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Abstract. We consider multistage stochastic programming problems in which the random
parameters have finite support, leading to optimization over a finite scenario set. There has
been recent interest in dual bounds for such problems, of two types. One, known as expected
group subproblem objective (EGSO) bounds, require solution of a group subproblem, which
optimizes over a subset of the scenarios, for all subsets of the scenario set that have a given
cardinality. Increasing the subset cardinality in the group subproblem improves bound
quality, (EGSO bounds form a hierarchy), but the number of group subproblems required
to compute the bound increases very rapidly. Another is based on partitions of the scenario
set into subsets. Combining the values of the group subproblems for all subsets in a
partition yields a partition bound. In this paper, we consider partitions into subsets of
(nearly) equal cardinality. We show that the expected value of the partition bound over all
such partitions also forms a hierarchy. Tomake use of these bounds in practice, we propose
random sampling of partitions and suggest two enhancements to the approach: sampling
partitions that align with the multistage scenario tree structure and use of an auxiliary
optimization problem to discover newbest bounds based on the values of group subproblems
already computed. We establish the effectiveness of these ideas with computational exper-
iments on benchmark problems. Finally, we give a heuristic to save computational effort by
ceasing computation of a partition partway through if it appears unpromising.

History: Accepted by Karen Aardal, Area Editor for Design and Analysis of Algorithms.
Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2018.0885.
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1. Introduction
Stochastic programming provides an approach to
optimized decision making that models uncertain
parameters with probability distributions. The values
of these parameters are typically revealed over time,
in a multistage setting, and decisions made at each
stage hedge against possible realizations of parameters
revealed in future stages. Such multistage stochastic
programming models are of enormous practical value
and have been studied for many years now, with the
literature offering awealth of theoretical and algorithmic
tools for solving them; see, for example, Ruszczynski
and Shapiro (2003), Schultz (2003), Sahinidis (2004),
Shapiro (2006), Powell (2007, 2014), Birge and
Louveaux (2011), Sen and Zhou (2014), and Shapiro
et al. (2014) and the many references therein.

Many important practical applications are effec-
tively addressed with multistage stochastic program-
ming models that include integer variables, leading to
their formulation as multistage stochastic mixed integer

programs (SMIPs). Solvingmultistage SMIPs is especially
challenging, and decomposition approaches are typ-
ically required as the size of the scenario tree grows.
Here we address the case in which the number of
scenarios is small enough to enumerate explicitly, al-
though still too large to permit direct solution of the
deterministic equivalent formulation. This case arises
often in applications reported in the literature and has
been the focus ofmuch research effort. [See, for example,
the papers of Powell and Topaloglu (2003), Wallace
and Fleten (2003), Nowak et al. (2005), Santoso et al.
(2005), Huang andAhmed (2009), Özaltin et al. (2011),
Sandıkçı et al. (2013), Cheung et al. (2015), Erdogan
et al. (2015), Veliz et al. (2015), Maggioni et al. (2016),
and Sandıkçı and Özaltin (2017), which all address
applications.] Computing dual bounds formeasuring
the quality of primal solutions remains a key chal-
lenge in this case.
A recent stream of research work has investigated

the computation of dual bounds for SMIPs derived
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from the solution of scenario group subproblems, which
each include variables and constraints for only a subset
of scenarios. Sandıkçı et al. (2013), in a two-stage
setting, explore dual bounds provided by the ex-
pected value over all groups of afixed cardinality, q, of
the group subproblem (including a reference sce-
nario). For a fixed q, they name this the expected group
subproblem objective bound, denoted as EGSO(q). They
prove that the EGSO(q) bound is nondecreasing in q
and give computational results showing that the
bound is strong relative to that given by linear re-
laxations, even for small group sizes, and that as q
increases, the bound quite rapidly approaches the
optimal value. However, computing the EGSO(q)
bound can be challenging, as it requires solution of an
SMIPwith q scenarios, for every possible cardinality q
subset of the set of all scenarios. This work has since
been extended in several directions. Maggioni et al.
(2014) generalize the EGSO bound idea to multistage
linear stochastic programming problems with expecta-
tion objectives, while also allowing multiple reference
scenarios. Maggioni and Pflug (2016) extend these
results to multistage convex problems with concave
risk functionals as objective. We discuss the exten-
sions described byMaggioni et al. (2016) and Sandıkçı
and Özaltin (2017) and the working paper of Zenarosa
et al. (2014b), which are closest toourwork, in Section 2.

In this paper,we consider dual bounds thatwe refer
to as partition bounds. A single partition bound is ob-
tained by combining the group subproblem values
for each group that is a subset in a singlefixed partition
of the scenario set. Our first contribution is to prove
that for partitions into subsets of nearly equal size, the
expected value over all such partitions yields a hier-
archy of bounds. By “nearly equal,” we mean that all
groups have size either q, or q − 1; we call such a
partition a q-partition.Wedenote the expected value of
the partition bound over all q-partitions by EP(q).
Observing that the EGSO bound of Sandıkçı et al.
(2013) readily extends from the two-stage to the
multistage setting, we prove that the EP(q) bound is
equal to the EGSO(q) bound in the case that q divides
the number of scenarios, L, and interpolates between
the EGSO(q − 1) and EGSO(q) values otherwise. We
thus obtain the result that the EP(q) bound non-
decreases monotonically in q.

Although this hierarchical property of the expected
q-partition bounds is primarily of theoretical inter-
est, q-partitions can provide bounds in practice. By
solving �L/q� SMIPs, each with q or q − 1 scenarios, a
single partition bound results. In empirical studies,
we found that the distribution of such partition
bounds for typical benchmark instances is not very
far from symmetric, so the probability that a partition
has above-average value is not small. Similar ob-
servations can be made from distributions provided

in Sandıkçı and Özaltin (2017). Thus, calculating a
partition bound for only a few, randomly sampled
partitions and taking the best of these bounds is
highly likely to result in a dual bound greater than the
corresponding EP bound, and, hence, greater than the
EGSO bound. We are thus motivated to seek partition
bounds by random sampling of partitions.
Random sampling has been a valuable tool for

tackling stochastic programs. In particular, the sam-
ple average approximation (SAA) method (see, e.g.,
Kleywegt et al. 2002, Ruszczynski and Shapiro 2003)
has proved to be of great utility. In SAA, a set of sce-
narios is sampled, the sampled problem is solved, and
the resulting solution evaluated using a, usually larger,
sample of the scenarios. This process is repeated a
number of times, allowing statistical bounds, includ-
ing confidence intervals, to be computed (Norkin et al.
1998, Mak et al. 1999). In SAA, the expected value of
the group subproblem is known to provide a dual
bound (Kleywegt et al. 2002). Indeed, modulo re-
placement,1 the average SAA group subproblem value
can be interpreted as an estimate of theEGSObound for
groups of the same size.
Here, we propose to randomly sample partitions of

the set of scenarios, with replacement, and to compute
the best partition bound over the partitions sampled.
The practical value of this idea is illustrated on
benchmark instances, showing that randomly sam-
pled q-partition bounds are better than those de-
termined to be statistically likely using SAA with the
same computational effort. The sampling approach is
enhanced by leveraging the scenario tree structure
and by constructing optimally recombined partitions
from scenario subsets that are previously used in the
algorithm. Empirical tests show that both these ideas
can significantly improve the quality of the final
bound. On benchmark problems, sampling as few as
30 partitions closes 94% of the wait-and-see gap, on
average, for moderate group sizes (size 10), which
is 79% more than that can be closed with the SAA
estimates. By using the observation that the bound from
a given partition can be heuristically estimated part-
way through its computation, we suggest a method to
improve the efficiency of the approach. Strategies that
compare the heuristically estimated partition boundwith
the best such bound found so far, to terminate the par-
tition bound computation partway through, are tested
empirically. In many cases, such strategies substan-
tially reduce the computational effort with very little
impact on the quality of the final bound.
The remainder of this paper is organized as follows.

In Section 2, we provide an overview of related lit-
erature. In Section 3, we introduce our notation
and review the EGSO bounds and their extension to
the multistage case. In Section 4, we introduce the EP
bounds and prove that they yield a hierarchy of
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bounds. In Section 5, we present the random parti-
tion sampling approach and enhancements to it.
In Section 6, we provide the results of computational
experiments on two-stage and multistage benchmark
problems. We give conclusions and discuss promis-
ing extensions to this work in Section 7.

