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RESEARCH ARTICLE Open Access

Inconsistent descriptions of lumbar
multifidus morphology: A scoping review
Anke Hofste1,2*, Remko Soer1,2, Hermie J. Hermens3,4, Heiko Wagner5, Frits G. J. Oosterveld2, André P. Wolff1 and
Gerbrand J. Groen1

Abstract

Background: Lumbar multifidus (LM) is regarded as the major stabilizing muscle of the spine. The effects of
exercise therapy in low back pain (LBP) are attributed to this muscle. A current literature review is warranted,
however, given the complexity of LM morphology and the inconsistency of anatomical descriptions in the
literature.

Methods: Scoping review of studies on LM morphology including major anatomy atlases. All relevant studies were
searched in PubMed (Medline) and EMBASE until June 2019. Anatomy atlases were retrieved from multiple
university libraries and online. All studies and atlases were screened for the following LM parameters: location,
imaging methods, spine levels, muscle trajectory, muscle thickness, cross-sectional area, and diameter. The quality of
the studies and atlases was also assessed using a five-item evaluation system.

Results: In all, 303 studies and 19 anatomy atlases were included in this review. In most studies, LM morphology
was determined by MRI, ultrasound imaging, or drawings – particularly for levels L4–S1. In 153 studies, LM is
described as a superficial muscle only, in 72 studies as a deep muscle only, and in 35 studies as both superficial and
deep. Anatomy atlases predominantly depict LM as a deep muscle covered by the erector spinae and
thoracolumbar fascia. About 42% of the studies had high quality scores, with 39% having moderate scores and 19%
having low scores. The quality of figures in anatomy atlases was ranked as high in one atlas, moderate in 15 atlases,
and low in 3 atlases.

Discussion: Anatomical studies of LM exhibit inconsistent findings, describing its location as superficial (50%), deep
(25%), or both (12%). This is in sharp contrast to anatomy atlases, which depict LM predominantly as deep muscle.
Within the limitations of the self-developed quality-assessment tool, high-quality scores were identified in a majority
of studies (42%), but in only one anatomy atlas.

Conclusions: We identified a lack of standardization in the depiction and description of LM morphology. This could
affect the precise understanding of its role in background and therapy in LBP patients. Standardization of research
methodology on LM morphology is recommended. Anatomy atlases should be updated on LM morphology.

Keywords: Paraspinal Muscles, Lumbar Vertebrae, Lumbar multifidus, Erector spinae, Magnetic Resonance Imaging,
Ultrasonography, Computer Tomography, Scoping review, low back pain
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Background
Stabilizing therapy through muscle training is one of the
main physiotherapeutic interventions for low back pain
[1–3]. A uniform theoretical background for this treat-
ment is lacking [4], however, and more recent studies re-
port contradictory results following this treatment [5–7].
There are no explanations for how stabilizing therapy
could have such opposing effects on patients with low
back pain. Given that the lumbar multifidus (LM) is
regarded as the major stabilizing muscle of the spine [5,
8–14], the anatomy and topography of this muscle might
offer at least some explanation for the opposing effects
of stabilizing therapy.
The morphology of the LM is complex, and several

anatomical descriptions have appeared in the literature
[15–19]. Anatomical studies have concluded that the
LM has the largest cross-sectional area (CSA) of
paraspinal muscles with short levers located at the most
medial part of the spine between approximately L4 and
S1 [16, 20, 21]. Important factors in spinal stabilization
include CSA, deformation or stress in ligaments, and
muscle type, activity pattern, force, mass, and length [8–10,
19, 22]. According to other studies, however, LM muscle
mass is too small to play a substantial stabilizing role, and
the primary stabilizing role should be attributed to the
erector spinae (ES) [4]. Furthermore, an ongoing debate
concerns the topography of the LM to the ES (i.e., deep vs
superficial) [19, 23–25]. This discussion has led to many
different approaches to investigating the morphology and
functional characteristics of the LM. For example, LM
muscle morphology has been quantified through ultra-
sound imaging (USI), MRI scanning, CT scanning, surgery,
biopsy, and cadaver research. The outcomes of these
methods have led to varying conclusions about CSA,
muscle thickness, percentage of fat infiltration, fiber-bundle
angle, and fiber length [19, 26–29]. Although each method
has its own strengths and limitations [30], the results also
depend on other variables, including population, spine-level
measurement, and methodological quality.
At present, there is no clear overview of the similar-

ities and differences between anatomy atlases and LM
topography studies with regard to LM topography in
humans. Such an overview is essential to improving un-
derstanding concerning the theoretical background of
stabilizing therapies in the treatment of low back pain,
as well as with regard to its role in basic anatomy train-
ing. The present study is therefore intended to review
the literature on LM morphology.

