed, patients with depression
demonstrated aberrant dynamic functional connectivity, particularly
among systems involved in attention regulation and self-referential
thinking such as the frontoparietal network and the default-mode net-
work (Demirtaş et al., 2016; Kaiser et al., 2016; Wise et al., 2017).
Moreover, recent findings have indicated alterations in the relative
expression of specific functional networks over time. For example, Zhi
et al. (2018) showed that patients with depression engaged more fre-
quently in a state characterized by weaker between- and within-net-
work connectivity. Another study by Figueroa et al. (2019) demon-
strated that remitted patients with recurrent MDD had more difficulties
to engage in a state involving the cognitive control system.

As a result, several methods have been developed to characterize
the spatiotemporal unfolding of whole-brain connectivity (Allen et al.,
2014; Deco et al., 2017a; Hansen et al., 2015), including the novel
intrinsic ignition method described by Deco and Kringelbach (2017).
The advantage of this local-to-global approach is that it describes
whole-brain communication in terms of how the broadcast of in-
formation spreads across the brain over time. Specifically, the concept

of intrinsic ignition measures the contribution of each brain region to
propagate neural activity to other regions inducing varying degrees of
global integration.

In the present study, we set out to investigate the dynamical com-
plexity of the brain at rest by applying the intrinsic ignition framework
to a dataset of 69 participants with varying degrees of depressive
symptoms following a relationship breakup. We hypothesized that
greater levels of self-reported depressive symptoms are associated with
reduced global integration and reduced spatiotemporal variability in
the functional organization of the brain.

2. Materials and methods

2.1. Participants

We analyzed a dataset of healthy participants (without a disorder
diagnosis) who had recently experienced a relationship breakup. Recent
work by colleagues in our lab (Verhallen et al., 2019) on this dataset
revealed varying degrees of self-reported depressive symptoms among
these individuals. A full description of the participants, acquisition, and
analysis of the Major (ICD-10) Depression Inventory (MDI) is provided
in Verhallen et al. (2019).

2.1.1. Recruitment
Seventy-one participants who went through a recent relationship

breakup participated in the study. Participants were recruited by email,
online forums, word of mouth, and local advertisement with posters
and flyers. Participants aged 18–26 years were eligible for enrolment if
they had a relationship for at least six months and ended in the pre-
ceding six months, to ensure variability in depressive symptoms, in line
with other studies in the field (Aron et al., 2005; Fisher et al., 2010;
Lewandowski and Bizzoco, 2007; Stoessel et al., 2011). Additional
eligibility criteria were heterosexuality, right-handedness, a Western
background, and oral contraceptive use in women. Participants were
excluded if they had any MRI contraindications or any neurological or
psychiatric disorder. Participants received a full explanation of the
study procedure, gave written informed consent, and received a fi-
nancial recompense for their participation. The present study was ap-
proved by the local ethics committee of the University Medical Center
Groningen and was in accordance with the Declaration of Helsinki.

2.1.2. Final participants included in the analysis
Two participants were excluded from the analysis after neuroima-

ging data pre-processing, as we will explain in Section 2.3.1. Pre-pro-
cessing. The considered data consisted of 37 women and 32 men, be-
tween 18 and 25 years old (mean = 22).

2.1.3. Depressive symptom scores
The presence and severity of depressive symptoms were assessed

with the MDI. The MDI is a brief self-report mood questionnaire based
on the DSM-IV and the ICD-10 symptoms of depression (Bech et al.,
2001; Olsen et al., 2003). This inventory can be used as a continuous
scale, providing an estimate of symptom severity. Moreover, it is con-
sidered a reliable tool for assessing depressive symptoms in the general
population (Cuijpers et al., 2007). The MDI consists of 12 questions
asking how frequently, ranging from never (1) to very often (5), par-
ticipants have experienced symptoms related to depression over the last
14 days. In our sample, MDI scores (mean = 14.3, IQR = 7–21) varied
from a minimum of 1 to a maximum of 45 (out of a possible 50). This
indicates that there is a wide range of depressive symptoms in our
population sample. Supplementary Fig. S1A shows the distribution of
MDI scores.