2. Literature Review
Challenges in solving multistage stochastic programs
(MSPs) with integer variables are well documented;
see, for example, Ahmed (2010), Klein Haneveld and
van der Vlerk (1999), Schultz (2003), and Sen and
Zhou (2014). (A comprehensive list of relevant schol-
arly works published between 1996 and 2007 is pro-
vided by van der Vlerk 2007.) These challenges have
spurred many recent algorithmic developments,
with substantial effort focused on decomposition
approaches.

One line of work employs stage-wise decomposi-
tion and convexification of the value function at each
scenario tree node; see, for example, the work of Klein
Haneveld et al. (2006), Sen and Higle (2005), Sen and
Sherali (2006), and van der Vlerk (2010), and for a
computational comparison of some alternative ap-
proaches, see Ntaimo and Sen (2008).

Another line of research, based on scenario-wise
decomposition (Carøe and Schultz 1999), has been
vigorously pursued in recent years, not least for its
strong potential for parallel implementation. For
example, Ahmed (2013) provides a scenario decom-
position approach for 0–1 two-stage problems. The
computational efficacy of a synchronous parallel
implementation of this approach is demonstrated by
Ahmed (2013), with algorithmic improvements, and
an asynchronous parallel implementation is pro-
vided by Ryan et al. (2016). For two-stage stochastic
mixed integer programming, Kim and Zavala (2018)
develop software based on parallel implementation
of a scenario decomposition method that uses La-
grangian relaxation to improve the dual bounds. Also
solving a (stabilized) Lagrangian dual master prob-
lem, but exploiting its special structure to do so in
parallel, is the method of Lubin et al. (2013). A related
approach is progressive hedging (Rockafellar andWets
1991), which has been used as an effective primal
heuristic for SMIPs (Løkketangen and Woodruff
1996, Crainic et al. 2011, Watson and Woodruff
2011, Cheung et al. 2015, Veliz et al. 2015), in-
cluding parallel implementations. Its connections
with dual decomposition were recently exploited to
derive hybrid approaches (Guo et al. 2015).

For an interesting study that compares stage-wise
and scenario-wise decomposition for a class of problems
with special structure, see Beier et al. (2015).

Scenario-wise decomposition can be generalized to
decomposition into sets, or groups, of scenarios, with

the subproblem for each group retaining all non-
anticipativity constraints (NACs) between scenarios
in the set, but the nonanticipativity constraints be-
tween scenarios in different groups relaxed. This idea
was exploited by Escudero et al. (2010, 2012) and
Aldasoro et al. (2013) in the context of branch-and-
fix coordination algorithms, and by Escudero et al.
(2013, 2016) with nonanticipativity constraints be-
tween groups (called “clusters” in this work) relaxed
in a Lagrangian fashion. The groups form a partition
of the set of all scenarios, the scenario set, that is in-
duced by the subtrees corresponding to the nodes in
one stage of the scenario tree. A hierarchy of bounds
is observed by Escudero et al. (2016): for any La-
grangian multiplier vector, (and hence for the La-
grangian dual value), the Lagrangian relaxation dual
bound is nonincreasing in the stage of the scenario
tree used to induce the partition (the earlier the stage,
the better the bound).
The work of Sandıkçı et al. (2013) developing

EGSO(q) bounds describes approaches for comput-
ing dual bounds for two-stage SMIPs via the solution
of many scenario group subproblems. Papers by
Sandıkçı and Özaltin (2017) andMaggioni et al. (2016)
and the working paper by Zenarosa et al. (2014b)
describe extensions of these ideas. Sandıkçı and
Özaltin (2017, p. 1774) study bounds from collections
of group subproblems (without reference scenario)
for groups that cover the scenario set. Such a collection
is called a “blockset.” They prove that an appropri-
ately weighted sum of the group subproblem values
over all groups in a blockset gives a lower bound.
They also show that if all groups in a blockset contain
no more than b scenarios, each scenario appears in
exactly m groups, and the blockset that gives the best
possible lower bound with these requirements is
used, then the bound from them � 1 case is better than
the others. This suggests that restricting attention to
blocksets that form a partition of the set of all sce-
narios, rather than a cover, is beneficial. When the set
of all scenarios is of size L, Sandıkçı and Özaltin (2017)
consider partitions in which all groups have cardi-
nality q, in the case that q divides L, and in which all
groups but one have cardinality q, and one group has
cardinality L mod q otherwise. They provide com-
putational results showing the distribution of the
resulting dual bound over all partitions of a set of 16
scenarios, for each of q � 1, 2, 4, 8, and 16, showing
how the dual bound improves with group problem
size and computation time increases. The distribution
of primal bounds, derived from solutions to the group
subproblems, is also given. The suggestion to stopMIP
solution of each group subproblem prior to proven
optimality is explored and shown to have the poten-
tial to greatly decrease run times with relatively less
impact on the quality of the bounds. Finally, a parallel
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implementation for a given partition is shown to be
able to compute primal solutions and gaps for instances
with an enormous number of scenarios in reasonable
wall clock time.

Zenarosa et al. (2014b) generalize the Sandıkçı et al.
(2013) EGSO bound to include multiple reference
scenarios in each group subproblem, and the result-
ing dual bound is shown to be monotonically in-
creasing in the subset size. Like Sandıkçı and Özaltin
(2017), Zenarosa et al. (2014b, p. 11) consider col-
lections of group subproblems, however, their col-
lections are constructed from scenario-node cuts in
the scenario tree. A given scenario-node cut in the
scenario tree consists of a set of scenario tree nodes
that induce a partition of the scenarios, with a subset
of the partition for each node in the cut. For each node
in the cut, a group subproblem is constructed, with a
group of scenarios and a set of reference scenarios,
both of which are subsets of the scenarios corre-
sponding to that node. The group problem values are
combined to compute what is called the value of the
“cut-group subproblem.” For a fixed cut and a fixed
set of reference scenarios for each node in the cut,
taking the expected value of the cut-group sub-
problem over all possible group subproblems yields
a dual bound. This bound is shown to increase
monotonically in the group size. By using solutions
of cut-group subproblems, Zenarosa et al. (2014b)
also derive primal bounds and prove monotonicity
properties of their expected values. Computational
results, including with a parallel implementation,
show the utility of these ideas.

Maggioni et al. (2016) show how to generate dual
bounds based on a set of reference scenarios and
taking the expected value of the group subproblems
over all groups of a fixed cardinality. They show that
the resulting bound increases monotonically in both
the cardinality of the groups and as the set of reference
scenarios expands. Maggioni et al. (2016) also suggest
ideas for upper bounds, and provide inequalities on
their expected values, in a similar vein to some of
those given in Zenarosa et al. (2014b). Maggioni et al.
(2016) provide numerical tests based on a real lo-
gistics SMIP application.

Finally, we mention that there is another stream of
research focusing on solving stochastic programs
by using partitions of the scenario set (Birge 1985,
Espinoza and Moreno 2014, Song and Luedtke 2015).
Though very effective in practice, these methods are
quite different from the approach we propose in this
paper. For example, partition-based approaches are
defined by Song and Luedtke (2015) as aggregation-
based methods where scenario-specific constraints
are aggregated according to partitions of the scenario
set to obtain dual bounds, and the partitions are it-
eratively refined later.

3. Preliminaries and EGSO Bounds for
Multistage Problems

We consider the multistage stochastic programming
problem, with T stages, and with random data ξ̃
having finite support. In particular, the random data
are defined on a probability space with discrete re-
alization set Ξ ⊆ Ξ1 × · · · × ΞT, arranged according to
a scenario tree. Each realization ξ ∈ Ξ corresponds to
a path in the scenario tree from its root node to a leaf
node, and every such path uses T nodes. We use the
notation ξ[t] for (ξt′ )tt′�1 � (ξ1, . . . , ξt), the realization,
ξ, for stages 1, . . . , t. Because all scenarios share a
single tree node in the first stage, it is assumed that ξ̃1
is deterministic. We take the multistage stochastic
program to have the following form:

zMSP :� min{f1(x1) + E[g2(x1, ξ[2])] : x1 ∈ -1},
where for each t � 2, . . . ,T, gt(xt−1, ξ[t]) is defined as

gt(xt−1, ξ[t]) � min ft(xt, ξ[t]) + E[gt+1(xt, ξ[t+1])|ξ[t]]
{
: xt ∈ -t(xt−1, ξ[t])

}
,

where gT+1 ≡ 0, and stage t decision variables, xt,
are assumed to be of dimension nt, so xt ∈ Rnt for
each t � 1, . . . ,T. We allow any finite-valued func-
tions ft and any set-valued functions -t, provided
(MSP) has an optimal solution, and provided the
restriction to any proper subset of Ξ has an optimal
solution. For practical implementation, we also re-
quire a solver that can handle problems in the form
of (MSP).
Because ξ̃ has finite support, we may write Ξ �

{ξ1, . . . , ξL} for some positive integer L, and index the
scenario set Ξ with 6 � {1, . . . ,L}. Define *(t, s) to be
the scenario tree node for the scenario with index s at
stage t, for each t � 1, . . . ,T and s ∈ 6. This permits us
to write (MSP) in its extensive form as

zMSP � min
∑
s∈6

ps
∑T
t�1

Fst(xst)

s.t. (xst)Tt�1 ∈ Xs, ∀s ∈ 6,

y*(t,s) � xst , ∀t � 1, . . . ,T, s ∈ 6,

where ps is the probability that ξs is realized, and
it is assumed that

∑
s∈6 ps � 1. We define Fst(xst) �

ft(xst , ξs[t])) and
Xs � {(xt)Tt�1 : x1 ∈ -1, xt ∈ -t(xt−1, ξs[t])),

∀t � 2, . . . ,T}.
The term yh∈Rnt for each scenario tree node h at stage
t is an auxiliary variable introduced to model the
NACs, ensuring that decisions made at stage t do
not depend on knowledge of realizations at later
stages.
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We now define the group subproblem for a subset S ⊆
6 of the scenarios, denoted by GR(S), to be

vGR(S) � 1
ρ(S) zGR(S),

where

zGR(S) � min
∑
s∈S

ps
∑T
t�1

Fst(xst)

s.t. (xst)Tt�1 ∈ Xs, ∀s ∈ S,

y*(t,s) � xst , ∀t � 1, . . . ,T, s ∈ S,

and we define

ρ(S) � ∑
s∈S

ps.

Note that, as in Sandıkçı and Özaltin (2017), we use a
simpler form of the group subproblem than that given
by Sandıkçı et al. (2013), without a reference scenario.
Note also that our assumption that (MSP) restricted to
any proper subset of Ξ has an optimal solution en-
sures that all group subproblems have an optimal
solution.

Observe that vGR(6) � zGR(6) � zMSP, and that for
each s ∈ 6, the value of the group subproblem for the
set consisting of the single scenario, s, is simply

vGR({s}) � min
∑T
t�1

Fst(xst) : (xst)Tt�1 ∈ Xs

{ }
;

we call this the single-scenario subproblem. The so-
called wait-and-see solution has value

zWS � ∑
s∈6

psvGR({s}) �
∑
s∈6

zGR({s}).

It iswell known that thisprovidesadual (i.e., lower) bound
on zMSP, because it is precisely equivalent to solving
(MSP) with all NACs omitted. Thus, zWS ≤ zMSP.

We now replicate the key result of Sandıkçı et al.
(2013), adjusted and extended to our multistage
context (see also Maggioni et al. 2014). The expected
group subproblem objective for an integer qwith 1 ≤ q ≤
L � |6| is denoted by EGSO(q) and defined by

EGSO(q) � 1
L−1
q−1

( ) ∑
S∈Ωq

ρ(S)vGR(S) � 1
L−1
q−1

( ) ∑
S∈Ωq

zGR(S),

where Ωq denotes the set of all subsets of 6 of car-
dinality q. The result is as follows.

Theorem 1 (Sandıkçı et al. 2013, theorem 1).

zWS �EGSO(1) ≤ EGSO(2) ≤ · · · ≤ EGSO(L − 1)
≤ EGSO(L) � zMSP.

The proof of Theorem 1, as well as some necessary
preliminary results, are given in Section 1 of the online
supplement. The slight difference from the result in
Sandıkçı et al. (2013), where zWS ≤ EGSO(1) rather
than zWS � EGSO(1), is caused by the omission of the
reference scenario.

4. Expected Partition Bounds: A Hierarchy
of Dual Bounds

We use the notation Π to denote a partition of the
scenario set, 6, so Π � {S1, . . . , Sm}, for some m, with
Si ⊆ 6 for all i � 1, . . . ,m and Si ∩ Si′ � ∅ for i′ �
1, . . . ,m, with i′ � i. It is well known that solving the
group subproblem over all subsets in a partition
yields a lower bound on (MSP).

Proposition 1. Let Π be a partition of 6, with Π �
{S1, . . . ,Sm}, for some positive integer m. Then, defining
zP(Π) to be the total value of the problems over all subsets
of the partition Π, we have

zP(Π) � ∑m
i�1

zGR(Si) ≤ zMSP.

Thus a dual bound on zMSP is obtained from a single
partition. In practice, provided a solver is available
for problems of the form of (MSP) and is computa-
tionally effective for problems with a modest number
of scenarios, it can be applied in parallel to yield a
single-partition bound for any partition in which all
subsets are of modest size.

To obtain a hierarchy of bounds from partitions, we
propose using the following particular type of par-
tition, which, for a given integer q, partitions the
scenario set into sets of size q or “almost” q, specifi-
cally, into sets of size q or q − 1.

Definition 1. Given a positive integer q, the q-partition
set of 6, denoted by Λq, is the set of all partitions of 6
into m subsets of size q and m′ subsets of size q − 1,
where m′ � q�Lq� − L, m � �Lq� −m′, and L � |6|.
It is straightforward to verify that the q-partition set

justifies its name, that is, that

mq +m′(q − 1) � L.

Note that if q is “too large” relative to L � |6|, then it is
possible thatm could be negative, and henceΛq could
be ill defined. Note also that, to be of practical in-
terest, partitions should consist of sets having sizes
small relative to the entire set of scenarios, otherwise
the benefit of being able to solve many smaller prob-
lems in parallel to construct a lower bound from the
partition is lost. Fortunately, as the following ob-
servation indicates, q can be quite large relative to
L without m dropping to zero. For example, q ≤ ̅̅

L
√

suffices.

Bakir et al.: Scenario Set Partition Dual Bounds for MSPs
INFORMS Journal on Computing, 2020, vol. 32, no. 1, pp. 145–163, © 2019 INFORMS 149



Lemma 1. The q-partition set of 6, Λq, is well defined, that
is, m ≥ 1, if and only if

q|L or L ≥ (q − r)q + r, (1)

where r � L − q�Lq�.
The expected partition bound that we propose

to consider is obtained by taking the average of all
q-partition single-partition bounds.

Definition 2. The expected partition bound for subsets of
(almost) size q is denoted by EP(q) and given by

EP(q) � 1
|Λq|

∑
Π∈Λq

zP(Π).

In what follows, we repeatedly use the observation
that q-partitions of a set S can be enumerated by
enumerating all permutations of its � � |S| elements
and then taking each consecutive sequence of q (and
then q − 1) elements to form one of the subsets in the
partition. However, many permutations of 1, . . . , �
give the same partition, because each sequence of
length q (or q − 1) can be permuted without changing
the partition, and the m sequences themselves can be
permuted without changing the partition. In general,
the number of distinct partitions of a set of size � � mq
into m sets of size q is

�!

(q!)mm!
.

By similar arguments, each set in Ωq appears in

(� − q)!
(q!)m−1(m − 1)!

distinct partitions of S. Both formulae are easily ex-
tended to q-partitions of6, as given in the proof of the
proposition below.

Proposition 2. Let q be a positive integer satisfying (1), and
define m and m′ as in Definition 1, where L � |6|. Then

EP(q) � qm
L

EGSO(q) + (q − 1)m′

L
EGSO(q − 1).

Proof. Let � � mq and �′ � m′(q − 1), so � + �′ � L. The
number of distinct partitions of a set of size L into m
sets of size q and m′ sets of size q − 1 is given by

|Λq| � L
�

( )
�!

(q!)mm!

�′!
((q − 1)!)m′m′!

,

which can easily be simplified to

|Λq| � L!
(q!)mm!((q − 1)!)m′m′!

.

Now, for P, a given subset of 6 of size q, any q-
partition containing Pmust induce a partition of6 \ P
into two sets: S1, the set of scenarios contained in
subsets of size q of the partition (but not in P), and S2,
the set of scenarios contained in subsets of size q − 1 of
the partition. Obviously, |S1| � (m − 1)q � � − q and
|S2| � m′(q − 1) � �′. Thus, to construct all q-partitions
that contain P, one may consider (i) all ways of
choosing S1 from 6 \ P, (ii) all ways of partitioning S1

into sets of size q, and (iii) all ways of partitioning S2

into sets of size q − 1, in combination. For case (i),

there are L − q
� − q

( )
such ways. For case (ii), there are

(� − q)!((q!)(m−1)(m − 1)!) ways. Similarly, for case (iii),
there are �′!/(((q − 1)!)m′

m′!) ways. Putting these in
combination, we see that each distinct subset of 6 of
size q appears in

ηq :� L − q

� − q

( ) (� − q)!
(q!)(m−1)(m − 1)!