Materials and Methods
This study was conducted according to the guidelines
formulated by Arksey and O’Malley 2005 and by Grud-
niewicz et al. 2016 [31, 32], using the following five-step
framework: (1) identification of the research question,

(2) identification of relevant literature, (3) study selec-
tion, (4) data extraction, and (5) collation, summary, and
reporting of results. The identification of the research
question (1) is explained in the Background section.
Steps 2, 3, and 4 are explained in this Materials &
Methods section, and Step 5 is discussed in the Results
section.

(2) Identification of relevant literature
Search strategy
To identify relevant studies on LM morphology, two da-
tabases—PubMed (Medline) and EMBASE—were
searched, as well as gray literature (anatomy atlases)
until June 2019. Search strategies were built, consisting
of a combination of database-specific MeSH terms, title/
abstract, free text, “wild cards” (words truncated by
using “*”), and Boolean operators (“AND”, “OR”). The
search string is provided in Additional file 1. The snow-
ball method was used to identify additional papers from
the reference lists of studies that were included.

Eligibility
All of the studies included were reviewed in terms of
population, method, and outcome. To be included, stud-
ies had to be published in English and be based on stud-
ies of adult humans or human cadavers. A supplemental
search of the Dutch literature did not reveal any relevant
studies. Letters to the editor, abstract-only articles, and
review papers were excluded. The initial search identi-
fied an extensive number of studies and gray literature.
To minimize the inclusion of low-quality studies, we
limited inclusion to peer-reviewed studies. All of the
studies included were screened for the methods used to
measure LM morphology: USI, MRI, CT scanning, mod-
eling (biomechanical model of muscles), and cadaver
studies. Furthermore, the parameters by which LM
morphology was defined were described for each study
(i.e., images, photos, drawings, models, trajectory de-
scriptions, thickness or CSA, spine levels, and location
of the LM).

(3) Study selection
The selection procedure started with the identification
of studies in the databases and the elimination of dupli-
cates using the duplicate function in Endnote X9. Fur-
ther, studies were screened according to title, abstract,
and full-text, and additional papers were identified from
reference lists of the included studies. Two authors (AH
and RS) independently selected and assessed studies for
quality and subsequently discussed them to reach con-
sensus. When no consensus was achieved, a third re-
viewer was consulted (GJG).
Anatomy atlases were included as well, given their im-

portance as basic anatomical introductions to LM
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topography. The anatomy atlases were selected through
a university library system, followed by a snowball pro-
cedure, as they were not included in medical databases.
Major anatomy atlases available in English, Dutch, and
German were retrieved from the university libraries (in-
cluding specialized medical libraries) of the University
Medical Center Groningen and Saxion University of
Applied Sciences, as well as from online resources. The
results of anatomical studies and atlases are presented
separately.

(4) Data extraction
All studies and atlases were extracted according to the
following LM parameters: location (deep/superficial),
imaging methods, spine levels, muscle trajectory (origin
and insertion), muscle diameter (anteroposterior diam-
eter), and CSA. The risk of bias assessment was not de-
termined, as it primarily has to do with the methodology
of studies [33]. Instead, a quality-assessment tool was
developed to rate the quality of the descriptions of LM
morphology. The tool consists of five items, each worth
one point, with a maximum score of five (Table 1). The
reliability of LM morphology descriptions was assessed
by checking for the presence of an image and determin-
ing whether this image was an original photograph (as
opposed to a model or drawing) [34]. Furthermore, the
validity of the images was assessed by checking for the
labelling of the LM, depiction of spinal levels, and de-
scription of planes. Descriptions scoring 5/5 were
regarded as being of high quality, with scores of (3-4)/5
representing moderate quality and scores (≤ 2)/5 repre-
senting low quality. The inter-rater reliability (% agree-
ment) of the two reviewers was calculated using a kappa
value. In cases where the LM location was not described
explicitly despite the presence of adequate imaging, the
LM location was determined in consensus by the au-
thors (AH, RS and GG).

