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Abstract
We study dynamic networks under an undirected consensus communication protocol
and with one state-dependent weighted edge. We assume that the aforementioned
dynamic edge can take values over the whole real numbers, and that its behaviour
depends on the nodes it connects and on an extrinsic slow variable. We show that,
under mild conditions on the weight, there exists a reduction such that the dynamics
of the network are organized by a transcritical singularity. As such, we detail a slow
passage through a transcritical singularity for a simple network, and we observe that
an exchange between consensus and clustering of the nodes is possible. In contrast
to the classical planar fast–slow transcritical singularity, the network structure of the
systemunder consideration induces the presence of amaximal canard.Ourmain tool of
analysis is the blow-upmethod. Thus, we also focus on tracking the effects of the blow-
up transformation on the network’s structure. We show that on each blow-up chart one
recovers a particular dynamic network related to the original one. We further indicate
a numerical issue produced by the slow passage through the transcritical singularity.
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1 Introduction

A wide range of scientific disciplines, such as biochemistry (Aral et al. 2009; Xia
et al. 2004), economics (Schweitzer et al. 2009), social sciences (Moreno 1934;
Proskurnikov and Tempo 2017, 2018), epidemiology (Barabási 2016; Pastor-Satorras
and Vespignani 2001), among many others, benefit from the progress in network the-
ory. Network science represents an important paradigm for modelling and analysis of
complex systems. In network theory, individuals are represented as vertices on a graph.
These individuals, or agents, can be persons in a community, robots working in an
assembly line, computers in an office building, particles of a chemical substance, etc.
The interactions between such individuals are then represented as edges or links of the
graph. For example, if two persons talk to each other, and one influences the other, we
then associate an edge on the graph to such an activity. Similarly, interactions can be
identified with edges in all other aforementioned examples. Thus, the individual’s own
dynamics (the nodes’ dynamics) and the interaction it has with other individuals of the
network (the topology of the network) will not only determine its own fate, but that of
the entire group of individuals. This rather convenient way of describing complicated
dynamic behaviour is quite powerful and has attracted an enormous scientific interest
(Albert and Barabási 2002; Barrat et al. 2004; Boccaletti et al. 2006; Strogatz 2001).

From an applied mathematical perspective, topics such as stability, convergence
rates, synchronization, connectivity, robustness, and many others can all be formally
described and have important implications in other sciences. In a large part of the
mathematical studies of networks, one considers that the interactions between the
agents are fixed (Barrat et al. 2008); see also Sect. 2. In another large part of the theory
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one frequently assumes that the network structure evolves without dynamics at the
nodes (van den Hofstad 2016). In most cases, these assumptions are a simplification
since it may be expected that there is coupled dynamics of and on the network, i.e. one
has to deal with adaptive (or co-evolutionary) networks (Gross et al. 2009). A crucial
assumption to approximate an adaptive network by a partially static one with either
just dynamics on or dynamics of the network is timescale separation (Kuehn 2015).
Yet, if one assumes that either the dynamics on the nodes or the dynamics of the edges
are infinitely slow, static leads to a singular limit description. This limit is known
to miss adaptive network dynamics effects induced by the interaction of dynamical
variables for finite timescale separation (Kuehn 2012). Also from the viewpoint of
applications, a finite but large timescale separation is far more reasonable. As an
example, consider a group of people that communicate with each other daily but whose
mutual influences shape the way they handle elections. One of such activities occurs
in time scales of minutes or hours, while the other in timescales of years, yet both are
interrelated in a complex manner. Similar examples where different sorts of relations
occur at distinct timescales can be found in population dynamics, telecommunication
networks, power grids, etc. So, although timescales add an extra level of difficulty to the
analysis of networks, they may be useful for a more accurate representation of certain
phenomenon. On the other hand, dynamical systems with two or more timescales have
also been of interest frommany perspectives, particularly in applied mathematics. The
overall idea is to distinguish slow from fast subprocesses, analyze them separately, and
then come upwith an appropriate description of the problem (Jones 1995; Kaper 1999;
Kuehn 2015; O’Malley 1991; Verhulst 2005). This basic idea can be made rigorous
and has proven to be powerful. However, there are generic complex systems in which
the timescale separation can no longer be clearly distinguished. Thus more advanced
mathematical techniques are required to analyze multi-scale adaptive networks.

In this article we bring together network and multi-scale theories to study a class of
adaptive networks.Weare interested in networkswhose agents communicate in a rather
simple way, known as linear average consensus protocol (see the details in Sect. 2.2).
This type of communication has been largely studied due to its relevance in all kinds
of sciences (Mesbahi and Egerstedt 2010; Ren et al. 2005). On this class of networks
we assume that there is one interaction or communication link that slowly changes
over time and investigate the implications of it. We shall see that the aforementioned
setting leads to a nontrivial problem from both, network and multi-scale, contexts. As
a result we describe the overall behaviour of the network by adequately incorporating
techniques from consensus dynamics and geometric singular perturbation theory.

The forthcoming parts of this work are arranged as follows: in Sect. 2 we provide a
short technical introduction to the main topics of this paper, namely fast–slow systems
and consensus networks. In Sect. 3 we present ourmain contribution, which consists in
the analysis of a simple network that has a dynamicweight andwhose overall dynamics
evolve in two timescales. Next, in Sect. 4 we show that, in qualitative terms, the
analysis performed for the aforementioned simple network can be extended to arbitrary
networks with one dynamic edge. We finish in Sect. 5 with concluding remarks and
an outlook on future research.
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2 Preliminaries

In this section we provide a brief recollection of the two mathematical areas that come
together in this paper.We first state what a fast–slow system formally is, the concept of
normal hyperbolicity, and two relevant geometric techniques of analysis. Afterwards,
to place our work into context, we recall and provide appropriate references to some
of the relevant results on dynamic networks.

2.1 Fast–Slow Systems

A fast–slow system is a singularly perturbed ordinary differential equation (ODE) of
the form

εẋ = f (x, y, ε)

ẏ = g(x, y, ε),
(1)

where x ∈ R
m and y ∈ R

n are, respectively, the fast and slow variables, and where
0 < ε � 1 is a small parameter accounting for the timescale difference between the
variables. The overdot denotes derivative with respect to the slow time τ . By defining
the fast time t = τ/ε, one can rewrite (1) as

x ′ = f (x, y, ε)

y′ = εg(x, y, ε),
(2)

where the prime denotes the derivative with respect to the fast time t . Observe that, for
ε > 0, the only difference between (1) and (2) is their time parametrization. Therefore,
we say that (1) and (2) are equivalent.

Although there are several approaches to the analysis of fast–slow systems, e.g. clas-
sical asymptotics (Eckhaus 2011a, b; O’Malley 1991; Verhulst 2005), here we take a
geometric approach (Fenichel 1979; Jones 1995), which is called geometric singular
perturbation theory. The overall idea is to consider (1) and (2) restricted to ε = 0,
understand the resulting systems, and then use perturbation results to obtain a descrip-
tion of (1) and (2) for ε > 0 sufficiently small. Therefore, two important subsystems
to be considered are

0 = f (x, y, 0)

ẏ = g(x, y, 0),

x ′ = f (x, y, 0)

y′ = 0,
(3)

which are called the constraint equation (Takens 1976) (or slow subsystem or reduced
system) and the layer equation (or fast subsystem), respectively. It is important to
note that the constraint and layer equations are not equivalent any more, there are even
different classes of differential equations as the constraint equation is a differential-
algebraic equation (Kunkel andMehrmann 2006), while the layer equation is an ODE,
where the slow variables y can be viewed as parameters. In some sense the timescale
separation is infinitely large between two singular limit systems (3). However, a geo-
metric object that relates the two is the critical manifold.
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Definition 1 The critical manifold of a fast–slow system is defined by

C0 = {(x, y) ∈ R
m × R

n | f (x, y, 0) = 0
}
. (4)

The critical manifold is, on the one hand, the set of solutions of the algebraic
equation in the constraint equation, and on the other hand, the set of equilibrium
points of the layer equation. There is an important property that critical manifolds
may have, called normal hyperbolicity.

Definition 2 A point p ∈ C0 is called hyperbolic if the eigenvalues of the matrix
Dx f (p, 0), where Dx denotes the total derivative with respect to x , have nonzero real
part. The critical manifold C0 is called normally hyperbolic if every point p ∈ C0 is
hyperbolic. On the contrary, if for a point p ∈ C0 we have that Dx f (p, 0) has at least
one eigenvalue on the imaginary axis, we then call p nonhyperbolic.

In a general sense, whether a critical manifold has nonhyperbolic points or not,
dictates the type of mathematical techniques that are suitable for analysis. For the
case when the critical manifold is normally hyperbolic, Fenichel’s theory (Fenichel
1979) (see also Tikhonov 1952; Kuehn and Szmolyan 2015, Chapter 3) asserts that,
under compactness of the critical manifold, the constraint and the layer equations give
a good enough approximation of the dynamics near C0 of the fast–slow system for
ε > 0 sufficiently small. In the normally hyperbolic case for 0 < ε � 1, there exists
a slow manifold Cε, which can be viewed as a perturbation of C0; see also Fenichel
(1979) and Kuehn and Szmolyan (2015).

The case when the critical manifold has nonhyperbolic points is considerably more
difficult. One mathematical technique that has proven highly useful for the analysis in
such a scenario is the blow-up method (Dumortier et al. 1996). Briefly speaking, the
blow-up method consists on a well-suited generalized polar change of coordinates.
What one aims to gain with such a coordinate transformation is enough hyperbolicity
so that the dynamics can be analyzed using standard techniques of dynamical systems.
Nowadays, the blow-up method is widely used to analyze the dynamics of fast–slow
systems having nonhyperbolic points in a broad range of theoretical contexts and
applications. For detailed information on the blow-up technique the readermay refer to
Dumortier et al. (1996), Jardón-Kojakhmetov andKuehn (2019), Krupa and Szmolyan
(2001a), Kuehn and Szmolyan (2015, Chapter 7), and references therein.