�′!
((q − 1)!)m′m′!

partitions. The above expression can easily be sim-
plified to

ηq � (L − q)!
(q!)(m−1)(m − 1)!((q − 1)!)m′m′!

.

Similarly, each distinct subset of 6 of size q − 1 ap-
pears in

η′q :�
L − q + 1

�

( )
�!

(q!)mm!

(�′ − q + 1)!
((q − 1)!)(m′−1)(m′ − 1)!

partitions; the above expression can easily be sim-
plified to

η′q �
(L − q + 1)!

(q!)mm!((q − 1)!)(m′−1)(m′ − 1)! .

Now

1
|Λq|

∑
Π∈Λq

zP(Π) � 1
|Λq|

∑
Π∈Λq

∑
S∈Π

zGR(S)

� 1
|Λq| ηq

∑
S∈Ωq

zGR(S) + η′q
∑

S∈Ωq−1
zGR(S)

( )
.

(2)

But

ηq
|Λq| �

(L − q)!
(q!)(m−1)(m − 1)!((q − 1)!)m′m′!

· (q!)
mm!((q − 1)!)m′

m′!
L!

� (L − q)!q!m
L!

� qm
L

(L − q)!(q − 1)!
(L − 1)!

� qm
L

1
L−1
q−1

( ) .
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Thus,

ηq
|Λq|

∑
S∈Ωq

zGR(S) � qm
L

1
L−1
q−1

( ) ∑
S∈Ωq

zGR(S) � qm
L

EGSO(q).

(3)

Similarly,

η′q
|Λq| �

(L − q + 1)!
(q!)mm!((q − 1)!)(m′−1)(m′ − 1)!
· (q!)

mm!((q − 1)!)m′
m′!

L!

� (L − q + 1)!(q − 1)!m′

L!

� (q − 1)m′

L
(L − q + 1)!(q − 2)!

(L − 1)!
� (q − 1)m′

L
1

L−1
q−2

( )

.

Thus,

η′q
|Λq|

∑
S∈Ωq−1

zGR(S) � (q − 1)m′

L
1

L−1
q−2

( ) ∑
S∈Ωq−1

zGR(S)

� (q − 1)m′

L
EGSO(q − 1). (4)

The result follows by substituting from (3) and (4)
into (2). □

We now obtain our main result as a corollary.

Theorem 2. If q divides evenly into L � |6|, then
EP(q) � EGSO(q),

and otherwise, provided that q satisfies (1),

EGSO(q − 1) ≤ EP(q) ≤ EGSO(q),

with the first inequality strict unless EGSO(q − 1) �
EGSO(q).
Proof. Let m and m′ be as defined in Definition 1. Now
if q divides evenly into L, then m′ � 0, so qm � L, and
the result follows by Proposition 2. Otherwise, suppose
that q satisfies (1). Then, by Lemma 1, m ≥ 1, obviously
qm
L > 0 and (q−1)m′

L ≥ 0, and, furthermore, qmL + (q−1)m′
L � 1.

Thus, by Proposition 2, it must be that EP(q) is a convex
combination of EGSO(q − 1) and EGSO(q), with a strictly
positive coefficient on the latter in the combination. Be-
cause EGSO(q − 1) ≤ EGSO(q), the result follows. □

This result shows that the EP(q) bounds provide a
sequence of dual bounds for zMSP that are monoton-
ically nondecreasing in q, and that coincide with the
EGSO bounds in the case where the subset cardinality
divides evenly into the cardinality of the scenario set,

and otherwise interpolates between the bounds for
two consecutive cardinalities.

5. Scenario Set Partition Sampling
The practical value of the results in the previous section
comes from the observation that there is a high likelihood
that computing only a very small number of q-partition
single-partition bounds will yield a better bound
than EP(q), provided the distribution of zP(Π) over
Π ∈ Λq is not highly right skewed. Specifically, given
Λ̃q ⊂ Λq, an independently sampled subset of the
q-partitions, we have from Proposition 1 that

max
Π∈Λ̃q

zP(Π) ≤ zMSP.

If, for example, the distribution of the values of zP(Π)
over Π ∈ Λq is symmetric about its average, then the
probability that a single, randomly chosenΠ ∈ Λq will
have value no greater than its average is 0.5. Because
its average is exactly EP(q), we have that

Pr (max
Π∈Λ̃q

zP(Π) ≥ EP(q)) � 1 − Pr(zP(Π)<EP(q),

∀Π ∈ Λ̃q) ≈ 1 − (0.5)|Λ̃q |.

To illustrate the utility of this, consider a problem
with L � 24 scenarios, and take q � 3. To compute
EP(3) � EGSO(3), we must compute the solution to(24
3

) � 2,024 group subproblems, each with three
scenarios. However, if we randomly sample 10 par-
titions, we need to solve only L

q × |Λ̃q| � 24
3 × 10 � 80

such group subproblems, andwill have found a bound at
least as good with probability 1 − (0.5)10 > 0.999. This
idea is demonstrated in Figure 1 for a symmetric dis-
tribution of partition bounds.As the number of scenarios
increases, the fraction of subproblems that need to be
solved tofind a better partition bound than the expected
bound (EP) with a given probability gets smaller.
Even in the case that the distribution of the values of
zP(Π) over Π ∈ Λq is somewhat right skewed, for
example, say, Pr(zP(Π) ≥ EP(q)) � 0.2 only, then an
independent random sample of 31 partitions, requiring
solution of only 248 group subproblems, is sufficient to
ensure that the best bound generated by one of them is at
least EP(q) with probability at least 0.999. On bench-
mark instances, our observation echoes that made by
Sandıkçı and Özaltin (2017): these distributions, in
the case of q-partitions, are not highly skewed (see
Section 2 of the online supplement).
This motivates Algorithm 1, which computes exact

lower bounds from randomly sampled q-partitions.
The stopping criterion enforces a maximum on the
number of partitions sampled, Kmax, which is a given
parameter of the algorithm. Although the primary
purpose of Algorithm 1 is to generate a good dual
bound, there may also be an opportunity to generate
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upper bounds during the course of the algorithm,
making use of the solution to each group subproblem.
For example, Sandıkçı and Özaltin (2017) describe
such a heuristic. Even though randomly sampled
partitions provide effective results, as we discuss in
Section 6, we explore several ways to select partitions
more intelligently, to yield better partition bounds.
These are described in the remainder of this section.

Algorithm 1 Scenario Set Partition Sampling (S,L, q,Kmax)
Inputs: Set of scenarios S, L � |S|, group size q,
number of partitions Kmax

LB :� −∞, k :� 1
while k ≤ Kmax do

S :�6
for all i � 1, . . . , �Lq� do

/* Sample, without replacement, the next subset
in the partition */

if i ≤ L − (q − 1)�Lq� then
Ski :� a random sample of q scenarios from S

else
Ski :� a random sample of q − 1 scenarios from S

end if
/* Solve the multistage SP over scenarios in the

current subset */
Solve GR(Ski) to get optimal value zGR(Ski)
S :�S\Ski

end for
zk :� ∑�L/q�

i�1 zGR(Ski)
/* Update exact lower bound */
LB :� max{LB, zk}
[Optional]: seek an optimally recombined parti-
tion (Section 5.2) to improve LB
k :� k + 1

end while

5.1. Partition Sampling Based on Scenario
Tree Structure

When using partition sampling on multistage prob-
lem instances, taking advantage of the scenario tree
structure can potentially result in improved parti-
tion bounds. Selecting partitions that group together
scenarioswith asmany common nodes in the scenario
tree as possible can provide better partition bounds
compared with random partition sampling, because
of fewer NACs being violated. On the other hand,
partitions that keep “similar” scenarios (scenarios
with common nodes in the scenario tree) in different
groups also have the potential to provide better bounds
than randomly sampled partitions, because of each
group subproblem being a more accurate represen-
tation of the original problem. Here, we explore both
strategies.
Algorithm 2 defines our method of generating

q-partitions that groups scenarios with common
nodes together, called the “tree-aligned” partitioning
strategy. The algorithm takes the scenario tree, *, as
input and first generates 1j, given in (5), a priori for
every scenario tree node, j. Here,1j represents the set
of scenarios that have node j on their scenario path,
that is, the set of leaves of a subtree rooted at node j,
so 1j is given by