Results
Study selection
The search yielded 2450 original studies, 299 of which
were ultimately included, along with 4 additional studies.
In addition, 19 anatomy atlases were identified that

described parameters of LM morphology (Additional file
2) [25, 55–67]. The study-selection procedure is depicted
in Fig. 1.

LM parameters in studies
The characteristics of the studies included are presented
in Additional file 3 [17–20, 22, 26, 27, 29, 34–37, 39–53,
71–80, 82–343]. In descriptions of moderate to high
quality, the most frequently applied methods for meas-
uring or visualizing LM morphology were MRI (51%),
USI (36%), and drawings (8%).

Location
In 153 of the 303 studies, LM was presented only as a
superficial muscle at one or more levels between L4–S1.
In 72 studies, it was presented only as a deep muscle
and, in 35 studies, it was presented as both a superficial
and a deep muscle. We were unable to identify the pre-
cise location of LM in 43 studies (Additional file 3).

Origin and insertion
The origin of the LM is described at the spinous
process of L4 and L5 [35]. In some studies, however,
LM origin was also described at the caudal and dorsal
surface of each lamina (L1–L5) (Table 2) [23].
Whereas some studies described LM insertion as be-
ing at the lateral or medial side of the dorsal foramen
of the sacrum [23, 35], others stated that the superfi-
cial LM muscle fibers are inserted at the posterior su-
perior iliac spine (PSIS) [19, 23].

Muscle thickness and cross-sectional area (CSA)
We identified a variety of methods of measuring the
CSA of LM. These methods include USI, CT scanning,
and/or MRI at various levels of the lumbar spine (Add-
itional file 3) between L1 and S1 (Fig. 2). This focus on
L4 and L5 measurements was found in nearly all studies
on different locations (Fig. 2).
The CSA of LM has been measured in a variety of

populations, resulting in an extensive range of LM CSA
outcomes [27, 47, 48]. The total range in square milli-
meters varied between 9.08 and 2500 mm2, possibly due
to the incorrect description of corresponding units of

Table 1 Quality assessment tool

Item Meaning of score

1 Image present 1 = yes; 0 = no

2 Quality of image 1 = sufficient (unambiguous for lumbar multifidus by MRI, photo, dissection, CT, ultrasound or biopsy) 0 = insufficient
(tenuous for lumbar multifidus by modeling or drawing)

3 Clear labeling of LM 1 = yes; 0 = no

4 Presence of spine levels
depicted

1 = yes; 0 = no

5 Description of plane 1 = yes; 0 = no
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value. Variations in LM thickness were found with re-
gard to the level of measurement (L3/L4, L4/L5, or L5/
S1) and LM activation conditions (rest vs (sub)maximal
voluntary contraction), as well as in terms of body pos-
ition (e.g., prone vs standing position) (Additional file 4)
[38, 47–53, 51–53, 74, 75, 98, 108, 113, 115, 127, 131,
135, 136, 144, 151, 159, 162, 163, 168, 175, 187, 203,
211–213, 233, 235, 236, 239, 253, 259, 263, 286, 301,
305, 308, 309, 311, 317–322, 325, 326, 335, 336, 340]
[48–53]. The total range in LM thickness in millimeters
varied between 2.4 and 41.1 mm [53, 54].

LM parameters in anatomy atlases
Within the anatomy atlases, we observed variations in
the description and presentation of LM (Table 5), al-
though the majority of atlases showed the same config-
uration of the LM. In 16 of the 19 atlases reviewed, the
LM was depicted as a deep back muscle [24, 25, 55–62,
64–71], either covered by the thoracolumbar fascia and/
or as being covered by the ES. Moreover, LM imaging
varied in terms of the presence of spine levels (cervical-
sacrum), imaging planes (transversal, dorsal, sagittal),
and of whether it was with or without other low back
muscles in a single figure.