2.2. Imaging acquisition

Neuroimaging data were acquired on a 3 Tesla Philips Intera MRI
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scanner (Philips Medical Systems, Best, the Netherlands) with a 32-
channel SENSE head coil. Structural images were collected using a T1-
Turbo Field Echo sequence with the following parameters: 0 gap; 1 mm
slice thickness; repetition time (TR) = 9000 ms; echo time
(TE) = 3.59 ms; field of view (FOV) in mm = 256 × 170 × 232
(RL × FH × AP); voxel size in mm = 1 × 1 × 1; 8° flip angle.
Functional images were acquired with a T2* weighted fast field echo-
planar imaging (EPI) pulse sequence with 0.3 mm gap; 3.5 mm slice
thickness; TR = 2000 ms; TE = 29 ms; FOV in mm = 220
× 220 × 121.8 (RL × FH × AP); voxel size in mm = 3.44
× 3.44 × 3.30; 70° flip angle. Scanning time = 308 s. A total of 150
volumes (37 slices per volume) were collected for each participant.
Slices were oriented parallel to the AC-PC transverse plane and ac-
quired in descending order. Participants used earplugs to minimize the
noise of the scanner and foam pads to reduce head motion. They were
instructed to hold their head still, close their eyes, let their mind flow,
and not fall asleep.

2.3. Imaging analysis

Image data analysis was performed using Statistical Parametric
Mapping, SPM12 (http://www.fil.ion.ucl.ac.uk/spm), implemented in
Matlab 2015b (The MathWorks Inc., Natick, MA).

2.3.1. Pre-processing
Functional images were realigned to the first image using rigid body

transformations and the mean EPI image, created during the former
step, was co-registered to the anatomical T1 image. Then, images were
spatially normalized to MNI T1-template and resampled to
2 × 2 × 2 mm voxel size. Bounding box parameters were changed to
−90:90, −126:90, −72:108 to ascertain overlap of all regions of in-
terest (ROIs) with the bounding box for extraction of time series data.
Subsequently, a set of eight nuisance variables and their first-order
temporal derivatives were regressed out: six head motion parameters
(three translation and three rotation), white matter (WM) signal, and
cerebrospinal fluid (CSF) signal. The extraction of these two signals
involved the creation of a WM and CSF masks by segmenting the T1-
weighted image and then extracting the first eigenvariate from the time
series of the overlapping voxels. Smoothing was applied using 8 mm full
width at half maximum Gaussian kernel. After data pre-processing, two
participants were excluded; one due to excessive head motion (more
than 3 mm of displacement or 3 degrees of rotation in any direction),
and another due to data quality issues. This resulted in a total of 69
participants for the fMRI data analysis.

2.3.2. Time series extraction and filtering
To obtain a fine-grained parcellation of the whole cerebral cortex,

brain regions were created by drawing a 10-mm-diameter sphere
around two different sets of ROI coordinates; the 264-region system
proposed by Power et al. (2011) and the Harvard-Oxford Subcortical
Structural Atlas. The latter was used to define three missing subcortical
structures: bilateral amygdala, hippocampus and caudate, which are
relevant in depression-related research (Servaas et al., 2013). These
resulted in a total of no-overlapping 270 ROIs. A group whole-brain
mask was generated in MNI space based on the EPI images of all par-
ticipants to locate the parts of the brain that were free from suscept-
ibility artifacts in all participants. When a region overlapped less than
50% with the group mask at 90% mean signal intensity, that region was
excluded from further analysis. This procedure resulted in the exclusion
of 47 Power ROIs. For the remaining 223 regions (Supplementary Table
S1), the BOLD time series were extracted as the average signal across
voxels within each region. For each participant, the 223 ROI time series
were filtered using a ninth-order Butterworth filter with passband 0.02
to 0.1 Hz, discarding low-frequency drifts (Smith et al., 1999) and high-
frequency components associated with cardiac and respiratory signals

(> 0.1 Hz) and covering the most meaningful frequency range of
resting-state fluctuations (Biswal et al., 1995). All analyses were per-
formed on this pre-processed data.

2.3.3. Pre-defined functional networks
The brain was mapped into 13 predefined functional networks from

the Power atlas, which was derived from resting-state fMRI data
(Supplementary Table S1). These include the sensorimotor (25 ROIs),
default mode (45 ROIs), cingulo-opercular task control (12 ROIs),
frontoparietal task control (23 ROIs), subcortical (19 ROIs), salience
(18 ROIs), auditory (13 ROIs), visual (29 ROIs), ventral attention (8
ROIs), dorsal attention (11 ROIs), memory retrieval (5 ROIs), cere-
bellum (4 ROIs), and uncertain (11 ROIs) networks. For the explorative
analysis of specific functional networks, 12 networks were included; the
uncertain network was excluded because it does not represent a net-
work with explicable function.

2.4. Ignition-based measures of dynamical complexity

The intrinsic ignition analysis, proposed by Deco and Kringelbach
(2017), allows characterizing the degree of integration in the brain that
results from spontaneous events arising over time. These events reveal
the ability of a given region to start the propagation of neural activity
(i.e., ignition) to other regions eliciting varying degrees of integration
in the brain. In turn, integration reflects the capacity of the brain to
become interconnected and exchange information. This process is il-
lustrated in Fig. 1.