1j � {s ∈ S : j ∈ 3*(s)}, (5)

where 3*(s) denotes the path in scenario tree * from
the root node to leaf node s.
Algorithm 2 starts with any scenario tee node j∗ in

the penultimate stage, T − 1, and randomly selects
scenarios, k ∈ 1j∗ , to add to thefirst partition subset S1.
To keep track of which scenarios have been assigned a
partition subset, the selected scenario k is removed
from 1j∗ , and is removed from 1j for every j ∈ 3*(k).
This is repeated until either the current subset, Si, is

full or there are nomore scenarios that include node j∗
(1j∗ is empty). In the former case, a new subset is
started (i is incremented), and the process continues.
In the latter case, a new tree node, j∗, with nonempty
1j∗ , having the maximum possible number of tree
nodes in common with the previous j∗ is found, and
again the process continues. Selection of the new j∗ is
done by recursively checking the parent nodes j′ of the
current j∗, that is, j′ � a(j∗), j′ � a(a(j′)), and so forth,
until a nonempty 1j′ is found. Once such a node j′ is
identified, a random (T − 1)st stage descendant j′′ of j′
with nonempty1j′′ is selected. This j′′ is set as the new
j∗. To see the steps of Algorithm 2 on an example, the
reader is referred to Section 4 of the online supplement.
This strategy ensures that the resulting partition so-

lution satisfies as many NACs as possible. The concept
of a tree-aligned partition is illustrated in Figure 2,
which shows three tree-aligned partitions on a small,

Figure 1. Best Partition vs. Expected Partition

Note. The term q represents the group size, and p is target probability
of finding a better partition bound than EP(q) after solving NP
subproblems; NP � L

q × �log2 1
1−p�.
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three-stage scenario tree, with |Ξ1 × Ξ2 × Ξ3| � 1 × 4 × 3
and q � 2. Note that, provided q � |Ξt × Ξt+1 × · · · × ΞT |
for some t, in which case there is a unique tree-aligned
partition, the number of tree-aligned partitions is still
large relative to the total number of partitions. For
example, a 1 × 2 × 3 tree with q � 2 has 9 distinct tree-
aligned partitions out of a total 90 distinct partitions,
and a 1 × 3 × 2 tree with q � 3 has 6 distinct tree-
aligned partitions out of a total 20.

Algorithm 2 Partitioning Strategy, Tree Aligned (S,L,q,*)

Inputs: Set of scenarios S, L � |S|, group size q, sce-
nario tree *
for all j in nodes of scenario tree * do

1j :� {s ∈ S : j ∈ 3*(s)}
end for
j∗ :� any scenario tree node in the penultimate stage,
T − 1
for all i � 1, . . . , �Lq� do

Si :�∅
While (i≤L−(q−1)�Lq� and |Si|<q) or (i>L−(q−1)·
�Lq� and |Si|<q−1) do

If 1j∗ � ∅ then
k :� randomly picked scenario from 1j∗
Si :� Si ∪ {k}
for all j ∈ 3*(k) do.

1j :�1j \ {k}
end for

end if
while 1j∗ � ∅ do

j∗ :� its parent node
end while
j∗ :� randomly picked (T − 1)st stage descendant
node j of j∗ with 1j � ∅

end while
end for

To evaluate this method, we test the tree-aligned
(“tree,” for short) partitioning strategy against two

others: a “random” strategy, which randomly parti-
tions the scenario set without considering the tree
structure, and a “misaligned” strategy, which keeps
the scenarios with common nodes in separate groups
asmuch as possible. These three different partitioning
strategies are illustrated on a three-stage example
with nine scenarios in Figure 3.
An extensive computational study on the quality of

partition bounds attained by each of the three parti-
tioning strategies is conducted, and the results are
discussed in Section 6. Computational results reveal
that the tree-aligned partitioning strategy provides
considerable improvements in bound quality over
the other two strategies on the three-stage instance
class used in our computational study. However, the
performance of different partitioning strategies de-
pends on specific characteristics of the problem in-
stance under consideration; therefore, it is not always
obvious which strategy will result in better partition
bounds. In Section 6, we present a discussion on the
effects of some instance-specific characteristics that
affect bound quality in tree-aligned and misaligned
partitioning strategies.

5.2. Optimally Recombined Partitions
As the scenario set partition sampling procedure ran-
domly samples partitions, it computes the group sub-
problem objectives, zGR(S), associated with scenario
subsets,S, of thesepartitions.Oncea sufficientnumberof
partitions are sampled, it may be possible to recombine
the previously sampled subsets into a new and poten-
tially better partition. Thus, we seek optimally recom-
bined partitions by solving a set partitioning problem
over the previously sampled subsets, S, and the cor-
responding group subproblem objectives.
Recalling that6 represents the set of scenario indices,

let # represent the collection of previously sampled
scenario subsets, and let #(i) denote the collection of

Figure 2. Example Tree-Aligned Partitions for a Tree with |Ξ1 × Ξ2 × Ξ3| � 1 × 4 × 3 and q � 2
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scenario subsets containing scenario i. An optimally
recombined partition can be found by solving

argmax
x∈{0,1}|#|

∑
S∈#

zGR(S)xS :
∑
S∈#(i)

xS � 1, ∀i ∈ 6

{ }
.

We incorporate optimal recombination into the par-
tition sampling procedure by solving the set parti-
tioning problem at certain iterations. If a recombined
partition that is different from the previously sampled
partitions provides a better bound than the current best,
then we update the current best bound accordingly.
Otherwise, we continue to sample partitions.

5.3. Truncated Partition Bound Calculation
During the progression of the partition sampling
algorithm, only a small fraction of partitions actually
improve the best partition bound. (This is to be ex-
pected, because if k partitions have been solved so
far, the probability that the next partition yields a
better value is 1/(k + 1).) This suggests the possibil-
ity of reducing wasted computational effort by us-
ing the group subproblem values calculated partway
through a partition to heuristically estimate the final
partition bound, and to decide whether a partition is
promising or not, before all the group subproblems of
the partition are solved.

To determine how promising a partition is after
solving only a subset of the group subproblems, we
define a heuristic estimate for the partition bound
zP(Π). When group subproblems associatedwith only
the first r scenario subsets {S1, . . . ,Sr} of partition Π
are solved, the heuristic estimate ẑPr (Π) is defined as

ẑPr (Π) � 1∑r
i�1 ρ(Si)

∑r
i�1

zGR(Si).

We consider the following rule for eliminating un-
promising partitions, parameterized by the triple
(α, β, γ) with α, β ∈ [0, 1] and γ> 0: Eliminate partition
Π if, after at least α fraction of the group subproblems are
solved, the heuristic estimate of zP(Π) remains lower thanγ

times the best bound for the next r′ group subproblems
solved, where r′ is at least β fraction of the remaining
groups. In other words, when m and zP(Π∗) denote the
number of groups in partitionΠ and the best partition
bound found so far, respectively, under the trunca-
tion rule parametrized by (α, β, γ), we characterize a
partition Π as unpromising if

ẑPi (Π) ≤ γzP(Π∗), ∀i � r, . . . , r + r′,

provided r ≥ �αm� and r′ � �β(m − r)� − 1. Note that
eliminating a partition, that is, ceasing computation
of the value of the group subproblems in the partition,
will save the computation time of at least (1 − β)(m − r)
group subproblems. However, as the estimate is only a
heuristic, it may also eliminate a partition giving a new
best bound. The higher the values of α and β, and the
lower the value of γ, the more conservative the trun-
cation rule. A more conservative rule will save less
computing time, at less risk of eliminating a partition
yielding a better bound.
In our computational experiments, we explore the

extent of computational savings that can be obtained
from truncated bound calculation. Furthermore, we
present examples in which the computational effort
saved by eliminating unpromising partitions is used
toward promising partitions, resulting in an im-
proved partition bound.

6. Computational Results
Computational experiments are performed for four
different classes of problems: the stochastic capaci-
tated facility location problem (CAP), the stochastic
server location problem (SSLP), the dynamic capacity
acquisition and allocation problem (DCAP), and the
stochastic capacity expansion problem (PLTEXP).
CAP and SSLP instances are two-stage instances,
DCAP instances are three-stage instances, and PLTEXP
instances are three-, four-, and five-stage instances. Com-
putationswere run on a heterogeneous cluster ofmachines
with Xeon E5520, Xeon E5-2670, Xeon E5-2603, Xeon

Figure 3. Three Alternative Methods to Construct Partitions Based on the Scenario Tree Structure
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E5-2650v3, and Xeon E5430 processors using the
Gurobi 5.6.3 Python interface (with Python 2.7).
Different values for the group size, q, are considered,
while ensuring that qdivides the number of scenarios,
L, evenly, for simplicity.