Location and muscle diameter
Variations were found with regard to the location, diam-
eter, and topography of the LM. In one anatomy atlas
(Gray’s Anatomy) [61], the superficial part of the LM ex-
tended from T11 cranially to S3 caudally as a wide (large
anterior-posterior diameter) muscle next to the median

sacral crest. In a Radiology Anatomy Atlas Viewer [63],
the LM was depicted in the axial spinal cross-sections,
albeit with inconsistent labelling of the LM.
Variations were found in the diameter of the LM be-

tween the various lumbar levels. The location of the wid-
est part of the LM varied between the level of PSIS [55,
58, 60, 61] and L5–S1 [25, 56, 57, 69]. In some atlases,
however, the widest part of the LM was undefined, due
to the overlying low back muscles [24, 67].
Various origins and insertions of the LM were identi-

fied in the anatomy atlases (Table 3), with the (lumbar)
multifidus extending between the dorsal part of the
sacrum [69] and the transverse processes of T1 [24, 25,
55–58, 60, 65, 67, 70, 71], and as attaching to the iliac
[68] or ischium [55, 60] part of the pelvis.
Overall, deep LM trajectories were consistently de-

scribed between L1 and S5 [25, 56–58, 60, 61, 67, 70],
although some superficial LM fibers were illustrated as
originating from the spinous process of T10 [69] or T12
[61, 70]. Furthermore, some atlases did not illustrate the
origin and insertion of the LM, as other muscles were
more superficially presented and/or because these fea-
tures were not described [24, 59, 62, 64, 66, 68].

Quality assessment
Quality scores were determined for each description and
anatomical image of the LM in the literature. The per-
item quality scores for descriptions and anatomical im-
ages are presented in Table 4. The agreement between
the reviewers of the quality assessment had a kappa
value of 0.67, and all differences were resolved in a

Fig. 1 Flowchart of the selection process for the literature review
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Table 2 Studies describing the fiber trajectory of LM

Author year Method1 Spine
Level

L2 Fiber trajectory of LM

[26] Beneck
2012

1 L4-S1 S The LM morphology best captures span the L4-L5 or L5-S1 functional spinal units

[35] Bogduk
1992

6 L5-S1 U LM origin is tip or shaft of spinous process L1-L5. LM insertion is medial and lateral next to the posterior
sacral foramen

[36] Bojadsen
2000

4 T1-S1 D LM insertion at the spinous process of L5 and of T12 and T11 contains vertical fibers. The most caudal
fibers of LM run a vertical trajectory between the medial portion of the sacrum and the spinous process
of L5.

[37] Creze
2017

2, 4 L3 D &
S

On the first inspection, the multifidus represented a homogenous muscular mass with a triangular shape.
It comprised many millimetric tendinous and fleshy fascicles originating from the spinous processes to
the mammillary processes located 1–3 spinal levels above. The muscular organization was unclear and
the multifidus appeared as a multiceps and multipennate muscle. Multifidus fascicles were arranged in
three or four layers from superficial too deep with few or no cleavage planes between them. Some
interdigitations attached fascicles between them. For each lumbar level, the muscular fascicles and fibers
were oriented from 98 to 228 to the line of spinous processes.

[38] Creze
2018

4 - S The ES aponeurosis (ESA) had different anatomical relationships with the longissimus, the iliocostalis, and
the LM. Along the lumbar and sacral regions, close to the SPL medially, some muscle fibers of superficial
fascicles of the LM were attached directly (without pennation) to the ESA. Each fascicle of the LM (i.e.,
the group of muscles originating from a spinous process) was covered by a thin pearly white
aponeurosis corresponding to a fascial expansion of the cranial attachment on the spinous process.
Connectives fibers were all oriented longitudinally along the muscle belly. The thickness of the LM
aponeurosis decreased along the rostrocaudal axis of each fascicle and was too thin to be measured
with the material used. Connective fibers of the LM aponeurosis were oriented parallel to the
longitudinal axis of the fascicle.

[39] Creze
2019

4 - S The cranial attachment was located on the spinous processes and caudal attachments on the
mammillary processes of the three to four vertebras below, the sacrum and on the ESA. There was no
tendon at the level of the sacrum, but there were aponeuroses as well as muscle fibers.

[40] De Foa
1989

4 L1-L2 D LM fibers run parallel to a line between the posterior superior iliac spine and the L1-L2 interspinous
space

[41] Jemmett
2004

4,5 L2-S1 D &
S

The superficial LM fibers of the first fascicle of the LM originated at the caudolateral tip of the L1 spinous
process. The deep LM fibers of the first fascicle originated from the caudolateral base of the L2 spinous
process. This first fascicle inserted at the mamillary process and lamina of L4 as well as the capsule of the
L4/5 zygapophysial joint and the most cranial aspect of the PSIS. The second fascicle originated in the
same manner from the L2 andL3 spinous processes and inserted near the PSIS and just adjacent to the
superior articular process of S1.