For a given brain region (n), driving events are captured following
the established procedures of Tagliazucchi et al. (2012) and set as a
binary signal as follows. The filtered BOLD time series is first trans-
formed into z-scores, zn(t). Subsequently, a threshold θ (i.e., the mean
plus the standard deviation of the signal) is applied, where the binary
sequence σn(t) = 1 if zn(t) > θ and crosses the threshold from below,
otherwise σn(t) = 0. This method has been shown to be threshold-in-
dependent (Tagliazucchi et al., 2012) given that the binarization results
from the so-called Poincaré section (i.e., an approach that aim to reduce
the dimensionality of a dynamical system). When a brain region trig-
gers an event (green rectangle in Fig. 1A), the level of integration in the
rest of the brain is calculated for a time window of 3 TRs –from the time
when the trigger occurs (grey area in Fig. 1A), and the highest in-
tegration level within that window is used. Note that the number of TRs
in the window should be shorter than the interevent distances and large
enough to integrate information (Deco et al., 2017b; Deco and
Kringelbach, 2017). This window width was selected given the time
that the integration took to return to base level. For each time window,
co-occurring events (i.e., two regions triggering an event) can be re-
presented in a binary matrix (Fig. 1B). As introduced by Deco et al.
(2015), the amount of integration in the binarized matrix (considered
as an adjacency matrix) can be calculated using the size (i.e., the
number of brain regions) of the largest connected component –i.e., the
largest subgraph in which paths are connecting any pair of vertices and
which connects to no additional vertices in the supergraph (Fig. 1C).
The integration value is then normalized by the maximal number of
connected brain regions (i.e., N = 223 regions). This process is re-
peated for each driving event. Subsequently, the average and the
standard deviation of the elicited integration across events are calcu-
lated to characterize the ignition and ignition variability profiles of a
given brain region.

At the global level, ignition and ignition variability scores can be
averaged across all brain regions to produce a global measure of in-
tegration and temporal variability, respectively. Temporal variability
indicates the degree of dynamic flexibility, also referred to as metast-
ability. We also computed a measure of spatial diversity by calculating
the standard deviation of the ignition values across all brain regions.
This measure represents a good indicator of the hierarchy of information
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processing (Deco and Kringelbach, 2017). The underlying idea is that
some regions are more relevant than others for the broadcasting of
information across the whole brain.

2.5. Phase-based metastability

Furthermore, using an approach from dynamical systems, we
characterized the degree of metastability in the brain in terms of how
much the synchronization between regions fluctuates over time (Wildie
and Shanahan, 2012). The overall metastability was calculated as the
standard deviation of the Kuramoto order parameter (OP) across time.
The OP measures the degree of synchronization in the brain and is
expressed by the following equation:

=
=

t
N

eOP( ) 1
n

N i t
1

( )n

where n = 1, …, 223 brain regions and φn(t) refers to the instantaneous
phase of the BOLD signal at a given time point. Instantaneous phases
were obtained by applying the Hilbert transform to the bandpass-fil-
tered time series. Constant levels of the OP over time mean that the
system is in stable equilibrium whereas an increased variance of the OP
indicates that the system is systematically switching from one state to
the other, and therefore displays a more dynamical configuration.

2.6. Statistical analysis

Statistical analysis was conducted in R (R Core Development Team,
2013), scatterplots were produced with the R package ggplot2
(Wickham, 2016) and ggpubr (Kassambara, 2019) and brain networks
were displayed using the BrainNet Viewer toolbox (Xia et al., 2013),
implemented in Matlab 2015b (The MathWorks Inc., Natick, MA).

For our main analysis, we investigated the relationship between
depressive ratings, as measured by MDI, and three global measures of
dynamical complexity: global integration, spatial diversity (i.e., hier-
archy), and temporal variability (i.e., metastability). We observed that
the MDI scores were not normally distributed (Shapiro-Wilk test for
normality; W = 0.878, p < 0.001). Due to the skewness (s = 0.98) of
the data, non-parametric statistics were employed for all analyses.
Specifically, Spearman correlation was used as a non-parametric al-
ternative to Pearson correlation, to test the relationship between MDI
scores and measures of brain dynamics. The significance level of the
correlation coefficient was determined by means of permutation
testing. We used gender-restricted permutations to account for the
Kolmogorov-Smirnov distance (D = 0.34, p = 0.039) between the
distribution of MDI scores in women and men (Supplementary Fig.
S1B). Specifically, a 10,000-permutation vector was generated by ran-
domly reordering MDI scores within the female and male categories.
Within the permutation test, the significance threshold was set to
alpha = 0.05. This approach was chosen after having examined the
potential effect of age or gender on the outcome measures. Spearman
correlation tests revealed no significant effect of age, nor Man-
n–Whitney U test revealed a significant effect of gender in any of the
measures, except for MDI. As expected, women reported higher MDI
scores than men (U = 813.5, p = 0.008). Supplementary Table S1
shows the results of these tests.