2.2 Consensus Networks

In this section we formally introduce the type of consensus problems on an adaptive
network which we are concerned with in this work. Let us start by introducing some
notation: we denote by G = {V, E,W} an undirected weighted graph where V =
{1, . . . ,m} denotes the set of vertices, E = {

ei j
}
the set of edges and W = {

wi j
}

the set of weights. We assume that the graph is undirected, that there are only simple
edges, and that there are no self-loops, that is ei j = e ji and eii /∈ E . To each edge
ei j we assign a weight wi j ∈ R and thus we identify the presence (resp. absence) of
an edge with a nonzero (resp. zero) weight. Moreover, we shall say that a graph is
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unweighted if all the nonzero weights are equal to one. The Laplacian (Merris 1994)
of the graph G is denoted by L = [li j ] and is defined by

li j =
{

−wi j , i �= j
∑m

j=1 wi j , i = j .
(5)

Remark 1 The majority of the scientific work regarding adaptive/dynamic networks
considers nonnegative weights. One of the reasons for such consideration is that the
spectrum of the Laplacian matrix is well identified (Barrat et al. 2004; Mohar 1991;
Olfati-Saber et al. 2007), which simplifies the analysis. When the weights are allowed
to be positive and negative one usually refers to L as a signed Laplacian. Difficulties
arise due to the fact that many of the convenient properties of nonnegatively weighted
Laplacians do not hold for signed Laplacians. In some part of the literature, see for
example Altafini (2013) and Proskurnikov et al. (2016), the diagonal entries of the
Laplacianmatrix are rather defined by

∑m
j=1 |wi j |. In this case, however, the Laplacian

matrix is positive semi-definite and the potential loss of stability due to dynamic
weights (the main topic of this paper) is not possible. One the other hand, Laplacian
matrices defined by (5) are relevant in many applications. For example, in Bronski and
DeVille (2014), Knyazev (2017), Pan et al. (2016) problems like agent clustering are
studied, while the stability of networks under uncertain perturbations is considered in
Chen et al. (2016), Zelazo and Bürger (2017).

We identify each vertex i of the graph G with the state of an agent xi . Here we are
interested on scalar agents, that is xi ∈ R for all i = 1, . . . ,m. We now have a couple
of important definitions.

Definition 3 • We say that the agents xi and x j agree if and only if xi = x j .
• Consider a continuous-time dynamical system defined by

ẋ = f (x), (6)

where x = (x1, . . . , xm) ∈ R
m is the vector of agents’ states. Let x(0) denote

initial conditions and χ : Rm → R be a smooth function. We say that the graph
G reaches consensus with respect to χ if and only if all the agents agree and
xi = χ(x(0)) for all i ∈ V .

• We say that f (x) defines a consensus communication protocol over G if the solu-
tions of (6) reach consensus.

We note that the above definition of consensus is rather general, in the sense that
there can be “discrete consensus” if all agents only agree at discrete time points;
“finite time consensus” if xi (T ) = χ(x(0)) for all i ∈ V and t > T with 0 ≤ T < ∞;
“asymptotic consensus” if limt→∞ xi (t) = χ(x(0)) for all i ∈ V; and so on. Similarly,
several consensus protocols can be classified with respect to the function χ , see, e.g.
Olfati-Saber et al. (2007), Olfati-Saber and Murray (2004) and Saber and Murray
(2003).

The appeal in studying consensus problems and protocols is due to their wide range
of applications in, for example, computer science (Thomas 1979), formation control
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of autonomous vehicles (Fax and Murray 2004; Jadbabaie and Morse 2003; Ren et al.
2007), biochemistry (Chen et al. 2013; Holland et al. 2004), sensor networks (Olfati-
Saber 2005), social networks (Alves 2007; Xie et al. 2011), among many others. A
simple example of consensus would be a group of people in which all agree to vote for
the same candidate in an election. Another example would be a group of autonomous
vehicles that are set to move with the same velocity.

In this paper we are interested in one of the simplest consensus protocols that leads
to average consensus, that is χ(x(0)) = 1

m

∑m
i=1 xi (0) with the protocol defined by

fi (x) =
m∑

j=1

wi j (x j − xi ). (7)

This communication protocol is particularly interesting since it is an instance of a
distributed protocol. In other words, the time evolution of xi is solely determined by
its interactionwith other agents directly connected to it. This type of protocols iswidely
investigated in engineering applications, for example to design controllers that only
require local information in order to achieve their tasks (Lynch 1996; Moreau 2004;
Ren and Beard 2008; Xiao et al. 2007). Alternatively, this linear average consensus
protocol can be written as

ẋ = −Lx, (8)

where L denotes the Laplacian of G as defined by (5). It is then clear that the behaviour
of the agents is determined by the spectral properties of the Laplacian matrix (Merris
1994; Mohar 1991; Zelazo and Bürger 2014). One of the most relevant results for sys-
tems defined by (8) is that, if the graph is connected and all the weights are positive,
then (8) reaches average consensus asymptotically (Olfati-Saber et al. 2007). Although
most of the scientific work has been focused on consensus protocols over unweighted
graphs and with fixed topology, there is an increased interest in investigating dynam-
ical systems defined on weighted graphs with varying and/or switching topologies
(Casteigts et al. 2012; Mesbahi 2005; Moreau 2005; Olfati-Saber and Murray 2004;
Proskurnikov 2013; Tanner et al. 2007).

In the main part of this article, Sects. 3 and 4, we are going to consider linear aver-
age consensus protocols with a dynamic weight. This dynamic weight is assumed to
have a slower timescale than that of the nodes. Therefore, it makes sense to approach
the problem from a singular perturbation perspective. We will see that under generic
conditions on the weight, the fact that the dynamics are defined on a network, induces
the presence of a nonhyperbolic point. As we have described in Sect. 2.1, one suit-
able technique of analysis to describe the system is then the blow-up method. Since
the blow-up method is a coordinate transformation, one should check whether such
a transformation preserves the network structure or not. For general networks, this
is a classical problem and it is known that for certain coordinate changes, network
structure is not preserved (Field 2004; Golubitsky and Stewart 2017). Yet, sometimes
symmetries help to gain a better understanding for certain classes such as coupled cell
network dynamics (Nijholt et al. 2017). As we will show, the blow-up method not
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only preserves the network structure for our consensus problem but also the blown-
up networks in different coordinate charts also have natural dynamical and network
interpretations. In qualitative terms this tells us that the blow-up method is a suitable
technique for the analysis of adaptive networks with multiple timescales.

Before proceeding to our main contribution, in the next section we present a first
interconnection between the topics discussed above. We show that Fenichel’s theory
suffices to analyze state-dependent linear consensus networks with two timescales,
and for which the Laplacian matrix has just a simple zero eigenvalue.

2.3 State-Dependent Fast–Slow Consensus Networks with a Simple Zero
Eigenvalue

In this section we show that Fenichel’s theorem is enough to describe the dynamics
of arbitrary fast–slow consensus networks with state-dependent Laplacian as long as
λ1 = 0 is a simple eigenvalue, i.e. we are going to show that the zero eigenvalue
corresponds to a trivial parametrized direction and that for each parameter we have a
normally hyperbolic structure. The result presented below is motivated by a similar
claim that appears inAwad et al. (2018, SectionB).However, herewe are not concerned
with the stability of the fast nor the slow dynamics, and the use of Fenichel’s theorem
appears more aligned to the contents of this paper. Let us then consider the fast–slow
system

x ′ = −L(x, y, ε)x

y′ = εg(x, y, ε),
(9)

where x ∈ R
m , y ∈ R

n , ε > 0 is a small parameter, and L(x, y, ε) is a state-dependent
Laplacian matrix.

Theorem 1 Consider (9) and a compact region Ux × Uy ⊆ R
m × R

n. Let 1m :=
(1, 1, . . . , 1)
 ∈ Ux . If for all (x, y) ∈ Ux × Uy one has that ker L(x, y, 0) =
span {1m}, then the set

S0 =
{
(x, y) ∈ Ux ×Uy | xi = 1

m
1

mx(0) ∀i

}
(10)

is a normally hyperbolic family of critical manifolds of (9).

Proof Let X = (X̄ , X̂) ∈ R × R
m−1 be new coordinates defined by

X =
[
X̄
X̂

]
= Px =

[ 1
m 1


m
Q

]
x, (11)

where the matrix Q is found via the Gram–Schmidt process after selecting the first
component as indicated in (11). Although L(x, y, 0) cannot really be regarded as
a fixed linear operator acting on R

m as it depends upon (x, y), the choice of the
eigenvector 1m is justified due to the fact that λ1 = 0 is a simple zero eigenvalue of the

123



Journal of Nonlinear Science (2020) 30:2737–2786 2745

Laplacian matrix L(x, y, 0) if and only if L(x, y, 0)1m = 0 for all (x, y) ∈ Ux ×Uy .
Note then that X̄ denotes the average of the nodes’ states. It now follows that from the
equation of x ′ we have

[
X̄ ′
X̂ ′
]

=
[ 1
m 1


m
Q

]
x ′ = −

[ 1
m 1


mL1m X̄ + 1
m 1


mLQ

 X̂

QL1m X̄ + QLQ
 X̂

]
=
[

0
QLQ
 X̂

]
. (12)

Therefore we have that (9) is conjugate to

X̄ ′ = 0

X̂ ′ = −L̂(X̄ , X̂ , y, ε)X̂

y′ = εĝ(X̄ , X̂ , y, ε),

(13)

where L̂(X̄ , X̂ , y, ε) = QL(P−1X , y, ε)Q
 and ĝ(X̄ , X̂ , y, ε) = g(P−1X , y, ε).
One observes that, as expected, X̄ has the role of a parameter. Furthermore, due to
our hypothesis and definition of L̂ , we have that the matrix L̂(X̄ , X̂ , y, 0) is invertible
within the compact region of interest. Therefore, the corresponding critical manifold is

given by Ŝ0 =
{
X̂ = 0

}
. Denoting f (X̄ , X̂ , y, ε) = −L̂(X̄ , X̂ , y, ε)X̂ we have that

∂ f
∂ X̂

(X̄ , 0, y, 0) = −L̂(X̄ , 0, y, 0), which is invertible, implying that Ŝ0 is normally
hyperbolic. The proof is finalized by returning to the original coordinates leading to
(10). �


Next we are going to consider a case study in which Fenichel’s theory is not enough
to describe the dynamics of a fast–slow network.

3 A Triangle Motif

In this section we study a motif (Milo et al. 2002). Motifs can be seen as building
blocks of more general and complex networks. Indeed, as we describe throughout this
article, all the dynamic traits and properties that the triangle motif exhibits can be
extended to arbitrary networks, see Sect. 4.