[42] Kader
2000

1 L3-S1 S LM consists of five separate bands, each originating from a spinous process and spreading caudolaterally
from the midline to be inserted into the mammillary processes of the facet joints, the iliac crest, and the
sacrum. In an axial MR image the LM is displayed as two, three or four bands, depending on the level of
the image

[18] Kim 2015 6 L1-L5 D LM consists of laminar fibers, fascicles from the shaft and from the tip of the spinous process.

[43] Kramer
2001

1, 5 - S LM activity was measured with EMG at the level of the vertebral body of L2.

[44] Macintosh
1986

4, 5 L1-L5 D &
S

The principal fascicles of the LM arise as a common tendon from the tubercle and from the lateral
surface of the caudal edge of the spinous process. The caudal attachments of these fascicles are the
mammillary processes, the iliac crest and dorsal surface of the sacrum

[19] Moseley
2002

2, 5 L4 D &
S

LM EMG: The first electrode was inserted ± 4 cm lateral to the midline and directed medially until it
reached the lamina to make recordings from the LM fibers immediately adjacent to the lamina of L4,
most likely those arising from the inferior edge of the L3 spinous process (i.e., deep multifidus). The
second electrode was inserted ± 4 cm from the midline and advanced to a depth of approximately 1
cm, medial to the lateral border of LM, to record the superficial LM fibers that arise from the upper
lumbar vertebras. The third electrode was inserted ± 2 cm lateral to the midline and advanced until it
reached the spinous process ± 1 cm from the superficial border of LM to record the superficial fibers of
LM adjacent to the L4 spinous process

[45]
Lonnemann
2008

4, 5 L1-S1 D &
S

The superficial LM layer originated from the mamillary process to insert onto the tip of two spinous
processes and supraspinous ligaments at the same vertebral level and one above. Tendinous slips and
muscle tissue extended dorsally to the overlying ES aponeurosis. The second LM layer originated from
the posteroinferior lateral aspect of the spinous processes as a common tendon. The third LM layer
originated from the lateral aspect of the inferior aspect of the spinous processes as a muscular band of
origin.

[29] Rosatelli 4, 5 - D & Superficial LM fibers originate via a common tendon from the tips of the spinous processes (L1–L5) and
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consensus meeting. There were no major differences be-
tween the descriptions and anatomical images of the LM
in the literature with regard to the presence of images.
The most difficult item to score was clear labeling.
The total quality scores of the studies varied between 1

and 5 (out of 5). The highest score [5/5] was found in 43%
of the studies (129/303), with moderate scores [[2–4]/5]
found in 39% of the studies (117/303) and low scores
[(≤2)/5] found in 19% of the studies (57/303). In the stud-
ies with quality scores of 5/5 and 4/5, MRI and USI were
the most commonly used methods for visualizing the LM
muscle (Fig. 3). More detailed data are presented in

Additional file 3. The majority of atlases were rated as be-
ing of moderate quality [(3–4)/5] (79%, 15/19) or low
quality [(≤2)/5] (16%, 3/19). Only one atlas was found to
be of high quality [5/5] (Table 5) [55].

Discussion
Substantial contradictory results were found across a
large number of anatomy studies included in the review,
and there appears to be no general consensus concern-
ing the trajectory and muscle description of the LM [19,
23, 25, 29, 35]. Particularly with regard to the descrip-
tions of “fiber trajectory” and “location”, major

Table 2 Studies describing the fiber trajectory of LM (Continued)

2008 S pass inferolateral to the mammillary processes of L5, S1, sacrum, and ilium. Intermediate LM fibers
originate from the spinous processes of L1–L4. Distally, L1, L2, and L3 portions attach as tendons to the
L4, L5, and S1 mammillary processes, respectively. However, the L4 portion attached to the sacrum at the
S2 level. The deep LM contains five entirely muscular segments (L1–L5). Each segment attached
superiorly to the lamina of L1–L5, and inferiorly two levels more caudal to the L3, L4, L5, and S1
mammillary process, respectively, while the L5 fascicle attached to the sacrum

[46] Vialle 2005 4 L4 - L5 S An anatomical cleavage plane between LM and the longissimus part of the sacrospinalis muscle is
present. The level of the natural cleavage plane between LM and longissimus was noted and measured
between this level and the midline at the level of the spinous process of L4

[22] Ward 2009 4, 5 T12-S1 D &
S

LM was identified by its position adjacent to the spinous process and the cranial/medial to caudal/lateral
projection of its fibers. LM had isolated muscle bellies on the posterolateral region between L4 and S1.