In addition to our main analysis, we explored the relationship be-
tween MDI scores and the measures of integration and metastability
within each of the 12 functional networks (see Section 2.3.3. Pre-defined
functional networks). We calculated the network-driven integration and
the network temporal variability (i.e., metastability) as the average
ignition and ignition variability scores across the regions within a given
network, respectively. The relationship between these two measures
and MDI scores was likewise examined using Spearman correlation,
whereby the significance of the correlation coefficients was determined
using gender-restricted permutations (N = 10,000). In absence of any
pre-established hypotheses about specific networks involved, Bonfer-
roni corrected p-values were applied to account for multiple compar-
isons –i.e., 12 hypothesis tests, corresponding to the 12 functional
networks being tested–, by controlling the family-wise error rate
(FWER). Only networks for which significant results were found after
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Fig. 1. Calculation of ignition-based measures of dynamical complexity. (A) For
each filtered time series, a threshold (i.e., mean plus standard deviation of the
signal) is used to define events as those crossing the threshold from below.
These intrinsic ignition events reflect the capability of a given brain region to
start the propagation of neuronal activity to other regions in the brain. For each
event elicited (green rectangle), the activity in the rest of the brain (red rec-
tangle) is measured in the time window of 3 TRs (grey area). (B) In each time
window, co-occurring events are represented in a binary matrix of size
223 × 223 regions. (C) In this matrix, we find the length of the largest con-
nected component as a measure of integration. This process is repeated for each
driving event. (D) For each brain region, local measures of ignition and ignition
variability are calculated, respectively, as the average and standard deviation of
the integration across events. Ignition is a dynamic spatiotemporal measure that
enables the investigation of how global integration is elicited from a single
brain region over time. In turn, integration reflects the overall capacity of the
brain to become interconnected and exchange information. At the whole-brain
level, global integration and spatial diversity are calculated as the mean and
standard deviation of the ignition scores across regions, respectively. Spatial
diversity indicates the level of hierarchy concerning the contribution of each
region to global integration. Temporal variability (i.e., the degree of dynamic
flexibility or metastability) is calculated as the ignition variability averaged
across regions. Ignition variability quantifies how local activity in one region
changes over time, which is closely related to its local metastability. Adapted
from Deco and Kringelbach (2017). (For color figure the reader is referred to
the web version of this article). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Bonferroni corrections (alpha = 0.05/12) are reported in the main text.
All computed correlations, corrected and uncorrected p-values are
shown in Supplementary Table S3 and S4.

2.7. Data/code availability statement

The dataset is not publicly available due to restrictions from the
informed consent, as participants have not given consent to have their
data publicly stored, and European Data Privacy Regulations (GDPR).
De-identified behavioral and imaging data (NIfTI format) are available
upon request via j.b.c.marsman@umcg.nl.

The code for computing these measures of dynamical complexity is
publicly available at github.com/sonsolesalonsomartinez/ignition

3. Results

Measures of integration, spatial diversity, and temporal variability
were calculated to characterize the dynamic spatiotemporal organiza-
tion of resting-state whole-brain connectivity. A Spearman correlation
was computed to assess the relationship between these measures and
the degree of self-reported depressive symptoms as measured by MDI.
Bivariate outliers were identified for all correlation analyses and de-
picted in all scatterplots by a red circle. The results presented here in-
cluded the entire dataset (N = 69) since there were no theoretical
reasons to exclude the possible outliers, and given that removing the
outliers did not change our results (Supplementary Table S6).

3.1. Global integration

Global integration (mean = 0.102, SD = 0.009) was calculated as
the average ignition values across all brain regions. As described in the
methods Section 2.4. Ignition-based measures of dynamical complexity,

ignition denotes the contribution of a given brain region to starting the
propagation of neural activity that ultimately leads to different levels of
global integration. In turn, integration reflects the brain’s capacity to
incorporate and process spatially distributed information. Individual
differences in global integration negatively correlated with MDI scores,
such that lower levels of integration were associated with individuals
reporting more frequent depressive symptoms (r = -0.32; p = 0.007).
The scatterplot in Fig. 2A summarizes the results.