6.1. Test Instances
The stochastic capacitated facility location problem
considered here was described by Louveaux (1986).
The first-stage decisions determine which facilities to
open, and the second-stage decisions give the fraction
of customer demand to be satisfied by each open
facility. The instances we use come from Bodur et al.
(2016). Each instance has 5,000 scenarios. Here, we
use the first 240 of them and experiment with group
sizes q � 5, 10, 15, 20.

The stochastic server location problem considered in
this paperwasdescribedbyNtaimo and Sen (2005), and
the instances used in experiments come from Ahmed
et al. (2015). The first-stage decisions concern installa-
tion of servers at possible locations, and the second-stage
decisions define the assignment of clients to servers.
Group sizes q � 2, 5, 10, 25 are used in experiments on
SSLP instances with 50 and 100 scenarios.

The dynamic capacity acquisition and allocation
problem was described by Ahmed and Garcia (2003),
and the three-stage instances used in computational
experiments of this paper were acquired from Zenarosa
et al. (2014a). The capacity acquisition decisions are
made at stages 1 and 2, and based on the acquired
capacities of the resources, allocation decisions are
made at stages 2 and 3. The test instances are named
“DCAP ninj2 1×n2×n3,” where ni and nj represent the
numbers of resources and tasks, respectively; n2
represents the number of second-stage nodes in the
scenario tree; and n3 represents the number of third-
stage nodes originating from every second-stage node.
The instances used in this study have 200, 300, and 500
scenarios. Computational experiments are conducted
using group sizes q � 2, 5, 10, 20, 30, 40, 50.

The multistage capacity expansion problem was
described by Sims (1992) and Holmes (1994), and the
multistage problem instances were acquired from
Holmes (2018). Three-, four-, and five-stage problem
instances,with six scenario tree nodes at each stage,were
used in computational experiments. The model con-
siders capacity expansion and allocation decisions in a
flexible manufacturing system subject to uncertain de-
mand, with the objective of maximizing profit. At each
stage, regular and overtime capacity allocation are
modeled, as well as the capacity acquisition/expansion
decisions. The instances used in the computational study
have 36, 216, and 1,296 scenarios, and group sizes of q �
2, 4, 6, 12, 18 are used in computational experiments.

Details of these test problems are given in Section 1
of the online supplement.

6.2. Computation Time
As briefly mentioned in Section 4, partition bounds
provide a computationally efficient way to obtain
dual bounds for problems that have too many sce-
narios to allow direct solution of the deterministic
equivalent, or even to permit the model to be loaded
without encountering memory issues. In this section,
we investigate the computational burden of partition
bounds by providing solution times associated with
different numbers of scenarios (L) and group sizes (q)
for a typical capacitated facility location problem
instance (CAP 101) using a Xeon E5-2603 processor.
We experiment with L � 240, 480, and 960 scenarios

and various group sizes. For each number of scenarios
and group size, 10 partitions are randomly sampled, and
the solution times are reported. Table 1A presents the
total solution time (averaged over 10 partitions) to
represent the case when all group subproblems are
solved sequentially, and Table 1B presents the max-
imum solution time among all group subproblems
(averaged over 10 partitions) to represent the case
when the group subproblems are solved in parallel.
To better understand the trade-off between solution
time and bound quality, best partition bounds (among
the 10 partitions) associated with each (L, q) pair are re-
ported in Table 2, and the fractions of series/parallel
computation time required to achieve the partition
bounds in Table 2 are presented in Table 3.
It is clear that in each one of the L � 240, 480, and 960

cases, using moderate group sizes such as q � 5, 10,
and 20, allows computing partition bounds in very
reasonable times even when parallel implementation
is not possible, as opposed to using very large group
sizes or directly solving the original problem. It is also
important to note that when trying to directly solve
the original problem, memory restrictions must be
taken into consideration, in addition to computa-
tion time issues. For example, directly solving the
CAP 101 instance with 960 scenarios is not possible

Table 1. Solution Times (in Seconds) for CAP 101

q

L 5 10 20 40 80 q � L

Panel A. Total solve time
240 52.71 88.97 242.15 329.19 466.04 5,585.30
480 98.04 162.74 484.67 778.17 944.44 15,351.15
960 223.83 240.61 579.96 1,515.23 1,871.99 87,683.96

Panel B. Maximum solve time
240 2.08 10.07 49.47 121.75 168.80 5,585.30
480 2.70 9.99 58.79 161.05 234.98 15,351.15
960 5.01 8.70 38.09 162.28 184.90 87,683.96

Notes. The values in both panels are averages of 10 solutions. For
q< L, 10 partitions are randomly sampled, and the average total
(or maximum) solution time is reported. For q � L, the deterministic
equivalent problem with L scenarios is solved 10 times, and the
average solution time is reported.
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for moderate memory sizes, as it uses over 50 GB of
memory just to load the model.

Because larger group sizes provide better partition
bounds, it is desirable to use the largest group size
allowed by the processing power, memory, and parallel
implementation capability. But even when the com-
puting platform at hand has moderate processing
power and memory, finding partition bounds with
small group sizes is a computationally efficient way of
obtaining good dual bounds, especially if parallel
computing is available.

6.3. Comparing Partition Sampling with SAA
Partition bounds are compared against sample av-
erage approximation estimates found by solving the
same size and number of group subproblems and
then calculating confidence intervals around the
resulting estimates. The lower end of the confidence
interval is taken to be the SAA lower bound estimate.
For each instance and each q value tested, we run
Algorithm 1 with Kmax � 30 or 50, requiring solution
of n′ � KmaxL/q group subproblems, each of size q. We
then apply SAA to the instance, using similar com-
putational effort: we take n′ independent samples of
size q, generated (with replacement) based on the
probability distribution associated with scenario
occurrences. For each scenario sample, S, the sample
average value, denoted by zSA(S), is found by solving
the following problem (see Kleywegt et al. 2002):

zSA(S) � min
{
1
q

∑
s∈S

∑T
t�1

Fst(xst) : (xst)Tt�1 ∈ Xs, ∀s ∈ S,

y*(t,s) � xst ,∀t � 1, . . . ,T, s ∈ S
}
.

After n′ subproblems are solved, for samples S1,S2,
. . . , Sn′ , the corresponding SAA estimate is ẑSAAn′ �
1
n′
∑n′

i�1 zSA(Si). Then the sample standard deviation is
ŝ2SAA � 1

n′−1
∑n′

i�1 zSA(Si) − ẑSAAn′
( )

2, and the confidence in-

terval with a level of confidence α is ẑSAAn′ ± tα
2,n

′−1
̅̅̅̅̅
ŝ2SAA
n′

√
.

Figure 4 illustrates, using a typical CAP instance,
how partition bounds compare with SAA estimates
and 95% confidence intervals around SAA estimates.
Partition bounds associated with 30 independent
partitions are presented, alongwith the SAA estimates
calculated by solving the same size and number of
group subproblems. For comparability of results in
terms of computational burden, SAA estimates on
the plots are updated only when a partition bound
is fully computed. It can be observed that the best
partition bound is significantly greater than the
lower limit of the 95% confidence interval around the
SAA estimate. Also, in most cases, the best partition
bound exceeds the SAA estimate. Usefully, the best
partition bound improves quite rapidly, so good
bounds are available very early in the sampling
process.
Figure 5 shows the progression of partition bounds

and SAA estimates on a three-stage DCAP instance
when the tree-aligned partitioning strategy is used
(as described in Section 5.1) and an optimally re-
combined partition is attempted (as described in
Section 5.2) every 10 iterations. As in the previous
example, the best partition bound exceeds the lower
limit of the 95% confidence interval around the SAA
estimate. Additionally, good partition bounds are
obtained very early in the partition sampling process,

Table 2. Best Partition Bounds (Among 10 Randomly Sampled Partitions) for CAP 101

q

L 5 10 20 40 80 q � L

240 732,005.22 733,311.23 733,967.62 734,158.09 734,302.79 734,354.25
480 729,194.92 730,530.73 731,161.12 731,434.18 731,604.76 731,631.30
960 729,929.05 731,283.14 731,888.98 732,184.13 732,345.42 732,490.10

Table 3. Expected Fraction of Series/Parallel Computation Time Needed to Achieve the
Partition Bounds Shown in Table 2

q

L 5 10 20 40 80

240 0.094/0.0004 0.159/0.0018 0.434/0.0089 0.589/0.0218 0.834/0.0302
480 0.064/0.0002 0.106/0.0007 0.316/0.0038 0.507/0.0105 0.615/0.0153
960 0.026/0.0001 0.027/0.0001 0.066/0.0004 0.173/0.0019 0.213/0.0021

Notes. The computation times under consideration are for computing 10 partition bounds, the best ones
among which are presented in Table 2. The reported fractions represent the computation times required
for solving all group subproblems in series and in parallel, respectively, divided by the computation
time required for solving the original problem with q � L.
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whereas SAA estimates require a considerably long
warm-up phase.