11 = MRI; 2 = USI; 3 = CT; 4 = Photo; 5 = Drawing; 6 = Modelling; 7 = Stereomicroscope; 8 = Tractography.
2L=Location; D = Deep; S = Superficial

Fig. 2 Overview of spine levels at which LM is measured in all studies (Total), in studies of moderate to high quality referring to deep LM (Deep),
in studies referring to superficial LM (Superficial), and in studies referring to deep and superficial LM (Deep & Superficial). Deep muscles lie closer
to bone or internal organs, and superficial muscles are close to the surface of the skin
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differences were found between the studies by Macin-
tosh and Bogduk (1986), Rosatelli et al. (2008), and
Moseley et al. (2002), and those by Kim et al. (2015),
Bojadsen et al. (2000), and De Foa et al. (1989) [17–
19, 29, 36, 40]. Discrepancies were also identified with
regard to LM diameter, especially the distance

between the spinous process and the lateral margin of
the LM at levels L4–S1 [46, 72] and its location rela-
tive to the ES [46, 72, 73].
Each method that is used in literature to measure LM

characteristics has its own strengths and limitations [30].
The architecture and function of the LM has been stud-
ied predominantly according to morphological and im-
aging methods. One disadvantage of cadaver studies [15,
17, 22, 29, 36, 40, 46, 74] is that the studies do not
clearly identify the type and amount of structures (skin,
fat, fascia, and muscle) that were removed from the ca-
daver. In these studies, it could be difficult to describe
the exact location of the LM relative to other lumbar
muscles and structures. The MRI and USI methods offer
the advantage of being able to present undisturbed anat-
omy. This finding could have positive implications for

Table 3 Atlases describing the fiber trajectory of lumbar multifidus

Author
year

Method2 Spine
Level

L1 Fiber trajectory

Origin Insertion

[56] A.M.
Gilroy
2014

1 C2-S5 D C2-sacrum: transverse and spinous processes with crossing to 2 to 4 vertebra

[57] M.
Schuenke
2010

1 C2-
sacrum

D Courses between the transversus and spinous processes (2-4 vertebras) or all cervical vertebras most fully
developed in the lumbar spine.

[58] K.L.
Moore
2010

1 C4 -
sacrum

D Origin: LM arises from the posterior sacrum, PSIS of the ilium, aponeurosis of erector spinae, sacroiliac ligaments
mammillary processes of lumbar vertebras, transverse processes of T1-T3, articular processes of C4-C7 distal attach-
ment: thickest in the lumbar region. fibers pass obliquely super medially to the entire length of spinous processes,
located 2-4 segments, superior to the proximal attachment.

[60] K.L.
Moore
2011

1 C4-
sacrum

D LM origin: arises from the posterior sacrum, PSIS of the
ilium, aponeurosis of erector spinae, sacroiliac
ligaments, mammillary processes of lumbar vertebras,
transverse processes of T1-T3 and articular processes of
C4-C7

LM insertion: Thickest in the lumbar region, fibers pass
obliquely superomedially to the entire length of
spinous processes of vertebras located 2-4 segments
superior to the origin.

[70] W.
Dauber
2006

1 C1-
sacrum

D LM: sacrum, processes mammillary of vertebras.
Thoracic multifidus: transverse processes. Cervical
multifidus: caudal processes of cervical vertebras.

LM: spinous processes L5-L1. Thoracic multifidus: spin-
ous processes T12-T1. Cervical multifidus: spinous pro-
cesses C7-C2.