We further explored the importance of particular functional net-
works for the broadcasting of information across the brain. For each of
the 12 functional networks, we calculated the network-driven integra-
tion as the average ignition scores across the regions within a given
network. After Bonferroni corrections (alpha = 0.05/12), a negative
relationship (r = -0.36; p = 0.024) was found between MDI scores and
averaged ignition scores within regions of the salience network
(Fig. 2B). Supplementary Table S3 displays the results for the 12
functional networks.

3.2. Spatial diversity

Spatial diversity (mean = 0.019, SD = 0.007), computed as the
standard deviation of the ignition values across regions, defines the
level of heterogeneity in the brain concerning the contribution of each
region to the global integration. This heterogeneity provides further
information about the level of hierarchy in the functional organization
of the brain. There was a negative correlation (r = -0.25; p = 0.048)
between MDI scores and spatial diversity (Fig. 3A), indicating that
higher ratings of depressive symptoms were associated with a decreased
hierarchy of information processing. To provide a visual representation
of this hierarchy (Fig. 3B), participant-specific ignition values of all
regions were sorted from the largest scores and color-coded according
to their MDI scores. The depicted inverted S-curve, or more formally,
the inverse sigmoid function, revealed that the organization of brain
activity is (non-uniformly) hierarchical (Deco and Kringelbach, 2017).
Moreover, this curve became less steep in individuals reporting more
frequent depressive symptoms, which indicates a decrease of hierarchy
whereby the contributions to global integration were more evenly
distributed across regions.

Fig. 2. Association of decreased ignition-driven integration with increased de-
pressive ratings. (A) displays the negative correlation between MDI scores and
whole-brain integration (i.e., ignition scores averaged across all 223 regions).
(B) displays the negative correlation between MDI scores and network-driven
integration (i.e., ignition scores averaged across the 18 regions of the salience
network). Brain regions were rendered on a brain surface using the BrainNet
Viewer. Only functional networks showing a significant correlation after
Bonferroni corrections are displayed. In all scatterplots, individual dots re-
present scores for 69 participants. The circled points are outliers identified
using the bagplot rule (Rousseeuw et al., 1999; see bagplots in Supplementary
Fig. S3). R values are from the Spearman correlation coefficient, the solid line
represents the line of best fit and the shadowed area indicates the 95% con-
fidence intervals. The significance level of a correlation coefficient resulted
from a 10,000 (gender-restricted) permutation test at alpha = 0.05 (in Fig. 2A)
and alpha = 0.05/12 (in Fig. 2B).

Fig. 3. Association of decreased hierarchy with increased depressive ratings.
(A) displays a negative correlation between MDI scores and spatial diversity
(i.e., the variability of the ignition scores across all 223 regions). Individual dots
represent scores for 69 participants. No outliers were identified using the
bagplot rule (Rousseeuw et al., 1999; see the corresponding bagplot in Sup-
plementary Fig. S3). R values are from the Spearman correlation coefficient, the
solid line represents the line of best fit and the shadowed area indicates the 95%
confidence intervals. The significance level of a correlation coefficient resulted
from a 10,000 (gender-restricted) permutation test at alpha = 0.05. (B) par-
ticipant-specific ignition values of all regions were sorted from the largest
scores and color-coded according to their MDI scores. The color bar indicates
the MDI scores from 0 to 45. (For color figure the reader is referred to the web
version of this article).
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3.3. Temporal variability

3.3.1. Ignition-based metastability
Temporal variability (mean = 0.046, SD = 0.013) was computed as

the average ignition variability scores across all regions in the brain.
Ignition variability quantifies how local activity in one region changes
over time, which is closely related to its local metastability (Deco and
Kringelbach, 2017). A higher ignition variability indicates that the
propagation of neural activity fluctuates more over time, whereas lower
ignition variability represents more stability –less dynamism. We found
a significant negative association (r = −0.34; p = 0.005) between
temporal variability and MDI scores (Fig. 4A). This indicates that the
higher the depressive ratings, the less dynamic is the pattern of activity
over time.

We also explored the relationship between MDI scores and network
temporal variability for each of the 12 functional networks. A network
temporal variability score was calculated as the average ignition varia-
bility across regions within a given network. After Bonferroni correc-
tions (alpha = 0.05/12), a significant negative correlation between
temporal variability and MDI scores appeared in the cingulo-opercular
task control (r = −0.35; p = 0.035), dorsal attention (r = −0.36;
p = 0.044), memory retrieval (r = −0.39; p = 0.005), and salience
(r = −0.35; p = 0.025) networks. Scatterplots of these results are
displayed in Fig. 4B. Results of the correlation analysis for all 12
functional networks are presented in Supplementary Table S4.