Let us consider the following network
To each node i = 1, 2, 3 we assign a state xi = xi (t) ∈ R. We assume that the

dynamics of each node are defined only by diffusive coupling. Moreover, we assume
that w ∈ R is a dynamic weight depending on the vertices it connects and on an
external state y ∈ R, which is assumed to have much slower time evolution than that
of the nodes. Hence, we study the fast–slow system

x ′ = −L(x, y, ε)x,

y′ = εg(x, y, ε),
L =

⎡

⎣
w + 1 −w −1
−w w + 1 −1
−1 −1 2

⎤

⎦ , (14)
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where w = w(x1, x2, y, ε) is a smooth function of its arguments and 0 < ε � 1 is a
small parameter. In this section we shall consider the simple case in which w is affine
in the state variables, that is

w = α0 + α1x1 + α2x2 + α3y, (15)

with α0, α1, α2, α3 real constants. We further assume the nondegeneracy condition
α3 �= 0 to ensure coupling between the slow and fast variables. By shifting and
rescaling y �→ α0 + α3y, and a possible a change of signs of the variables, we may
also assume

w = y + α1x1 + α2x2, (16)

with α1 ≥ 0 and α2 ≥ 0.

3.1 Preliminary Analysis (the Singular Limit)

The following transformation, which is simple to obtain, will be useful throughout
this work.

Lemma 1 Consider the symmetric matrix L defined in (14). Then the orthogonal
matrix

T =

⎡

⎢⎢
⎣

√
3
3 −

√
6
6 −

√
2
2√

3
3 −

√
6
6

√
2
2√

3
3

√
6
3 0

⎤

⎥⎥
⎦ (17)

diagonalizes L as D = T
LT = diag {0, 3, 2w + 1}.
Thus, applying the coordinate transformation defined by (X ,Y ) = (T
x, y) one

obtains the conjugate diagonalized system

X ′ = −D(X ,Y )X

Y ′ = εG(X ,Y , ε),
(18)

where D(X ,Y ) = diag {0, 3, 2W + 1} and

W = Y +
√
3

3
(α1 + α2)

︸ ︷︷ ︸
=:β1

X1 −
√
6

6
(α1 + α2)

︸ ︷︷ ︸
=:β2

X2 +
√
2

2
(α2 − α1)

︸ ︷︷ ︸
=:β3

X3

= Y + β1X1 + β2X2 + β3X3

G(X ,Y , ε) = g(T X ,Y , ε).

(19)

Observe that fast–slow system (18) has a conserved quantity given by X ′
1 = 0,

which arises due the zero eigenvalue of the Laplacian matrix L of (14). Since this is
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Fig. 1 Triangle motif: a network
of three nodes connected on a
cycle

1 2

3

w

11

a trivial eigenvalue, that is, independent of the dynamics, we shall assume that X1 is
a coordinate on the critical manifold and not in the fast foliation, see also Sect. 2.3.

Remark 2 Due to X ′
2 = −3X2, the set A = {(X1, X2, X3,Y ) = (X1, 0, X3,Y )} is

uniformly globally exponentially stable. On the other hand, the local stability proper-
ties of {X3 = 0} are dictated by the sign of 2W + 1.

The previous observations allow us to reduce the analysis of (18) to that of the
planar fast–slow system

X ′
3 = −(2W̃ + 1)X3

Y ′ = εG̃(X1, 0, X3,Y , ε)
, W̃ = W |A = Y + β1X1 + β3X3, (20)

where X1 is regarded as a parameter. It follows that the corresponding critical manifold
is

C̃0 =
{
(X3,Y ) ∈ R

2 | (2W̃ + 1)X3 = 0
}

. (21)

It is now straightforward to see that, for fixed X1, p̃ = {(X3,Y ) = (0,− 1
2 − β1X1

)}

is a nonhyperbolic point of the critical manifold.

Remark 3 Our goal will be to describe the dynamics of the network shown in Fig. 1 as
trajectories pass through the nonhyperbolic point p̃. The reason to consider this will
become clear below when we give an interpretation of the singular dynamics in terms
of the network. Thus, we assume that G̃(X1, 0, 0,− 1

2 − β1X1, 0) < 0.

Singular dynamics in terms of the network From the definition X = T
x we have

(X1, X2, X3) =
(√

3

3
(x1 + x2 + x3),

√
6

6
(2x3 − x1 − x2),

√
2

2
(x2 − x1)

)

.

So, first of all, we have that the uniformly globally exponentially stable set A,
previously defined by A = {

(X1, X2, X3,Y ) ∈ R
4 | X2 = 0

}
(see Remark 2), is

equivalently given by

A =
{
(x1, x2, x3, y) ∈ R

4 | x3 = x1 + x2
2

}
. (22)

Naturally, the uniform global stability ofA is still valid. Next, if we restrict (14) toA
we obtain

123



2748 Journal of Nonlinear Science (2020) 30:2737–2786

1 2
w + 1

2

Fig. 2 Reduced graph corresponding to (23). The dynamics of the triangle motif converge exponentially to
the dynamics of this simpler graph

x ′
1 =

(
w + 1

2

)
(x2 − x1)

x ′
2 =

(
w + 1

2

)
(x1 − x2)

y′ = εg

(
x1, x2,

x1 + x2
2

, y, ε

)
,

(23)

which is the model of a 2-node 1-edge fast–slow network as shown in Fig. 2.
Next, we note in (23) that x ′

1 + x ′
2 = 0, which implies that x1(t) + x2(t) =

x1(0)+ x2(0) =: σ0 for all t ≥ 0. Therefore, just as in the diagonalized system above,
we can reduce the analysis of the triangle motif to the analysis of the planar fast–slow
system

x ′
1 =

⎛

⎜
⎝
1

2
+ y + (α1 − α2)x1 + α2σ0︸ ︷︷ ︸

=:w̃

⎞

⎟
⎠ (−2x1 + σ0)

y′ = εg(x1,−x1 + σ0,
σ0

2
, y, ε),

(24)

Now, it is straightforward to see that the critical manifold is given by

C0 =
{
(x1, y) ∈ R

2 |
(

w̃ + 1

2

)
(−2x1 + σ0) = 0

}
. (25)

Let us consider the lines

M0 =
{
(x1, y) ∈ R

2 | w̃ + 1

2
= 0

}

N0 =
{
(x1, y) ∈ R

2 | − 2x1 + σ0 = 0
}

,

(26)

which are subsets of the critical manifold since C0 = M0 ∪ N0. It is clear that the

intersection p = M0 ∩N0 =
{
(x1, y) =

(
σ0
2 ,− 1+σ0(α1+α2)

2

)}
is the only nonhyper-

bolic point of the layer equation of (24), and that the stability properties of C0 are as
shown in Fig. 3. For brevity let q = − 1+σ0(α1+α2)

2 .
Next, suppose trajectories converge toN a

0 . This means that (x1(t), x2(t), x3(t)) →
σ0
2 (1, 1, 1) as t → ∞. That is, the agents reach consensus; hence, we call N0 the
consensus manifold. On the other hand, assume trajectories converge toMa

0. For this
it is necessary that α1 − α2 �= 0; otherwise, M0 is tangent to the fast foliation. Then
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x

y N a
0

N r
0

Ma
0

Mr
0

p

x

y N a
0

N r
0

Ma
0

Mr
0

γc

Fig. 3 Left: stability properties of the critical manifold C0, where we partition the sets M0 and N0 into

their attracting and repelling parts, and where p =
(

σ0
2 , − 1+σ0(α1+α2)

2

)
is a nonhyperbolic point of the

fast dynamics. The case α1 − α2 = 0 is degenerate and corresponds to the case whereM0 is aligned with
the fast foliation. Right: blow-up of the nonhyperbolic point p, where γc is a (singular) maximal canard.
The details of the blow-up analysis are given in Sect. 3.3

Fig. 4 Singular limit for the case (α1 − α2) < 0, compared with Fig. 3

(x1(t), x2(t), x3(t)) →
(

− 1
2+α2σ0+y

α1−α2
,

1
2+α1σ0+y

α1−α2
, σ0

2

)
as t → ∞. That is, for fixed

values of y, agents converge to different values depending on their initial conditions.
Therefore, we call M0 the clustering manifold. Our goal will be to describe the
dynamics of the network as agents transition from consensus into clustering. Thus,
we also assume that g(p, 0) < 0.

Remark 4 Note that the sign of (α1 − α2) only changes the orientation of M0. In
fact, if we denote (24) by X(x1, y, ε, ρ) with ρ = α1 − α2 ≥ 0, one can show
that X(x1, y, ε,−ρ) = −X(−x1, y, ε, ρ). From this we shall further assume that
α1 − α2 ≥ 0. For completeness we show the singular limit for the case (α1 − α2) < 0
in Fig. 4, but shall not be further discussed.
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It should be clear up to this point that themain difficulty for the analysis of fast–slow
system (24) is given by the transition across a transcritical singularity (DeMaesschalck
2015; Krupa and Szmolyan 2001b). Our goal is not to present a new analysis of this
phenomenon but rather to study the effects of the blow-up transformation in a network.
We shall show below that on each chart of the blow-up space, the resulting blow-up
system can also be interpreted as a particular adaptive network. More importantly, it
turns out that via the blow-up transformation one gains a clear distinction between the
dynamics occurring at the different timescales. On a more technical matter, we will
also show that the fact that the problem under study is defined on a graph results on
a maximal canard, which in De Maesschalck (2015), Krupa and Szmolyan (2001b) is
nongeneric.

3.2 Main Result

Since p is nonhyperbolic, the classical Fenichel theorem is not enough to conclude
that for ε > 0 sufficiently small we have a qualitatively equivalent behaviour to the
one in the limit ε = 0 described above. Therefore, a more detailed analysis is needed
for our purposes. To state our main result, and for the analysis to be performed later,
it will be convenient to move the origin of the coordinate system to the nonhyperbolic
point p and to relabel the coordinates of the nodes. So, let us perform the following
steps

1. Relabel the fast coordinates as x = (x1, x2, x3) = (a, b, c). This will make our
notations across the blow-up charts simpler.

2. Translate coordinates according to (a, b, c, y) �→ ((a, b, c)+ σ0
2 13, y−q), where

1m = (1, . . . , 1) ∈ R
m and we recall that σ0 = 2

3 (a(0) + b(0) + c(0)) and

q = − 1+σ0(α1+α2)
2 . Note that this translation depends on the initial conditions, but

has the convenient implication a(t) + b(t) + c(t) = 0 for all t ≥ 0.
3. Rescale the parameter ε by ε �→ ε

|g(0)| . Thus, we may assume that g(0) = −1.