[65] R.L.
Drake
2010

1 T1-
sacrum

D Sacrum, the origin of erector spinae, PSIS, mammillary
processes of lumbar vertebras, transverse processes of
thoracic vertebras, and articular processes of lower four
cervical vertebras

The base of spinous processes of all vertebras from L5
to C2 (axis)

[61] S.
Standring
2008

1 C2-
sacrum

D At each segmental level multifidus is formed by several fascicles that arise from the caudal side of the lateral
surface of the spinous process and from the caudal side of its tip. They radiate caudally to insert into the
transverse elements of vertebrae two, three, four and five levels below (Machintosh et al. 1986). These sites are
represented at lumbar levels by the mammillary processes. Fascicles that extend beyond the fifth lumbar vertebra
insert into the dorsal surface of the sacrum. The longest fascicles from the first and second lumbar vertebras
insert into the dorsal segment of the iliac cest. From each spinous process, the shortest fascicles pass inferiorly
and laterally to their insertion; the longer fascicles assume a progressively steeper course and are arranged
progressively more medially. These fascicles from a given segment are flanked and overlapped dorsolateral by
fascicles from successively higher segments, an arrangement that endows the intact muscle with a laminated
structure.

[25] M.
Schunke
2010

1 C2-
sacrum

D Origin and insertion: multifidus run between transverses processes and spinous processes (across 2 to 4 vertebras)
of the whole spine (C2 to the sacrum). LM is strongest developed in the lumbar spine.

[67] W.
Platzer
2012

1, 2 C2-
sacrum

D M. multifidus runs from the sacrum to C2. The muscle fibers arise separately from the superficial tendon of m.
longissimus of the dorsal plan of sacrum, transverse processes of thoracic vertebras and the articular processes of
C2-C7.

1 L=Location; D = Deep
2 1 = MRI; 2 = USI

Table 4 Total scores for quality items, in numbers and
percentages

N (%) Studies (n=303) Atlases (n=19)

Image present (yes) 252 (83%) 19 (100%)

Quality of images (sufficient) 238 (79%) 6 (32%)

Clear labeling (yes) 200 (66%) 19 (100%)

Presence of spine levels depicted (yes) 236 (78%) 10 (53%)

Description of plane (yes) 232 (77%) 10 (53%)
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clinical practice, given that USI is a user-friendly and af-
fordable way to measure LM morphology in physiother-
apy practice.
In anatomy atlases, the LM was depicted primarily as a

relatively small deep muscle, in contrast to some re-
search studies that refer to its large size and the

presence of superficial slips at L4–S2 levels. Differences
in LM images were identified even within anatomy at-
lases [25, 60, 61, 68]. In Wolf-Heidegger’s Atlas of Hu-
man Anatomy, LM insertion is depicted at the ventral
side of the sacrum, in contrast to Gray’s Anatomy, in
which it is depicted at the dorsal side of the sacrum [61,

Fig. 3 Overview of the percentage of total scores on the quality-assessment tool (inside ring) and the associated percentage of techniques used
(outside ring). Scores per study are presented in Additional file 3
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68]. Furthermore, in some atlases, the diameter and lo-
cation of the LM is undefined, due to the overlying low
back muscles [24, 67]. Overall, anatomy atlases reflect
no consensus about the fiber trajectory of the LM, thus
making it difficult for therapists, clinicians, and students
to know and learn what is correct about LM
morphology.
The inconsistencies in the descriptions and imaging

of LM morphology in studies and atlases could be
due to the differences in many parameters. Some of
these variables are related to methodology (Fig. 2),
spine levels, and/or type of population [26, 36, 75,
76]. Of particular note are the variations we found
between LM images in anatomy atlases and those in
studies. In some large studies [15, 26, 77, 78], the lo-
cation and presentation of the LM differ from those
in the most recent anatomy atlases [24, 25, 55]. One
consistent finding in the anatomy atlases was that
they all depict the LM as a deep lumbar muscle,
whereas most studies presented it as a superficial
lumbar muscle at the levels of L4–S1. We neverthe-
less identified some consistency in studies based on a
USI LM protocol that had been developed in an earl-
ier study (e.g., by Belavy et al.) [79–81]. The same
protocol, which referred to similar images, has been

used in different studies based on different research
questions to present new knowledge about LM
morphology.