3.3.2. Phased-based metastability
Additionally, we investigated temporal variability using a phase-

based measure of metastability, which measures how much the level of
synchrony changes over time. Phased-based metastability was calcu-
lated as the standard deviation of the Kuramoto parameter. Similar to
the results obtained using the ignition-based measure of metastability,
we found that phase-based metastability (mean = 0.090, SD = 0.018)
gradually decreased as MDI scores increased (r = −0.33; p = 0.003). A
scatterplot in Supplementary Figure S2A summarizes the results.

To ensure that the observed measure can be ascribed to the dy-
namics, we used surrogate time series under the assumption of linearity
and stationarity. First, 10,000 surrogate time series were generated for
each participant, by randomly permuting the phases of the original time
series across time. Subsequently, we calculated the Spearman correla-
tion coefficients between MDI scores and phase-metastability values for
all the surrogate set. The p-value to reject the null hypothesis was
computed as the probability of the observed correlation coefficient
given the null‐distribution. The null-hypothesis of linearity and statio-
narity using the surrogate time series was rejected at a significance level
of alpha = 0.05 (p = 0.001). Supplementary Fig. S2B shows the null
distribution of the correlation coefficients calculated using the surro-
gate time series.

3.4. Effect of motion on brain dynamics

We conducted a follow-up analysis to confirm that the observed

Fig. 4. Association of decreased metastability with increased depressive ratings. (A) displays a negative correlation between MDI scores and temporal variability (i.e.,
ignition variability scores averaged across all 223 regions). (B) displays negative correlations between MDI scores and network temporal variability (i.e., ignition
variability scores averaged across the regions within the COC, DAN, MR and salience networks). Brain regions were rendered on a brain surface using the BrainNet
Viewer. Only functional networks showing a significant correlation after Bonferroni corrections are displayed. In all scatterplots, individual dots represent scores for
69 participants. The circled points are outliers identified using the bagplot rule (Rousseeuw et al., 1999; see bagplots in Supplementary Fig. S3). R values are from the
Spearman correlation coefficient, the solid line represents the line of best fit and the shadowed area indicates the 95% confidence intervals. The significance level of a
correlation coefficient resulted from a 10,000 (gender-restricted) permutation test at alpha = 0.05 (in Fig. 4A) and alpha = 0.05/12 (in Fig. 4B). COC = cingulo-
opercular task control; DAN = dorsal attention; MR = memory retrieval.
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relationship between depressive symptoms and the measures of dyna-
mical complexity were unrelated to head movement. To assess motion,
we calculated the mean Framewise displacement (FD) for each parti-
cipant (mean = 0.15; SD = 0.04). FD estimates the participantś head
movement of any given frame relative to the previous frame.
Supplementary Fig. S4 displays for each participant, the mean and
standard deviation FD values across frames. Subsequently, we com-
puted the Spearman correlation coefficient between mean FD and the
global and network measures of dynamical complexity (i.e., integration,
spatial diversity, and temporal variability). To avoid false-negative ef-
fects of motion we did not correct for multiple comparisons. No sig-
nificant Spearman correlations were found between any of these mea-
sures and mean FD (Supplementary Table S5).

4. Discussion

In the present study, we applied a novel intrinsic ignition analysis to
investigate whether the severity of depressive symptoms in non-clinical
individuals was associated with changes in the dynamical complexity of
the brain at rest. Our approach was motivated by the emerging dis-
cipline of whole-brain computational connectomes, which suggests the
importance of a dynamical regime in cognitive, behavioral, and social
abilities (Deco et al., 2017a; Deco and Kringelbach, 2016). Dynamical
complexity was characterized using ignition-based measures of in-
tegration, hierarchy, and metastability. As expected, decreased global
integration (Fig. 2), decreased spatial diversity (Fig. 3), and decreased
temporal variability (Fig. 4) correlated with increased depressive rat-
ings as measured by MDI.