With the above we now consider
⎡

⎣
a′
b′
c′

⎤

⎦ = −
⎡

⎣
w + 1 −w −1
−w w + 1 −1
−1 −1 2

⎤

⎦

⎡

⎣
a
b
c

⎤

⎦

y′ = ε(−1 + O(a, b, c, y, ε))

(27)

where w = − 1
2 + y + α1a + α2b. Next, let us define the sections

�en =
{
(a, b, c, y) ∈ R

4 | y = δ
}

,

�ex =
{
(a, b, c, y) ∈ R

4 | y = −δ
}

,
(28)

where δ > 0 is of order O(1). We further define the map

� : �en → �ex, (29)
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which is induced by the flow of (27). We prove the following.

Theorem 2 Consider fast–slow system (27), where α1 − α2 ≥ 0. Then

(T1) The set A = {(a, b, c, y) ∈ R
4 | c = a+b

2

}
is globally attracting.

(T2) The critical manifold of (27) is contained in A and is given by the union

C0 = N a
0 ∪ N r

0 ∪ Ma
0 ∪ Mr

0 ∪ {0} , (30)

where

N a
0 =

{
(a, b, c, y) ∈ R

4 | a = b = c = 0, y > 0
}

,

N r
0 =

{
(a, b, c, y) ∈ R

4 | a = b = c = 0, y < 0
}

,

Ma
0 =

{
(a, b, c, y) ∈ R

4 | y + α1a + α2b = 0, y < 0, α1 − α2 > 0
}

Mr
0 =

{
(a, b, c, y) ∈ R

4 | y + α1a + α2b = 0, y > 0, α1 − α2 > 0
}

.

(31)

(T3) Restriction to A is equivalent to the restriction to {b = −a, c = 0}.
Restricted to A and for ε > 0 sufficiently small:

(T4) There exists a slow manifold Nε = {
(a, y) ∈ R

2 | a = 0
}
that is a maximal

canard. Moreover, Nε is attracting for y > 0 and repelling for y < 0.
(T5) If α1 = α2 then �|A(a, b, c, y) = �(a,−a, 0, y) = (a,−a, 0,−y). More-

over, every trajectory with initial condition in �en with a �= 0 diverges from
Nε exponentially fast as t → ∞.

(T6) If α1 − α2 > 0, there exist slow manifolds Ma
ε and Mr

ε given by

Ma
ε =

{
(a, y) ∈ R

2 | a = H(y, ε) + O(ε1/2), y < 0
}

Mr
ε =

{
(a, y) ∈ R

2 | a = H(y, ε) + O(ε1/2), y > 0
}

,
(32)

where

H(y, ε) = − ε1/2

2(α1 − α2)D+(ε−1/2y)
, (33)

with D+ denoting the Dawson function (Abramowitz and Stegun 1972, pp. 219
and 235). In this case, if (a−b)|�en > 0 then the map� is well-defined and the
corresponding trajectories converge towardsMa

ε as t → ∞. On the contrary,
if (a − b)|�en < 0, then the corresponding trajectories diverge exponentially
fast as t → ∞.

Proof Items (T1) and (T2) have already been proven in our preliminary analysis of
Sect. 3.1. Item (T3) readily follows from the relations a + b + c = 0 and c = a+b

2 ,
which are simultaneously satisfied on A. The proof of items (T3)–(T6) is given in
Sect. 3.3.4. �
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Fig. 5 Schematic representation
of the dynamics of (27) inA and
for ε > 0 sufficiently small,
compared with Fig. 3

Nε

Ma
ε

Mr
ε

Σen

Σex

The claims of Theorem 2 are sketched in Fig. 5.
Interpretation In terms of the network, Theorem 2 tells us that:

• The time evolution of the node c (the node that is not connected by the dynamic
weight) can always be described as a combination of the dynamics of the nodes
(a, b) (those connected to the dynamic weight).

• The parametersα1, α2 in the definition of theweightw = − 1
2+y+α1a+α2b, play

an essential role: (i) if α1 = α2, then there is no “clustering manifold”. Another
way to interpret this degenerate case is that the nodes (or agents) have an equal
contribution towards the value of the weight. This results in a zero net contribution
of the nodes towards the dynamics of the weight. This is already noticeable in (24),
where α1 = α2 results in w̃ being independent on the nodes’ state. In this case
the dynamics are rather simple, trajectories are attracted towards consensus for
y > 0 and repelled from consensus for y < 0; (ii) if α1 �= α2, then the clustering
manifold exists. For suitable initial conditions, the nodes first approach consensus,
but then, when y < 0, the nodes tend towards a clustered state in which b = −a
and c = 0.

• The consensus manifoldNε is a maximal canard, which implies that one observes
a delayed loss of stability of Nε. In other words, one expects that trajectories
exponentially near Nε stay close to it for time of order O(1) after they cross the
transcritical singularity before being repelled from it. See also “Appendix A”.

3.3 Blow-Up Analysis

In this section we are going to study the trajectories of (27) in a small neighbourhood
of the origin. To do this we employ the blow-up method (Dumortier et al. 1996;
Jardón-Kojakhmetov and Kuehn 2019; Krupa and Szmolyan 2001a; Kuehn 2015).

Remark 5 We could naturally perform the blow-up analysis restricted to the invariant
and attracting subset A. However, since one of our goals is to investigate the effects
of the blow-up on network dynamics, we shall proceed by blowing up (27) and track,
on each chart, the resulting “blown-up network dynamics”.
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Let the blow-up map be defined by

a = r̄ ā, b = r̄ b̄, c = r̄ c̄, y = r̄ ȳ, ε = r̄2ε̄, (34)

where ā2 + b̄2 + c̄2 + ȳ2 + ε̄2 = 1 and r̄ ≥ 0.
We define the charts

K1 = {ȳ = 1} , K2 = {ε̄ = 1} , K3 = {ȳ = −1} . (35)

Accordingly we define local coordinates on each chart by

K1 : a = r1a1, b = r1b1, c = r1c1, y = r1, ε = r21ε1,

K2 : a = r2a2, b = r2b2, c = r2c2, y = r2y2, ε = r22 ,

K3 : a = r3a3, b = r3b3, c = r3c3, y = −r3, ε = r23ε3.

(36)

The following relationship between the local blow-up coordinates will be used
throughout our analysis.

Lemma 2 Let κi j denote the transformation map between charts Ki and K j . Then

κ12 : r2 = r1ε
1/2
1 , a2 = ε

−1/2
1 a1, b2 = ε

−1/2
1 b1, c2 = ε

−1/2
1 c1, y2 = ε

−1/2
1 ,

κ21 : r1 = r2y2, a1 = y−1
2 a2, b1 = y−1

2 b2, c1 = y−1
2 c2, ε1 = y−2

2 ,

κ32 : r2 = r3ε
1/2
3 , a2 = ε

−1/2
3 a3, b2 = ε

−1/2
3 b3, c2 = ε

−1/2
3 c3, y2 = −ε

−1/2
3 ,

κ23 : r3 = −r2y2, a3 = −y−1
2 a2, b3 = −y−1

2 b2, c3 = −y−1
2 c2, ε3 = y−2

2 .

(37)

Note that κ−1
i j = κ j i .

Let us now proceed with the blow-up analysis on each of the charts. We recall
that on K1 one studies orbits of (27) as they approach the origin, on K2 orbits within
a small neighbourhood of the origin, and finally on K3 orbits as they leave a small
neighbourhood of the origin.

3.3.1 Analysis in the Entry Chart K1

In this chart the blow-up map is given by

a = r1a1, b = r1b1, c = r1c1, y = r1, ε = r21ε1. (38)
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a1 b1

c1

− 1
2

11 + a1 b1O(r1)
+

a1 b1

c1

O(r1ε1)

Fig. 6 Network interpretation corresponding to (39). The orderO(1) terms in (39) correspond to a triangle
motif with fixed weights. The particular values of the weights make such a network degenerate in the
sense that the corresponding Laplacian has a kernel of dimension two. Next, the orderO(r1) terms in (39)
correspond to two nodes connected by a dynamic weight. Finally, theO(r1ε1) correspond to internal node
dynamics

We then obtain the blown-up vector field

⎡

⎢
⎣

a′
1

b′
1

c′
1

⎤

⎥
⎦ = −

⎡

⎢
⎣

1
2

1
2 −1

1
2

1
2 −1

−1 −1 2

⎤

⎥
⎦

⎡

⎢
⎣

a1

b1

c1

⎤

⎥
⎦+ r1 f1(a1, b1, c1, r1, ε1)

r ′
1 = r21ε1(−1 + O(r1))

ε′
1 = −2r1ε

2
1(−1 + O(r1)),

(39)

where f1(a1, b1, c1, r1, ε1) reads as

f1 =
⎛

⎜
⎝(1 + α1a1 + α2b1)

⎡

⎢
⎣

−1 1 0

1 −1 0

0 0 0

⎤

⎥
⎦− ε1(−1 + O(r1))

⎡

⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎦

⎞

⎟
⎠

⎡

⎢
⎣

a1

b1

c1

⎤

⎥
⎦ .

(40)

Remark 6 In (39) and (40) the term −1+O(r1) stands for exactly the same function.

Let us interpret the equations in the first chart from a network dynamics perspective.
We are interested in the dynamics of (39) for ε1 small andwith r1 → 0. This is because
r1 → 0 is equivalent to y(t) approaching the origin in (27). Thus, we may regard (39)
as a perturbation of a network with fixed weights as shown in Fig. 6.

The order O(r1) terms can be seen as a smaller network, only involving the nodes
(a1, b1) and with dynamic edge with weight r1(1+ α1a1 + α2b1). The orderO(r1ε1)
can be interpreted as internal dynamics on each node.

Continuing with the analysis, it is straightforward to check (with the help of (17))
that for r1 = 0 we have c1(t1) → a1(t1)+b1(t1)

2 as t1 → ∞, where t1 denotes the time
parameter of (39). We now proceed with a more detailed analysis of (39) as follows.
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Proposition 1 System (39) has the following sets of equilibrium points.

S1,0 =
{
(a1, b1, c1, r1, ε1) ∈ R

5 | r1 = 0, c1 = a1 + b1
2

}
,

N1,0 =
{
(a1, b1, c1, r1, ε1) ∈ R

5 | ε1 = 0, c1 = a1 + b1
2

, a1 = b1

}
,

M1,0 =
{
(a1, b1, c1, r1, ε1) ∈ R

5 | ε1 = 0, c1 = a1 + b1
2

, 1 + α1a1 + α2b1 = 0

}
.