Similar behavior is observed in all CAP, SSLP, DCAP,
and PLTEXP instances. Detailed results for all problem
instances are presented in Section 2 of the online sup-
plement. Tables 4 and 5 present summary statistics
for CAP and SSLP instances, more specifically,

1. the gap obtained from the best partition bound
after k � 30 q-partitions, ΔP

k , given by Equation (6),
2. the gap obtained from the lower limit of the SAA

95% confidence interval after a computational effort
equivalent to k � 30 q-partitions, ΔSAA

k , given by Equa-
tion (7), and

3. the proportion of the latter gap that is closed by
the best partition bound, δSAA,Pk , given by Equation (8).

The gaps are calculated with respect to the wait-
and-see solution, zWS. Because the test instances have
a considerable amount of sunk cost, which is the cost
that has to be incurred regardless of solution quality,

the objective values associated with different solutions
do not seem very different from each other. To be able
to objectively compare different solutions in terms of
quality, we subtract the lower bound zWS from the
objective values in our reporting. Provided that OPT
represents the optimal value over all L scenarios, the
gaps are calculated as follows:

ΔP
k � (OPT − zWS) − (maxi�1,...,k{zPi} − zWS)

OPT − zWS
, (6)

ΔSAA
k �

(OPT − zWS) − ẑSAA
km − t0.025,km−1

̅̅̅̅̅
ŝ2SAA
km

√
− zWS

( )
OPT − zWS

,

where m � L
q
,

(7)

δSAA,Pk � ΔSAA
k − ΔP

k

ΔSAA
k

. (8)

Figure 4. CAP 124 Partition Sampling vs. SAA (Kmax � 30)

Note. CI, Confidence interval.
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Table 4 demonstrates the gapsΔP
30,Δ

SAA
30 , and δSAA,P30 for

the SSLP instances with different group sizes q, and
Table 5 gives the means and standard deviations of
ΔP
30, Δ

SAA
30 , and δSAA,P30 , taken over all 16 CAP instances

with different values of q. It can be seen in both tables
that after 30 partitions, the gaps from the best par-
tition bound are noticeably tighter than those from
the SAA confidence interval lower limit for the same
computational effort. Furthermore, it can be seen in
Section 2 of the online supplement that in themajority
of instances, the best partition bound is attained
within 10 or 20 partitions.

6.4. Partition Bound Sampling Enhancements
For problem instances with more than two stages, the
method of sampling partitions based on scenario tree
structure is described in Section 5.1. We conduct a
computational study for testing the bound quality for
tree-aligned, random, and misaligned partitioning

strategies in DCAP and PLTEXP instances. It is ob-
served that in all problem instances belonging to these
instance classes, when partitions are generated with
the tree-aligned strategy, the resulting partition bounds
are better than those for random and misaligned par-
titioning strategies. In DCAP instances, with 30 parti-
tions, the tree-aligned strategy closes, on average, 85%
of the wait-and-see gap with group size of only 5, and

Figure 5. DCAP 342 1×15×20 Partition Sampling (with Tree-Aligned Partitioning Strategy and Optimal Recombination) vs.
SAA (Kmax � 50)

Note. CI, Confidence interval.

Table 4. Best Partition Bound vs. Lower Limit of the 95%
SAA Confidence Interval on SSLP Instances

Instance L q ΔP
30 (%) ΔSAA

30 (%) δSAA,P30 (%)

SSLP 5-25-50 50 2 41.60 73.36 43.29
5 11.62 19.97 41.83
10 0.00 30.50 100.00
25 0.00 21.19 100.00

SSLP 10-50-100 100 2 45.29 67.90 33.30
5 9.01 25.51 64.67
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96%with size 10.As reported indetail in Section 2 of the
online supplement, the tree-aligned strategy obtains
significantly better bounds than those found using
other partitioning strategies, even with group sizes
many times larger. The tree-aligned partitions close
up to 3.5 times (1.9 times, on average, for DCAP in-
stances) the wait-and-see gap that can be closed by
the random partitions, which are constructed without
taking the scenario tree structure into account. There-
fore, in the remainder of this paper, we report only the
tree-aligned partition bounds associated with multi-
stage problem instances (unless stated otherwise).

Clearly, there are potential advantages and disad-
vantages in both the tree-aligned and the misaligned
partitioning strategies. The tree-aligned strategy vio-
lates as few NACs as possible, but may fail to represent
the entire scenario set accurately in each group sub-
problem. The misaligned strategy, on the other hand,
represents a better portion of the entire scenario set in
every group subproblem, but violates many NACs. To
understand the characteristics of the scenario tree that
may determine which of these two partitioning strat-
egies result in better bounds, we experiment with a
small DCAP instance.

We conjecture that when the major distinction
between the scenario tree nodes is observed in initial
stages (closer to the root node), better representing
the scenario set in group subproblems is critical, so
the misaligned partitioning strategy provides better
bounds. Similarly, when the major distinction be-
tween the nodes is observed in final stages (closer to
the leaves), both partitioning strategies would repre-
sent the scenario set in group subproblems well, and

therefore violating fewer NACs becomes more im-
portant in bound quality. In that case, the tree-aligned
partitioning strategy has a potential advantage in pro-
viding better bounds.
To test these ideas, we use a DCAP instance with

only 12 scenarios, as depicted in Figure 6. The only
uncertain parameter in the DCAP instances is the
capacity consumption of each task on each resource.
To better quantify the distinction between various
scenario tree nodes, we design the problem instance
so that the capacity consumption of every task on every
resource is the same for a given scenario. For example,
in scenario 1, all capacity consumptions are equal to a,
whereas in scenario 8, all capacity consumptions are
equal to a +Ψ + 3ψ. The difference between the two
penultimate stage nodes and the difference between
leaf nodes originating from the same penultimate
stage node are determined by Ψ and ψ, respectively.
Based on our conjecture, we expect that increasing
values of Ψ would favor the misaligned partitioning
strategy, and increasing values of ψ would favor the
tree-aligned partitioning strategy.
We create three settings based on the overall ca-

pacity consumption: low, medium, and high. In each
of these settings, we experiment with three Ψ values
and three ψ values. For each (Ψ, ψ) pair, the value of a
is calculated based on the total capacity consumption,
A, with a � A−4Ψ−12ψ

8 . For every setting and every
(Ψ, ψ) pair, we generate all tree-aligned and all
misaligned partitions, compute the corresponding
partition bounds, and compare the average tree-
aligned bound with the average misaligned bound.
The results obtained from the described experimental

Table 5. Best Partition Bound vs. Lower Limit of the 95% SAA Confidence Interval:
Summary for CAP Instances

L q

ΔP
30 ΔSAA

30 δSAA,P30

Mean (%) Std. dev. (%) Mean (%) Std. dev. (%) Mean (%) Std. dev. (%)

240 5 14.87 4.53 32.35 8.34 52.23 14.08
240 10 6.45 3.37 25.71 8.44 71.07 16.96
240 15 3.53 2.34 19.17 8.80 80.23 14.27
240 20 2.40 1.87 17.14 10.16 83.54 12.88

Note. Std. dev., standard deviation.

Figure 6. Example Scenario Tree with |Ξ1 × Ξ2 × Ξ3| � 1 × 2 × 4 for DCAP Instances

Note. The expression below each node represents the value of every uncertain parameter at the given stage and node.

Bakir et al.: Scenario Set Partition Dual Bounds for MSPs
INFORMS Journal on Computing, 2020, vol. 32, no. 1, pp. 145–163, © 2019 INFORMS 159



setting are presented in Table 6. Values in the table
represent the differences of average tree-aligned
and average misaligned partition bounds, divided
by the optimal objective. More specifically, δT,M �
1

OPT
1

|ΛT |
∑

Π∈ΛT zP(Π) − 1
|ΛM |

∑
Π∈ΛM zP(Π)

( )
, whereΛT and

ΛM denote the collection of tree-aligned and mis-
aligned partitions, respectively. Details of the per-
centage values in Table 6 are presented in Tables 9, 10,
and 11 of the online supplement.