4.1. Reduced global integration was associated with increased depressive
ratings

Increased depressive symptoms were associated with diminished
global integration, implying a reduced capacity of the brain to regulate
and merge the incoming of information from distributed regions. This
finding is consistent with other studies reporting reduced global in-
tegrity in patients with depression (Manelis et al., 2016; Wang et al.,
2017b). However, also increases in global integration have been
documented in the MDD literature (for a review see Suo et al., 2018).
These conflicting results may be partially explained by the hetero-
geneity of the population sample, such as individual differences in the
number of previous episodes (Meng et al., 2014) and the use of different
definitions of altered network properties (i.e., degree centrality, global
efficiency, and characteristic path length). Unlike these studies, we
estimated the level of integration across the whole-brain network by
considering the diversity of computation both, in space and time. In
other words, global integration resulted from the distinct and hetero-
genous contributions across brain regions over time (i.e., ignition pro-
files). Global integration is crucial for efficient global communication,
which enables adaptive cognitive and behavioral responses (Deco et al.,
2015). Accumulating evidence suggests that depressive symptoms are
linked to suboptimal cognitive and emotional processes (Joormann and
Quinn, 2014; Nolen-hoeksema et al., 1993; Rood et al., 2009). It is
possible that the breakdown of information processing underlying the
observed reduced global integration accounts for these maladaptive
processes. Impaired functional integration has also been identified in
individuals scoring high in neuroticism (Servaas et al., 2015). This
finding is of particular interest given that this personality trait is con-
sidered a strong risk factor for the onset of depression (Jeronimus et al.,
2016). In general, integration deficits have been linked to other dis-
eases, including schizophrenia (Damaraju et al., 2014; Lynall et al.,
2010), bipolar disorder (Rashid et al., 2014) and Alzheimer’s disease
(Seo et al., 2013), highlighting the cross-diagnostic relevance of in-
tegration in neuropsychiatric disorders (van den Heuvel and Sporns,
2019).

4.2. Reduced hierarchy was associated with increased depressive ratings

Via the intrinsic ignition analysis, it was possible to estimate the
importance of each brain region for the propagation of neural in-
formation (i.e., ignition). Then, the assessment of the variability of
these ignition levels across brain regions provides information about
the degree of spatial diversity (i.e., hierarchy) in the whole brain. A
reduced hierarchy of information processing was associated with in-
creasing self-reported depressive symptoms. Higher hierarchy implies
higher functional specialization, whereby distinct brain regions perform
distinct roles. In particular, regions with low levels of ignition are
considered to be relevant for sensory processing, whereas regions with
high levels of ignition are more computationally relevant for the in-
tegration of information processing (Deco and Kringelbach, 2017).
Notably, our results showed that depression-related interindividual
variability was maximal in the regions with the highest ignition scores.
Prior studies have noted the importance of a hierarchical organization
for whole-brain integration (Deco et al., 2015) as it enables the complex
brain functions that are required for normal behavior and cognition
(Deco and Kringelbach, 2017; Lord et al., 2017; Park and Friston, 2013;
Sporns, 2014; Zamora-López et al., 2010). Thus, a possible interpreta-
tion for the association between increased depressive ratings and re-
duced degree of hierarchy might be related to the altered affective and
cognitive processing styles underlying depressive symptoms (Nolen-
hoeksema et al., 1993).

4.3. Reduced metastability was associated with increased depressive ratings

Along with reduced hierarchy, diminished metastability (i.e., tem-
poral variability) was also associated with the severity of depressive
symptoms, suggesting that individuals with more symptoms of de-
pression exhibited a narrower brain dynamic regime (Deco et al.,
2017a). This finding agrees with the argument of Ghosh et al. (2008)
that a reduced dynamic repertoire is implicated in disorders char-
acterized by emotional and cognitive dysfunction. Recent computa-
tional models have revealed that the brain dynamics at rest operate at a
maximal level of metastability (Deco et al., 2017a; Deco and
Kringelbach, 2016; Jobst et al., 2017; Lee and Frangou, 2017). In other
words, they propose that a healthy brain tends to be in a state of
maximum network switching, enabling the exploration of a rich dy-
namical repertoire. The underlying idea is that during periods of fluc-
tuation the system destabilizes, promoting the entrance of new in-
formation and consequently facilitating the exploration of a larger set of
brain functional configurations. In line with our finding, a study by
Demirtaş et al. (2016), using a similar analytical approach, reported
increased temporal stability in patients with MDD. More generally, the
link between reduced temporal variability and depression severity re-
presented in our data is coherent with prior research implicating
compromised metastability in other conditions including autism spec-
trum disorder (Fu et al., 2019; Watanabe and Rees, 2017) –with a high
rate of depression comorbidity, schizophrenia (Kottaram et al., 2019;
Koutsoukos and Angelopoulos, 2018; Lee et al., 2018), Alzheimer’s
disease (Córdova-Palomera et al., 2017) and traumatic brain injury
(Hellyer et al., 2015). In the last study, reduced levels of metastability
after traumatic brain injury were associated with reduced cognitive
flexibility and disrupted information processing. Interestingly, as pro-
posed by other researchers in the field, higher levels of metastability
might be acquired through mental training. A recent study (Escrichs
et al., 2019) employing the intrinsic ignition framework demonstrated
increased metastability in meditation experts while they were resting in
the scanner. Similar results were reported in yoga practitioners (Gard
et al., 2014) and high trait mindfulness individuals (Marusak et al.,
2018). These findings are of interest, given the benefits of meditation
for depression, anxiety and other negative emotional symptoms (Jain
et al., 2015), which often increase the risk of major depression.
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4.4. Contributions from specific functional networks