(41)

Proof Straightforward computations. �


Next, we show that the set defined by c1 = a1+b1
2 is an attracting centre manifold.

Proposition 2 The system given by (39) has a local 4-dimensional centre manifold
Wc

1 and a local 1-dimensional stable manifoldWs
1. The centre manifoldWc

1 contains
the sets of Proposition 1. Furthermore,Wc

1 is given by c1 = a1+b1
2 , and the flow along

it reads as

a′
1 = r1(1 + α1a1 + α2b1)(b1 − a1) − r1ε1(−1 + O(r1))a1
b′
1 = r1(1 + α1a1 + α2b1)(a1 − b1) − r1ε1(−1 + O(r1))b1

r ′
1 = r21ε1(−1 + O(r1))

ε′
1 = −2r1ε

2
1(−1 + O(r1)).

(42)

Proof Westart byusing the similarity transformation
[
A1 B1 C1

]
 = T
 [a1 b1 c1
]
,

where T is defined in (17). Under such a transformation one rewrites (39) as

⎡

⎣
A′
1

B ′
1

C ′
1

⎤

⎦ = −
⎡

⎣
0 0 0
0 3 0
0 0 0

⎤

⎦

⎡

⎣
A1
B1
C1

⎤

⎦+ r1F1(A1, B1,C1, r1, ε1)

r ′
1 = r21ε1(−1 + O(r1))

ε′
1 = −2r1ε

2
1(−1 + O(r1)),

(43)

where

F1 =

⎛

⎜⎜⎜⎜
⎝

(

1 +
√
3

3
(α1 + α2)A1 −

√
6

6
(α1 + α2)B1 +

√
2

2
(α2 − α1)C1

)

︸ ︷︷ ︸
=:W̄⎡

⎣
0 0 0
0 0 0
0 0 −2

⎤

⎦− ε1(−1 + O(r1))

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎞

⎠

⎡

⎣
A1
B1
C1

⎤

⎦ .

(44)
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It is now straightforward to see that there is a 1-dimensional stable manifold Ws
1

tangent to the B1-axis and a 4-dimensional centre manifold Wc
1 containing the set of

equilibrium points
{
(A1, B1,C1, r1, ε1) ∈ R

5 | r1 = B1 = 0
}
. �


Remark 7 Observe that, due to the term (−1+O(r1)), the vector field corresponding
to B ′

1 is not decoupled from the centre directions. However, we show below that Wc
1

is indeed given by B1 = 0.

The centre manifold Wc
1 can be expressed by B1 = h1(r1, A1,C1, ε1) satisfying

h1(0) = 0, Dh1(0) = 0, where Dh1 denotes the Jacobian of h1. Let h1 be given as

h1 =
∑

i, j,k,l≥0
i+ j+k+l≥2

σi jkl A
i
1C

j
1 r

k
1εl1, (45)

where σi jkl denotes scalar coefficients. Substituting (45) into the equation for B ′
1

we get

− 3h1 = r1ε1(−1 + O(r1))

(
−h1 + A1

∂h1
∂A1

+ C1
∂h1
∂C1

+ r1
∂h1
∂r1

−2ε1
∂h1
∂ε1

)
− 2r1W̄C1

∂h1
∂C1

. (46)

We now have the following observations:

1. All the monomials in the right-hand side of (46) are of degree at least 3, therefore,
all coefficients σi jkl with i + j + k + l = 2 are zero.

2. Since the right-hand side of (46) is of order O(r1) we have that all coefficients
σi j0l are zero for all i + j + l ≥ 3. Naturally, we then have that h1 ∈ O(r1) and
thus k ≥ 1.

3. The coefficients σi jk0, k ≥ 1, are computed from the equality

−3h1 = −2r1W̄C1
∂h1
∂C1

= −2r1

(

1 +
√
3

3
(α1 + α2)A1 −

√
6

6
(α1 + α2)h1 +

√
2

2
(α2 − α1)C1

)

C1
∂h1
∂C1

= −2r1(1 + η1A1 − η2h1 + η3C1)C1
∂h1
∂C1

,

(47)

where the last equation is introduced for simplicity. We readily see that all coeffi-
cients σi0k0 with i + k ≥ 3 are zero. Next, for i + j + k = 3, the term h1C1

∂h1
∂C1

does not play a role because its degree is at least 4. It follows from the first item
that σi jk0 = 0 for i + j + k = 3. Next, let us write (47) in a simplified form by (i)

expanding it, (ii) writing all monomials in the exact same form Ai
1C

j
1 r

k
1 , (iii) by
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omitting the monomial, and (iv) omitting the 0 of the superscript σi jk0. We get

−3
∑

σi jk = −2
∑

jσi j(k−1) − 2η1
∑

jσ(i−1) j(k−1)

− 2η3
∑

jσi( j−1)(k−1) + 2η2
∑

σi jk
∑

jσi j(k−1)

(48)

Now, it suffices to note that for eachmonomial, the coefficient σi jk , with i+ j+k =
n and n > 3, of the left-hand side depends exclusively on coefficients σi jk with
i + j + k < n. From the previous items, and by progressing at each degree n, it
follows that σi jk0 = 0 for all i + j + k ≥ 2.

4. The exact same argument as in item 3 applies for l ≥ 1.

The expression of the centre manifold in the original coordinates is obtained by

noting that B1 =
√
6
6 (2c1 − a1 − b1), implying that c1 = a1+b1

2 as stated. Finally,
the flow along the centre manifold is obtained by taking into account the restriction
c1 = a1+b1

2 . �

Remark 8 Wc

1 is the blow-up of A.

Before proceeding with the analysis onWc
1, we have the next observation.

Proposition 3 Let (a1(0), b1(0), c1(0)) denote initial conditions of (39) and let ε1 =
0. Then sign(a1) → sign(a1(0) − b1(0)) as t → ∞.

Proof It is easier to see the claim in (43) with ε1 = 0, and where A1 =
√
3
3 (a1 + b1 +

c1) = 0, sign(B1) = sign(2c1 − a1 − b1) and sign(C1) = sign(b1 − a1). We note
in (43) that sign(B1) and sign(C1) are invariant. Therefore as B1 → 0 (equivalently
2c1 → a1 + b1) we have a1 + b1 → 0 and therefore sign(b1 − a1) → sign(−2a1)
from which the claim immediately follows. �


The previous observation is important since, as we will see, inWc
1 the set {a1 = 0}

is invariant. Note that we can now desingularize the dynamics restricted to Wc
1 by

dividing by r1 in (42), as is usually the case when blowing up, to obtain

a′
1 = (1 + α1a1 + α2b1)(b1 − a1) − ε1(−1 + O(r1))a1
b′
1 = (1 + α1a1 + α2b1)(a1 − b1) − ε1(−1 + O(r1))b1
r ′
1 = r1ε1(−1 + O(r1))

ε′
1 = −2ε21(−1 + O(r1)).

(49)

Remark 9 Recall that a1(t1) + b1(t1) + c1(t1) = 0 for all t1 ≥ 0. Moreover, since in
Wc

1 we have c1 = a1+b1
2 we further have a1(t1)+b1(t1) = 0 for all t1 ≥ 0. Therefore,

we can consider instead of (49) the 3-dimensional system

a′
1 = −2(1 + (α1 − α2)a1)a1 − ε1(−1 + O(r1))a1
r ′
1 = r1ε1(−1 + O(r1))

ε′
1 = −2ε21(−1 + O(r1)).

(50)
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Naturally, solutions of (50) give solutions of (49) by adding b1(t1) = −a1(t1).
Therefore we proceed by studying (50). It is worth noting that on Wc

1, the set{
(a1, r1, ε1) ∈ R

3 | a1 = 0
}
is invariant. Therefore, it is important to keep track of

the sign of a1 as it approaches Wc
1. Such sign is given by Proposition 3. That is, if

a1(0) − b1(0) > 0 (resp. a1(0) − b1(0) < 0), then a1 > 0 (resp. a1 < 0) on Wc
1.

Similarly, if a1(0) − b1(0) = 0, then a1 = 0 on Wc
1. Finally, we recall that Wc

1 coin-
cides precisely with the invariant setA written in the coordinates of this chart (see the
statement of Theorem 2).

To study the dynamics in this chart, we are going to be interested in the properties
of the flow between the sections

�en
1 =

{
(a1, r1, ε1) ∈ R

3 | r1 = δ1, ε1 < μ1

}

�ex
1 =

{
(a1, r1, ε1) ∈ R

3 | r1 < δ1, ε1 = μ1

}
,

(51)

where δ1 > 0, and μ1 > 0 is sufficiently small. The precise meaning of these sections
becomes clear in Sect. 3.3.4 where we compute a transition map through a whole
neighbourhood of the origin of(27). For now it shall be enough to mention that the
definition �en

1 is motivated by the entry section �en (recall (28)), while �ex
1 is a

convenient section allowing us to transition towards the central chart K2.
We observe that the subspaces {a1 = 0}, {r1 = ε1 = 0}, {r1 = 0}, and {ε1 = 0} are

all invariant and thus are helpful to describe overall dynamics (50). So, we proceed as
follows.

In {a1 = 0} we have the planar system

r ′
1 = r1ε1(−1 + O(r1))

ε′
1 = −2ε21(−1 + O(r1)).

(52)

which has a line of zeros (r1, ε1) = (r1, 0) and an unstable invariant manifold
(r1, ε1) = (0, ε1). Note that away from {ε1 = 0} the flow of (52) is equivalent to
that of a planar saddle. Next, we want to compute the time it takes to travel from
�en

1 to �ex
1 . Therefore, assume initial conditions (r1, ε1) = (δ1, ε

∗
1) and boundary

conditions (r1, ε1) = (r1(T1), μ1). From (52) we find that

r1(T1) = δ1

(
ε∗
1

μ1

)1/2

. (53)

Then, one can estimate the transition time T1 by integrating the equation for ε′
1,

so that we get

T1 = 1

2

(
1

ε∗
1

− 1

μ1

)
(1 + O(δ1)), 0 < ε∗

1 ≤ μ1. (54)
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Fig. 7 Schematic of the flow of
(57) for α2 − α1 > 0 and ε1
small

a1

ε1

Er
1 Ea

1

1
α2−α1

In {r1 = ε1 = 0} we have the 1-dimensional system

a′
1 = −2(1 + (α1 − α2)a1)a1, (55)

where we recall that α1−α2 ≥ 0. In this case we have, generically, two hyperbolic
equilibriumpoints: one stable at a1 = 0 and one unstable ata1 = 1

α2−α1
. Ifα1 = α2

then only the stable equilibrium at the origin exists. It will be useful to integrate
(55), that is

a1(t1) = − a∗
1

(α1 − α2)a∗
1 − ((α1 − α2)a∗

1 + 1) exp(2t1)
, (56)

where a∗
1 denotes an initial condition for (55).