Table 6 verifies that larger differences between leaf
nodes (smallΨ, large ψ) provide an advantage for the
tree-aligned partitioning strategy, and larger differ-
ences between earlier tree nodes (large Ψ, small ψ)
provide an advantage for the misaligned partitioning
strategy. Unfortunately, in the extant benchmark
instances, the level of the scenario tree at which the
major distinction between the scenarios occurs is not
always clear. Indeed, the dependence, if any, of un-
certainty parameter probability distributions on the
tree node at which they are sampled is not clearly
articulated in the problem descriptions. Therefore,
it is not easy to decide, a priori, which partition-
ing strategy would provide the best bounds for a
specific problem instance. However, in the full-sized
DCAP instances (L � 200, 300, and 500) and PLTEXP
instances (L � 36, 216, and 1,296) used in our experi-
mental study, there is no evidence pointing to a major
distinction between the earlier nodes of the scenario tree.
The capacity consumption realizations at each leaf node
seem tobe independent of their parent node.Under these
circumstances, as expected, the tree-aligned partitioning
strategy provides better partition bounds.

The method of recombining previously used sce-
nario subsets into new, and possibly better, partitions
is described in Section 5.2. Figure 5 depicts the results
of a computational experiment in which optimal re-
combination is attempted after every 10 partitions on
a DCAP instance. It can be observed that the best
partition bound is improved whenever a recombined
partition can be obtained.

Even though optimal recombination of partitions
has great potential to provide improved partition
bounds, it is important to note that it may not always

be possible to feasibly recombine the groups of existing
partitions into a new partition. Clearly, the tree-aligned
partitioning strategy provides some benefits in this
area, because it inherently divides the scenario set into
smaller subsets based on the scenario tree structure.
(The successful recombinations done while using a
tree-aligned partitioning strategy can be observed in
Figure 5.) However, in other partitioning strategies,
such as random sampling with no consideration of the
scenario tree structure, the possibility to recombine the
groupsof existingpartitions into anewpartitionmaynot
be very likely. It is intuitive that smaller group sizes
provide more opportunities for recombination, so the
likelihood of obtaining a new recombined partition
from the existing partitions is greater for small group
sizes.We provide support for this intuition in Section 3
of the online supplement.
In cases where it is possible to generate recombined

partitions from existing partitions, optimally recombined
partition bounds tend to provide more improvement to
the incumbent bound when the group size is small. This
phenomenon can be observed in Figure 5 and explained
with the observation that the distribution of partition
bounds have higher variability for smaller group sizes.
As mentioned in Section 5.3, to further improve

the efficiency of partition sampling, we suggest a
truncated bound calculation strategy, wherewe cease
the bound calculation for unpromising partitions
partway and start with a new partition.
Figure 7 demonstrates how bound truncation strat-

egies affect the progression of the partition sampling
algorithm on a DCAP instance with group size q � 5. It
can be clearly seen that more aggressive truncation
strategies result in fewer computations. Savings in
computational effort comes at a cost of reduced bound
quality in some cases, whereas in other cases bound
quality remains the same. Figure 8 plots the savings in
computational effort against the sacrifice in bound
quality for different truncation strategies, where sacrifice
in boundquality is expressed as the percentage difference
between the bounds found using truncation strategies
and the best partition bound without truncation.
Figure 8(a)–(c) shows the trade-off between compu-

tational savings and loss in bound quality for different

Table 6. Difference of Tree-Aligned and Misaligned Partition Bounds in a Small DCAP 332 Instance

Low consumption (A � 2.7) Medium consumption (A � 4.6) High consumption (A � 9.0)

ψ ψ ψ

Ψ 0.01 0.05 0.09 Ψ 0.01 0.11 0.21 Ψ 0.01 0.15 0.3

0 0.02% 0.08% 0.16% 0 0.01% 0.14% 0.22% 0 0.01% 1.20% 1.67%
0.2 −11.87% −8.86% −4.92% 0.25 −15.35% −10.02% −2.04% 0.7 −0.08% 0.13% 1.21%
0.4 −23.11% −22.77% −22.45% 0.5 −20.43% −17.69% −7.89% 1.3 −2.13% −1.30% 0.76%

Notes. Plotted values, δT,M � 1
OPT

1
|ΛT |

∑
Π∈ΛT zP(Π) − 1

|ΛM |
∑

Π∈ΛM zP(Π)
( )

, are the percentage differences of average tree-aligned and misaligned

partition bounds. Negative values indicate that the misaligned strategy gives the better bound.
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truncation strategies on an SSLP instance and a DCAP
instance, respectively. Using the conservative strategy,
more than 14% can be saved in computational effort
while losing very little or nothing in terms of solution
quality.Over 70%computational savings can be attained
by eliminating partitions aggressively, while losing no
more than 1.5% in bound quality. Similar results hold for
other CAP, SSLP, and DCAP instances.

When truncation strategies are used, the saved com-
putational effort can be used toward considering more
partitions and therefore possibly improving the partition
bound. To demonstrate this idea, we conduct exper-
iments on some test instances, where new partitions
are explored using the computational effort saved by
using a conservative truncation strategy. The results
of these experiments are presented in detail in Figure 9
for an SSLP and a DCAP instance. Figure 9(a) dem-
onstrates an instancewhere 30 partitions (30×10� 300

group subproblems) are attempted originally, but the
conservative truncation strategy results in solving only
256 group subproblems. The remaining computational
effort, corresponding to 44 group subproblems, is used
toward solving for four new partitions, one of which
yields a better partition bound than the best partition
bound. A similar result can be observed in Figure 9(b).
Clearly, it is not guaranteed that the truncation strate-
gies will not eliminate a partition that would provide
a better bound than the current best, or that the new
partition bounds calculated using the saved compu-
tational effort will result in an improved partition
bound. But the examples we provide substantiate the
potential of the truncation approach to save computa-
tional effort or to yield better partition bounds.

7. Conclusions and Future Work
We have shown that random sampling of partition
bounds can be a simple yet effective approach to calcu-
latingdual bounds for SMIPs.Onbenchmark instances, it
performs better than other sampling approaches for the
same computational effort, and has the added benefit of
providing a guaranteed bound, rather than one that is
statistically likely. In practice, only a few partitions need
to be sampled before the value of the best partition ex-
ceeds the expected value of group subproblems. It would
be interesting to characterize classes of partitions or at-
tributes of stochastic programs that ensure the distribu-
tion of partition bounds has the “right shape,” that is, is
sufficiently away from being right skewed, to ensure
sampling is an attractive approach. This seems a quite
difficult question to answer, but may be one that future
work could shed some light on.
The ideas presented here have the potential to be

extended in several directions. For any partition, the
partition bound can be viewed as the special case of
a bound obtained by Lagrangian relaxation of the
NACs between scenarios from different subsets of the
partition: the partition bound is simply the case with

Figure 7. Partition Bounds with Different Truncation
Strategies (DCAP 332 1×15×20, q � 5)

Note. The last partition bound of every truncation strategy belongs to
an optimally recombined partition, and (α, β, γ) values of (0.3, 0.02,
1.0), (0.35, 0.03, 0.985), and (0.4, 0.04, 0.96) are used to demonstrate
aggressive, neutral, and conservative truncation strategies, respectively.

Figure 8. Computational Savings vs. Loss in Bound Quality for Different Truncation Strategies

Note. The (α, β, γ) values (0.2, 0.02, 1.05), (0.4, 0.04, 0.99), and (0.5, 0.06, 0.95) are used to demonstrate aggressive, neutral, and conservative strategies
for SSLP instances.
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zero Lagrangemultipliers. Anymethod that provides
better Lagrange multipliers for the partition can be
used to improve the partition bound. This suggests
that sampling of partitions may be combined with
Lagrangian relaxation methods to alter both the parti-
tion and the Lagrange multipliers in tandem.

The calculation of partition bounds is naturally
amenable to parallel implementation, and effective
parallel codes could be developed in the future. These
would be particularly helpful for cases in which the
number of scenarios is very large.

Finally, we mention that more systematic resam-
pling approaches could be explored. These might be
designed, for example, so that new partitions reuse
some previously solved group subproblems, while
still exploring regroupings of the scenarios via ran-
domness. Another idea would be to record the degree
of NAC violation in partition bound solutions, by
scenario pair, and seek to group scenarios that exhibit
large violations when assigned to different group
subproblems in a partition.
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Endnote
1 SAA samples scenarios with replacement, allowing the same sce-
nario to be sampled more than once, whereas the EGSO bound as-
sumes that all scenarios in a group are distinct.
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