Limitations
One possible limitation of this study could be that it
might have overlooked some anatomy atlases, due to the
lack of a database of anatomy atlases. Another limitation
could be related to the reliability and validity of the
quality-assessment tool that was developed and used by
three authors of the current study. This quality-
assessment tool was developed for lack of an existing
“risk-of-bias assessment tool” with which to assess the
quality of descriptions of LM morphology. It would be
advisable to improve this assessment tool by conducting
a validation and/or reliability study, as well as by
expanding the tool beyond the current five items [34].
Any validation study regarding this quality-assessment
tool will nevertheless be hampered by the current lack of
a gold standard.
Variations in the images and measurement of LM

morphology could be influenced by a number of poten-
tially confounding factors, including research methods,
level, side of measurement, population, intra-individual
differences, intervention, research objectives, measure-
ment technique (e.g., with or without contraction), and
the relative experience of the assessors and/or practi-
tioners creating the images. The variation that we ob-
served in LM morphology emphasizes the importance of
correct reference to morphology, although no gold
standard for LM morphology has been developed to
date. To reduce some of the existing variation, the au-
thors call for improvement in the standardization of re-
search protocols (e.g., in studies using EMG, USI, or
MRI). The proper measurement of LM function could
allow measurement of the contribution of the LM to
spine movements in patients with non-specific LBP or
other conditions. This knowledge could help clinicians
and therapists to improve their diagnosis of patients.

Clinical implications
Remarkable differences in the reporting of LM morph-
ology were found within anatomical studies, as well as
between anatomical studies and anatomy atlases, espe-
cially with regard to trajectories of the musculature and
its location relative to the ES. Such differences in the
reporting of LM could have implications for clinical
practice, given that knowledge of morphology provides
the foundation for the diagnosis and treatment of pa-
tients by physiotherapists. For example, if the topog-
raphy of a low back muscle (in terms of origin, insertion,
deep/superficial) is clear, it should provide a clearer indi-
cation of the function of this low back muscle. This
could make it easier to identify a cause or diagnosis of

Table 5 Data extraction of the atlases included (n=19), sorted
by quality score

Author year Method2 Spine Level L1 Quality 3

[55] L.G.F. Giles 1997 3, 4 L1-sacrum D 5

[56] A.M. Gilroy 2014 3 C2-S5 D 4

[57] M. Schuenke 2010 3 C2-sacrum D 4

[58] K.L. Moore 2010 3 C4 - sacrum D 4

[59] J.W. Rohen 2011 4, 2 L1 and L4 D 4

[60] K.L. Moore 2011 3 C4-sacrum D 4

[61] S. Standring 2008 3 C2-sacrum D 4

[62] T.B. Moeller 2007 3, 2 L5 D 4

[63] R. Livingston 2011 1 Abdomen, Pelvis D 4

[64] P.H. Abrahams 2013 4 T12-sacrum D 3

[65] R.L. Drake 2010 3 T1-sacrum D 3

[25] M. Schunke 2010 3 C2-sacrum D 3

[66] G.Y. El-khoury 2007 1, 2 T10-sacrum D 3

[67] W. Platzer 2012 3, 5 C2-sacrum D 3

[24] F. Paulsen 2011 3 C2-sacrum D 3

[68] P. Kopf-Maier 2000 3 C2-sacrum D 3

[69] P.W. Tank 2009 3 T1-sacrum D 2

[70] W. Dauber 2006 3 C1-sacrum D 2

[71] H.J. van Donkelaar 2007 3, 5 C2-sacrum D 2
1 L=Location; D = Deep
2 1 = MRI; 2 = USI; 3 = CT; 4 = Photo; 5 = Drawing
3 5 = high quality; 4 or 3 = moderate quality; ≤ 2 = low quality
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low back function or muscle impairment. For therapists
or clinicians, these inconsistencies make it difficult to
conclude which results are correct. Once therapists or
clinicians know the correct LM morphology, this will
clarify the function of the LM. Such knowledge could
enhance understanding concerning the role of the LM in
patients with LBP. It could also enhance the quality and
consistency of decision-making by specialists concerning
treatments for patients with LBP. Although a recent re-
view on the effects of stabilizing therapy compared to
usual care identified significant benefits of stabilizing
therapy on pain and disability, these differences were not
interpreted as clinically important [82]. Improved diag-
nosis may allow better sub-grouping, possibly enhancing
the therapeutic effects for patients with LBP.

Conclusion
We identified a lack of standardization in the depiction
and description of LM morphology, which may affect
the precise understanding of its role in the background
and therapy for patients with LBP. Standardization of re-
search methodology with regard to LM morphology is
recommended. Anatomy atlases should be updated on
LM morphology.
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