In {r1 = 0} we have

a′
1 = −2(1 + (α1 − α2)a1)a1 + ε1a1

ε′
1 = 2ε21 .

(57)

Then, we have two 1-dimensional centre manifolds: Ea
1 is a centre manifold to the

equilibrium point (a1, ε1) = (0, 0) and E r
1 to (a1, ε1) =

(
1

α2−α1
, 0
)
. The flow on

both centre manifolds is given by ε′
1 = 2ε21, and we have that Ea

1 is tangent to the

ε1-axis, while E r
1 is tangent to the vector

[
1 −2(α2 − α1)

]
. In fact, one can show
that Ea

1 is actually given by a1 = 0 and that it is unique. On the other hand E r
1 is not

unique and has the expansion a1 = 1
α2−α1

+ 1
2(α1−α2)

ε1 + O(ε21). Since ε1 ≥ 0,
we have that in a small neighbourhood of (a1, ε1) = (0, 0) the flow is equivalent
to that of a saddle, while in a small neighbourhood of (a1, ε1) = ( 1

α2−α1
, 0) the

flow is equivalent to that of a source. From this analysis we conclude that the flow
of (57) is as sketched in Fig. 7.

Remark 10 The orbit E r
1 can be identified with the critical manifold Mr

0 as it goes
up on the blow-up sphere. The same correspondence holds for Ea

1 and N0. Compare
Figs. 7 and 3.
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In {ε1 = 0} we have

a′
1 = −2(1 + (α1 − α2)a1)a1
r ′
1 = 0.

(58)

Therefore, the (a1, r1)-plane is foliated by lines parallel to the r1-axis. Along each
leaf the flow is given by (55).

We can now summarize the previous analysis in the following proposition, which
completely characterizes the dynamics of (39).

Proposition 4 The following statements hold for (39).

1. There exist a 1-dimensional local stable manifoldWs
1 and a 4-dimensional local

centre-stable manifold Wc
1 , which is given by the graph of c1 = a1+b1

2 .

Restricted toWc
1 one has b1 = −a1, which implies c1 = 0, and:

2. There is an attracting 2-dimensional centre manifold Ca1 . The manifold Ca1 con-
tains a line of zeros �a1 = {(r1, a1, ε1) ∈ R

3 | a1 = ε1 = 0
}
and a 1-dimensional

centre manifold Ea
1 = {(r1, a1, ε1) ∈ R

3 | r1 = a1 = 0
}
. On the plane {r1 = 0},

the centremanifold Ea
1 is unique. The flow along Ea

1 is unstable, that is, it diverges
from the origin, while the flow on Ca1 away from �a1 is locally equivalent to that
of a saddle.

3. There is a repelling 2-dimensional centre manifold Cr1. The manifold Cr1 con-

tains a line of zeros �r1 =
{
(r1, a1, ε1) ∈ R

3 | a1 = 1
α2−α1

, ε1 = 0
}

and a

1-dimensional centre manifold E r
1 =

{
(r1, a1, ε1) ∈ R

3 | r1 = 0, a1 = 1
α2−α1

+O(ε1)}. The flow along E r
1 is unstable, that is, it diverges from the equilib-

rium point (a1, ε1) =
(

1
α2−α1

, 0
)
, while the flow on Cr1 away from �r1 is locally

equivalent to that of a saddle.

Proof The existence, graph representation and dimension of Wc
1 are already proven

in Proposition 2. The existence and dimension of Ca1 and of Cr1 follow from the lin-
earization of (50). The flow on Ca1 and on Cr1 follows from (50) by noting that, up
to leading-order terms, the vector field restricted to either of the centre manifolds is
given by

r ′
1 = −r1ε1

ε′
1 = 2ε21 .

�

We are now ready to describe the flow of (50). Let �1 : �en

1 → �ex
1 be a map

defined by the flow of (50).
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Theorem 3 The image �1(�
en
1 ) in �ex

1 is of the form

�1

⎛

⎝
a1
δ1
ε1

⎞

⎠ =
⎛

⎜
⎝

ha1 + O(a1ε21)

δ1

(
ε1
μ1

)1/2

μ1

⎞

⎟
⎠ , (59)

where the function ha1 = ha1(a1, δ1, ε1) is given by

ha1 = − a1
(α1 − α2)a1 − ((α1 − α2)a1 + 1) exp(2T1)

,

T1 = 1

2

(
1

ε1
− 1

μ1

)
(1 + O(δ1)). (60)

Proof The proof follows our previous analysis. The term ha1 is obtained from (56)
and evaluating transition time (54). The higher-order termsO(a1ε21) follow from (57)
with ε1 > 0 small. For the expression of ha1 it is important to recall Proposition 3.
This means that the initial condition a∗

1 in (56) has the same sign as a1(0) − b1(0),
and where a1(0), b1(0) are initial conditions of (39). �


Remark 11 • If α1 − α2 = 0 then ha1 = a1 exp(−2T1).
• If a1 > 1

α1−α2
, then the function ha1 is well-defined for any point (a1, δ1, ε1) ∈

�en
1 . If a1 ≤ 1

α1−α2
, then ha1 is well-defined only for T1 < 1

2 ln
(

(α1−α2)a1
(α1−α2)a1+1

)
.

In such a case we choose suitably 0 < ε1 < μ1 � δ1 so that the function ha1 is
well-defined.

The analysis in this chart is sketched in Fig. 8.

3.3.2 Analysis in the Rescaling Chart K2

In this chart we study the dynamics of (27) within a small neighbourhood of the origin.
The corresponding blow-up map reads as

a = r2a2, b = r2b2, c = r2c2, y = r2y2, ε = r22 . (61)

The blown-up vector field reads as

⎡

⎣
a′
2
b′
2
c′
2

⎤

⎦ = −(L̄0 + r2w̄ L̄1)

⎡

⎣
a2
b2
c2

⎤

⎦

y′
2 = r2(−1 + O(r2)),

r ′
2 = 0

(62)
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Δex
1

Δen
1

a1

ε1

r1

Ca
1

Ea
1

Cr
1

Er
1

Fig. 8 Schematic representation of the flow of (39) restricted to the attracting centre manifold Wc
1 . The

wegde-like shape of the image of �1(�
en
1 ) (shaded in �ex

1 ) is due to the contraction towards Ca1

Fig. 9 Graph representation of
(62)

1 2

3

− 1
2

11 + 1 2
r2w̄

where

L̄0 =
⎡

⎣
1
2

1
2 −1

1
2

1
2 −1

−1 −1 2

⎤

⎦ , L̄1 =
⎡

⎣
1 −1 0

−1 1 0
0 0 0

⎤

⎦ (63)

with w̄ = y2 + α1a2 + α2b2. In the rest of this section we omit the equation r ′
2 = 0

and just keep in mind that r2 is a parameter in this chart.
Before proceeding with the analysis, it is again very helpful to study the effect that

the blow-up map has on the network’s topology. Note that (62) can be regarded as
the model of an O(r2) graph preserving perturbation of a static network as shown in
Fig. 9.

Roughly speaking, the blow-up separates two types of dynamics: the dynamics of
order O(1) correspond to a consensus protocol on a degenerate static network. Here
by degenerating we mean that the Laplacian of the static network has a kernel of
dimension 2, as can be easily seen in (62)–(63) with r2 = 0. Next, the dynamics of
order O(r2) occur in a slower timescale and correspond to the slowly varying edge
with weight r2w̄.

We proceed with the description of the flow of (62).
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Proposition 5 For r2 ≥ 0 sufficiently small, the equilibrium points of (62) are given
by

{
(a2, b2, c2, y2, r2) ∈ R

5 | r2 = 0, (a2, b2, c2) ∈ ker(L̄0)
}

. (64)

Proof Straightforward computations. �


Next we show that (62) has an attracting 4-dimensional centre manifoldWc
2 and a

1-dimensional stable manifoldWs
2. These objects, in fact, correspond, respectively, to

Wc
1 andWs

1 found in chart K1. In qualitative terms, reduction toWc
2 will correspond

to representing the behaviour of the third node, with state c2, in terms of the other two
nodes.

Proposition 6 System (62) has a 4-dimensional local centre manifold Wc
2 and a 1-

dimensional local stable manifold Ws
2 that intersect at {r2 = 0} ∩

{
c2 = a2+b2

2

}
.

The centre manifold Wc
2 is given by the graph of c2 = a2+b2

2 , and it holds that
κ12(Wc

1) = Wc
2 .

Proof The proof follows the same reasoning (and in fact it is simpler than) the proof
of Proposition 2. The relation κ12(Wc

1) = Wc
2 is straightforward from (37). �


Since the centre manifold Wc
2 is attracting, and of codimension 1, the next step

is to restrict the dynamics to it. However, the next observation is important (recall
Proposition 3).

Lemma 3 The trajectories of (62) restricted to {r2 = 0} have the asymptotic
behaviour

lim
t2→∞ (a2(t2), b2(t2), c2(t2)) = 1

2
(a2(0) − b2(0), b2(0) − a2(0), 0) . (65)

As it was the case in chart K1 the previous lemma gives us the relevant sign of a2
on the centre manifold Wc

2.
The restriction of (62) to Wc

2 results on a vector field of order O(r2), which can
be desingularized as is usual in the blow-up method by dividing by r2. By performing
the aforementioned steps we obtain

a′
2 = w̄(b2 − a2),

b′
2 = w̄(a2 − b2),

y′
2 = −1 + O(r2),

(66)

where we recall that w̄ = y2 + α1a2 + α2b2. From the fact that a + b + c = r2(a2 +
b2 + c2) = 0 for all r2 ≥ 0 and due to the restriction to Wc

2, that is c2 = a2+b2
2 , we

further have that a2+b2 = 0. Therefore, the analysis of (62) is reduced to the analysis
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of the planar system

a′
2 = −2(y2 + (α1 − α2)︸ ︷︷ ︸

=:ν≥0

a2)a2,

y′
2 = −1 + O(r2).

(67)

Note that in the restriction of (67) to {r2 = 0}, one has that y2 is essentially time in
the reverse direction. To describe the flow of (67), let δ2 > 0 and define the sections

�en
2 =

{
(r2, a2, y2) ∈ R

3 | y2 = δ2

}
,

�ex
2 =

{
(r2, a2, y2) ∈ R

3 | y2 = −δ2

}
.