While it was not the main aim here, we explored whether whole-
brain integration elicited by specific functional networks was associated
with the severity of the depressive symptoms. Specifically, we found
imbalances in the functional role of the salience network in dynamically
integrating information over time to be linked to higher depressive
ratings. This result seems consistent with the implications of the sal-
ience network in the orchestration of brain dynamics (Menon and
Uddin, 2010; Uddin et al., 2011), and with studies reporting impair-
ments of this network in MDD (Peterson et al., 2014; Sliz and Hayley,
2012), late-life depression (Yuen et al., 2014) and at-risk individuals
(Kenett et al., 2018). In particular, similar to our findings, the study by
Kenett et al. (2018) revealed a negative relationship between sub-
clinical depression and integration abilities in the right anterior insula.
The salience network is considered to mediate between-network in-
teractions, constituting a key element for the integration of sensory,
emotional, and cognitive information (Craig, 2009; Menon and Uddin,
2010; Uddin et al., 2011). Accordingly, altered functional integration of
this network could in principle be linked to the inappropriate allocation
of cognitive and attentional resources that are often linked to depres-
sive symptoms (Wang et al., 2017a).

In addition to this finding, three other networks also showed atte-
nuated temporal variability in association with the severity of depres-
sive symptoms. These included the cingulo-opercular task control net-
work, putatively involved in cognitive control (Cohen and D’Esposito,
2016; Sadaghiani and D’Esposito, 2015); the dorsal attention network,
implicated in sustained attention and working memory (Corbetta and
Shulman, 2002); and the memory retrieval network. Given that time-
varying fluctuations are believed to play a central role in cognitive and
behavioral functioning (Avena-Koenigsberger et al., 2017; Chang and
Glover, 2010; Hellyer et al., 2015; Hutchison et al., 2013; Kringelbach
et al., 2015), it is possible that the reduced temporal variability found in
these networks relates to the difficulties in network switching seen in
patients with depression, and might further account for the maladaptive
processes of rumination and increased self-focus (Nolen-hoeksema
et al., 1993). Finally, the fact that depression-related differences in
these three networks only became apparent with respect to how much
their ignition level fluctuated over time, but not with respect to the
overall level of ignition, indicates that additional information may be
learned from these non-static representations of otherwise dynamic
brain activity.

4.5. Limitations, strengths and future work

Two parts of this study require further consideration: the population
sample and the ignition approach. Concerning the population sample,
this study moved beyond comparisons between healthy and patient
populations to examine changes in brain activity along the continuum
of depressive symptoms, as advocated by the research domain criteria
approach. By using the interindividual response variability to a re-
lationship breakup, it was possible to investigate depressive symptoms
in participants without a clinical diagnosis. This strategy was based on
the extensive evidence that after a relationship breakup most people
respond with symptoms of depression (Field et al., 2009; Kendler et al.,
1999; Najib et al., 2004; Verhallen et al., 2019). Yet, the inclusion of
only individuals with a recent relationship breakup suggests the need
for replication in a more heterogeneous sample. As far as the method is
concerned, one of the advantages of the present study is the application
of the intrinsic ignition analysis, which enabled the identification of
global integration changes along the continuum of depressive symp-
toms. More importantly, this novel approach provided valuable in-
formation regarding the underlying spatiotemporal dynamics, en-
couraging us to acknowledge the presence and the relevance of these
dynamics. Although we also explored the contributions of individual
functional networks, our analysis does not explain how these networks

form and dissolve over time to induce different levels of integration.
Flexible cognition and behavior depend on the balance between in-
tegration and segregation (Cohen and D’Esposito, 2016; Deco et al.,
2015). Thus, while this study focused only on integration, future re-
search should explore the interplay between these two processes.

5. Conclusion

The goal of the present work was to investigate whether changes in
the dynamical complexity were associated with the variability of de-
pressive symptoms reported by individuals after a recent relationship
breakup. The application of a novel intrinsic ignition analysis revealed
that reduced global integration and reduced spatiotemporal dynamics,
that is, less hierarchical organization and less functional variability over
time, scales along the continuum of depressive symptoms even in par-
ticipants without a clinical diagnosis. Given the growing evidence that
demonstrates altered resting-state dynamics across neuropsychiatric
disorders, our results in a nonclinical (yet vulnerable) population
sample suggest the merit of investigating brain rigidity, understood as
less complex brain dynamics, as a potential risk marker for mental
health problems. Our approach may provide new opportunities for
understanding depressive symptoms in the general population, offering
dimensionality across health and disease.
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