(68)

Accordingly, let �2 : �en
2 → �ex

2 be the map defined by the flow of (67). We now
show the following.

Proposition 7 Consider (67). Then the following hold.

1. There exists a trajectory γc given by

γc(t2) = (a2(t2), y2(t2)) = (0,−t2) t2 ∈ R. (69)

No other trajectory of (67) converges to the y2-axis as t2 → ±∞.
2. There exist orbits γ r

2 and γ a
2 that are defined, respectively, in the quadrants

{a2 < 0, y2 > 0} and {a2 > 0, y2 < 0} and are given by

γ r
2 =

{
(a2, y2) ∈ R

2 | a2 = − 1

2νD+(y2)
, a2 < 0

}
,

γ a
2 =

{
(a2, y2) ∈ R

2 | a2 = − 1

2νD+(y2)
, a2 > 0

}
,

(70)

where D+(y2) stands for the Dawson function (Abramowitz and Stegun 1972,
pp. 219 and 235). Furthermore, since y2 is essentially time, the trajectory γ

j
2 ,

j = r, a, has asymptotic expansions

γ
j
2 = − 1

2νy2
+ O(y−3

2 ), y2 → 0

γ
j
2 = −1

ν
y2 + 1

2νy2
+ O(y−3

2 ), |y2| → ∞.

(71)

All trajectories of (67) with initial condition a∗
2 > 0 and y∗

2 > 0 are asymptotic
to γ a

2 as t2 → ∞.
3. The transition map �2 : �en

2 → �ex
2 is well-defined if and only if

a2|�en
2

> − 1

4D+(δ2)
, (72)
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and given by

�2

⎛

⎝
r2
a2
δ2

⎞

⎠ =
⎛

⎝
r2

a2
1+4a2νD+(δ2)

+ O(r2)
−δ2

⎞

⎠ . (73)

4. If a2|�en
2

≤ − 1
4D+(δ2)

then the corresponding orbit has asymptote y2 = �2 which
is implicitly given by

exp(�2
2)D+(�2) = exp(δ22)

(
1

2a∗
2ν

+ D(δ2)

)
. (74)

Proof The first item follows from the invariance of a2 = 0 and linear analysis along
the y2-axis. For the second item, no distinction between the orbits is needed, one
only needs to check that γ

j
2 satisfies (67), for which (Abramowitz and Stegun 1972)

D′+(y2) = 1 − 2y2D+(y2) is useful. More precisely, from the expression γ
j
2 ={

a2 = − 1
2νD+(y2)

}
, one has

a′
2 = D′+(y2)y′

2

2νD2+(y2)
= 2y2D+(y2) − 1

2νD2+(y2)
= 1

νD+(y2)

(
y2 − 1

2D+(y2)

)

= −2(y2 + νa2)a2.

(75)

Next, the asymptotic expansions for γ
j
2 follow directly from Abramowitz and Ste-

gun (1972), where one finds

D+(ξ) = ξ + O(ξ3), ξ → 0

D+(ξ) = 1

2ξ
+ O(ξ−3), ξ → ∞.

(76)

The fact that γ a
2 attracts all trajectories with the given initial conditions follows

from: i) a2 = 0 is invariant, ii) in the limit |y2| → ∞ the curve γ a
2 is asymptotic to

y2 + νa2 = 0, and iii) the set {y2 + νa2 = 0} is attracting in the quadrant a2 > 0,
y2 < 0.

For the transition map we have that (67) has an explicit solution given by

a2(y2) = a∗
2

exp((y∗
2 )

2 − y22 )(1 + 2a∗
2νD+(y∗

2 )) − 2a∗
2νD+(y2)

, (77)

where (a∗
2 , y

∗
2 ) denotes an initial condition. Thus, for the map �2 to be well-defined

we need to ensure that the denominator in (77) does not vanish. Let us substitute
(a∗

2 , y
∗
2 ) = (a∗

2 , δ2) with δ2 > 0, and compute a2(−δ2). For this it is useful to recall
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that D+ is an odd function. So we get

a2(−δ2) = a∗
2

1 + 4a∗
2νD+(δ2)

, (78)

which indeed leads to (72) and the form of �2 also follows. Finally, the expression of
the asymptote �2 is obtained by solving the denominator of (77) equal to 0 and with
initial condition (a∗

2 , y
∗
2 ) = (a∗

2 , δ2). �


Remark 12 • In particular, it follows from the third item of Proposition 7 that the
map �2(r2, a2, δ2) is well defined for all a2 ≥ 0.

• For δ2 > 0 sufficiently large and a∗
2 sufficiently small one has that a2(−δ2) ≈ a∗

2 .• If α1 − α2 = 0 then �(a2, δ2) = (a2,−δ2).

We now relate the curves γ2 and γc with centre manifolds found in chart K1.

Proposition 8 The curves γ r
2 and γc correspond, respectively, to the centre manifolds

E r
1 and Ea

1 of chart K1.

Proof We detail the relation between γ2 and E r
1, the correspondence between γc and Ea

1
is trivial since they are given by {a2 = 0} and {a1 = 0}, respectively.We can transform
γ2 into the coordinates of chart K1 via the map κ21, which gives

ε
−1/2
1 a1 = − 1

2νD+(ε
−1/2
1 )

. (79)

Taking the limit ε1 → 0 in (79) one gets a1 = − 1
ν

= 1
α2−α1

. Thus the claim follows
from the analysis performed in chart K1 particularly for r1 = 0. �


Remark 13 The trajectory γc corresponds to a singular maximal canard of (27), while
γ r
2 and γ a

2 correspond to the manifolds Mr
0 and Ma

0. Accordingly, O(r2)-small per-
turbation of such orbits corresponds toNε,Mr

ε, andMa
ε for ε > 0 sufficiently small.

The analysis performed in this chart is sketched in Fig. 10.

3.3.3 Analysis in the Exit Chart K3

The analysis in this chart is similar to that in chart K1 performed in Sect. 3.3.1.
Therefore, we shall only point out the main information required from this chart and
omit the proofs.

In this chart the blow-up map is given by

a = r3a3, b = r3b3, c = r3c3, y = −r3, ε = r23ε3. (80)
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Fig. 10 Flow of (62) alongWc
2 .

This flow is equivalent to that of
(27) within a small
neighbourhood of the origin and
for ε > 0 sufficiently small. We
observe that trajectories starting
at �en

2 are first attracted to the
invariant set {a2 = 0}, which in
terms of the network means
consensus. Then, once the
trajectories pass through the
origin, they are repelled from
consensus. All trajectories with
initial condition a∗

2 > 0 are
eventually attracted towards γ a

2 ,
which in terms of the original
coordinates corresponds to the
clustering manifold

a2

y2
Δen

2

Δex
2γc

γa
2

γr
2

Γ2

a2 = − 1
4D+(y2)

We then obtain the blown-up vector field

⎡

⎣
a′
3
b′
3
c′3

⎤

⎦ = −
⎡

⎣
1
2

1
2 −1

1
2

1
2 −1

−1 −1 2

⎤

⎦

⎡

⎣
a3
b3
c3

⎤

⎦+ r3 f3(a3, b3, c3, r3, ε3)

r ′
3 = −r23 ε3(−1 + O(r3))

ε′
3 = 2r3ε

2
3(−1 + O(r3)),

(81)

where f3(a3, b3, c3, r3, ε3) reads as

f3 =
⎛

⎝(−1 + α1a3 + α2b3)

⎡

⎣
−1 1 0
1 −1 0
0 0 0

⎤

⎦+ ε3(−1 + O(r3))

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎞

⎠

⎡

⎣
a3
b3
c3

⎤

⎦ .

(82)

The flow of (81) is described as follows.

Proposition 9 The following claims hold for (81).

1. There exist a 1-dimensional local stable manifoldWs
3 and a 4-dimensional local

centre-stable manifold Wc
3 . The centre manifold is given by the graph of c3 =

a3+b3
2 .

Restricted toWc
3 one has b3 = −a3, c3 = 0, and:

2. There is a repelling 2-dimensional centre manifold Cr3. The manifold Cr3 contains
a line of zeros �r3 = {(r3, a3, ε3) ∈ R

3 | a3 = ε3 = 0
}
and a 1-dimensional cen-

tre manifold E r
3 = {(r3, a3, ε3) ∈ R

3 | r3 = a3 = 0
}
. On the plane {r3 = 0}, the

centre manifold E r
3 is unique. The flow along E r

3 is stable, that is, it converges to
the origin, while the flow on Cr3 away from �r3 is locally equivalent to that of a
saddle.
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3. There is an attracting 2-dimensional centre manifold Ca3 . The manifold Ca3
contains a line of zeros �a3 =

{
(r3, a3, ε3) ∈ R

3 | a3 = 1
α1−α2

, ε3 = 0
}
and a

1-dimensional centre manifold Ea
3 =

{
(r3, a3, ε3) ∈ R

3 | r3 = 0, a3 = 1
α1−α2

+O(ε3)}. The flow along Ea
3 is stable, that is, it converges to the equilibrium

point (a3, ε3) =
(

1
α1−α2

, 0
)
, while the flow on Ca3 away from �a3 is locally equiv-

alent to that of a saddle.

Define the sections

�en
3 =

{
(a3, r3, ε3) ∈ R

3 | r3 < δ3, ε3 = μ3

}

�ex
3 =

{
(a3, r3, ε3) ∈ R

3 | r3 = δ3, ε3 < μ3

}
,

(83)

where δ3 > 0, and μ3 > 0 is sufficiently small. Let �3 : �en
3 → �ex

3 denote the map
induced by the flow of (81) restricted toWc

3 . Then �3 has the form

�3

⎛

⎝
a3
r3
μ3

⎞

⎠ =
⎛

⎜
⎝

ha3 + O(a3μ2
3)

δ3

μ3

(
r3
δ3

)2

⎞

⎟
⎠ , (84)

where the function ha3 = ha3(a3, δ3, ε3) reads as

ha3 = a3 exp(2T3)

(α1 − α2)a3(exp(2T3) − 1) + 1
, T3 = 1

2μ3

((
δ3

r3

)2

− 1

)

. (85)

Remark 14 • If a3 ≥ 0, then the function ha3 is well-defined for any point
(a3, r3, μ3) ∈ �en

3 . If a3 < 0, the function ha3 is well-defined only for

T3 < 1
2 ln

(
1 + 1

(α1−α2)|a3|
)
. In such a case, we choose suitably 0 < r3 < δ3

so that the function ha3 is well-defined.
• For a3 > 0, and T3 > 0 sufficiently large, one has ha3 ≈ 1

α1−α2
.

• If α1 − α2 = 0 then ha3 ≈ a3 exp(2T3).
• κ23(γ

c
2 ) = E r

3 and κ23(γ
a
2 ) = Ea

3 .

The flow in this chart is as depicted in Fig. 11.

3.3.4 Full Transition and Proof of Main Result

In this section we prove items (T4)–(T6) of Theorem 2. First of all note that if we
choose δ1 = δ3 = δ, then the sections �en

1 and �ex
3 are precisely the sections �en|A

and�ex|A in the blow-up coordinates. Moreover, the setA corresponds, in each chart,
to the centre manifoldWa

1,Wa
2, andWa

3, respectively. Thus it will suffice to consider
the transition map �̄ : �en

1 → �ex
3 in the blow-up space (or equivalently �|A).
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Δen
3

Δex
3

−a3

ε3

r3

Ca
3Cr

3

Ea
3Er

3

Fig. 11 Schematic representation of the flow of (81) restricted to the attracting centre manifold Wc
3 . The

wegde-like shape of the image of �3(�
en
3 ) (shaded in �ex

1 ) is due to the contraction towards Ca3

The map �̄(�en
1 ) is then given as

�̄(�en
1 ) = �3 ◦ κ23 ◦ �2 ◦ κ12 ◦ �1(�

en
1 ), (86)

where themaps�1,�2, and�3 are given in Sects. 3.3.1, 3.3.2, and 3.3.3, respectively,
and where the maps κ12 and κ23 are defined in Lemma 2. We compute �̄(�en

1 ) as
follows. For brevity we disregard the higher-order terms in the chart maps.

1. We start from �en
1 = (a1, δ, ε) and compute �1(�

en
1 ) = (ha1, δε

1/2
1 μ−1/2, μ),

where ha1 is as in (60) and we let μ1 = μ.
2. Next we compute κ12 ◦ �1(�

en
1 ) from (37), obtaining

κ12 ◦ �1(�
en
1 ) =

(
δε1/2, μ−1/2ha1, μ

−1/2
)

. (87)

By defining μ1/2 = δ2 we have from (68) that κ12 ◦ �1(�
en
1 ) ⊂ �en

2 .
3. Next we can compute �2 ◦ κ12 ◦ �1(�

en
1 ) using Proposition 7. We get

�2 ◦ κ12 ◦ �1(�
en
1 ) =

⎛

⎜⎜⎜⎜
⎝

δε
1/2
1 ,

μ−1/2ha1
1 + 4μ−1/2ha1(α1 − α2)D+(μ−1/2)
︸ ︷︷ ︸

ha2

,−μ−1/2

⎞

⎟⎟⎟⎟
⎠

.

(88)

4. Next we compute κ23 ◦ �2 ◦ κ12 ◦ �1(�
en
1 ) again using (37), obtaining

κ23 ◦ �2 ◦ κ12 ◦ �1(�
en
1 ) =

(
μ1/2ha2 , δε

1/2
1 μ−1/2, μ

)
. (89)

By defining μ3 = μ we have from (83) that κ23 ◦ �2 ◦ κ12 ◦ �1(�
en
1 ) ⊂ �en

3 .
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5. Finally we compute �3 ◦ κ23 ◦ �2 ◦ κ12 ◦ �1(�
en
1 ) from (84), obtaining

�3 ◦ κ23 ◦ �2 ◦ κ12 ◦ �1(�
en
1 ) = (ha3, δ, ε1

)
, (90)

where ha3 = μ1/2ha2 exp(2T3)
(α1−α2)μ1/2ha2 (exp(2T3)−1)+1

reads, after substitutions, as

ha3 = a1 exp(2T )

(α1 − α2)a1
(
2 exp(2T ) − 2 + 4μ−1/2D+(μ−1/2)

)+ exp(2T )
(91)

where T = T1 = 1
2

(
1
ε1

− 1
μ

)
(1 + O(δ)). We see that, as it was already evident

in each chart, the function ha3 is well-defined for a1 ≥ 0, while for a1 < 0 the
function ha3 is well-defined only for finite time T . We thus assume that, in either
case, we choose appropriate constants δ > 0, and μ > 0 sufficiently small, such
that ha3 is well-defined.

Note that, restricted to Wc
j , all the sets

{
a j = 0

}
, j = 1, 2, 3, are invariant along

the blow-up space. In other words, if (ā, b̄, c̄, ȳ, ε̄, r) denote the global blow-up coor-

dinates as in (34), then we have that {a3 = 0} is invariant on the set
{
c̄ = ā+b̄

2

}
. We

now proceed with proving each item (T4)–(T6) of Theorem 2.

(T4) Indeed, we have that �̄(0, δ, ε1) = (0, δ, ε1). Moreover, it follows from item 1
of Proposition 7 and Sect. 3.3.3 that the curve γc connects the point (a1, r1, ε1) =
(0, 0, 0) in chart K1 with the point (a3, r3, ε3) = (0, 0, 0) in chart K3. Therefore,
the centre manifolds Ca1 and Cr3 are also connected in the central chart K2 via the
map �2 for r2 ≥ 0 sufficiently small. It is then clear that, since we can identify
Ca1 with N a

ε and Cr1 with N r
ε , the manifolds N a

ε and N r
1 are also connected for

ε ≥ 0 sufficiently small. The stability ofNε follows from Ca1 being attracting in
chart K1 and Cr3 being repelling in chart K3.

(T5) If α1 −α2 = 0 we have that ha3(a1, δ1, ε1) = a1. Since �ex
3 is sufficiently away

from the origin, the claim for a �= 0 follows from Fenichel’s theory and the
stability properties of N0.

(T6) The expression of Ma
ε and Mr

ε is obtained from blowing down γ a
2 and γ r

2
given in (70). Accordingly the fact that Ma

ε attracts all trajectories with initial
condition a1|�en

1
> 0 follows equivalent arguments as those for the second item

in Proposition 7. On the contrary, when we have a1|�en
1

< 0 we see from the
expression of ha3 that the trajectories become unbounded in finite time T , see
also the remark at the end of Sect. 3.3.3. The proof is finalized by recalling the
relationship between the signs of initial conditions in�en and the corresponding
sign of a j inWc

j given at the beginning of the proof.

4 Some Generalizations

Here we develop a couple of generalizations for the results presented in Sect. 3. The
first one is concerned with triangle motifs with one dynamic weight, while the other
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Fig. 12 Triangle motif: a
network of three nodes
connected on a cycle. The
weights w13 and w23 are fixed
and positive

1 2

3

w

w23w13

twoweights are fixed and positive, but not necessarily equal. The second generalization
deals with consensus protocols defined on arbitrary graphs, where just one weight is
dynamic.

4.1 The Nonsymmetric Triangle Motif

In Sect. 3 we studied a triangle motif with the fixed weights equal to 1. In this section
we show that the nonsymmetric case is topologically equivalent to the symmetric one.
Let us start by considering the fast–slow system

x ′ = −L(x, y, ε)x

y′ = εg(x, y, ε),
L =

⎡

⎣
w + w13 −w −w13

−w w + w23 −w23
−w13 −w23 w13 + w23

⎤

⎦ , (92)

where w = w∗ + y + α1x1 + α2x2, the weights w13 and w23 are fixed and positive,
and w∗ ∈ R is such that dim ker L|{w=w∗} = 2, see more details below. We recall
that, from the arguments at the beginning of Sect. 3.2, we may consider that, after a
translation depending on initial conditions, we have x1 + x2 + x3 = 0. System (92)
corresponds to the network shown in Fig. 12.

Remark 15 If w13 = w23 = w̃ > 0, one can show, for example using the exact same
transformation T ofLemma1, that the eigenvalues of L are {0, 3w̃, 2w + w̃}. Thus, the
analysis in this case is completely equivalent to the one already performed in Sect. 3.
The only difference would be the rate of convergence towards the set

{
x3 = x1+x2

2

}
.

Therefore, in this section we rather assume w13 �= w23.

It is straightforward to show that the spectrum of L is given by

spec L = {0, λ2, λ3}
=
{
0, w + w13 + w23 ±

√
w2 + w2

13 + w2
23 − ww13 − ww23 − w13w23

}
.

(93)

We note the following:

• If ww13 + ww23 + w13w23 > 0 then λ2 > 0, λ3 > 0,
• If ww13 + ww23 + w13w23 = 0 then λ2 > 0, λ3 = 0,
• If ww13 + ww23 + w13w23 < 0 then λ2 > 0, λ3 < 0.

Thismeans that, as in the symmetric case, theLaplacianmatrix has always a positive
eigenvalue λ2(w), and another λ3(w) whose sign depends on w.
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Proposition 10 Let ε = 0. Then the equilibrium points of (92) are given by

• x1 = x2 = x3 = 0, that is consensus.
• w = − w13w23

w13+w23
=: w∗ and x3 = w13x1+w23x2

w13+w23
, which from the invariant x1 + x2 +

x3 = 0 results in x2 = − 2w13+w23
w13+2w23

x1. That is (generically) clustering.
• The equilibrium point p = (x1, x2,

x3) defined by p = {w = w∗ | x1 = x2 = x3 = 0} is nonhyperbolic.
Proof Straightforward computations. �


We emphasize that, just as in the symmetric case, the previous proposition pro-
vides the characterization of the critical manifold of (92) given as the union of “the
consensus” and the “the clustering” manifolds.

Proposition 11 The layer equation of (92) has a transcritical bifurcation at p.

Proof We shall compute the eigenvalues associated with the equilibrium points of
Proposition 10. We start by substituting x3 = w13x1+w23x2

w13+w23
, and afterwards x2 =

− 2w13+w23
w13+2w23

x1. Naturally, both relations hold at all the equilibrium points. In particular,
the equilibrium points along the consensus manifold are given by x1 = 0, while those
along the clustering manifold are given by x1 = −(w13+2w23)y

α1(w13+2w23)−α2(2w13+w23)
. By doing

so we rewrite (92) in the limit ε → 0 as

x ′
1 = −3x1(w13 + w13)((w13 + 2w23)y + x1(α1(w13 + 2w23) − α2(2w13 + w23)))

(w13 + 2w23)2
,

(94)

where y is considered as a parameter. Let x ′
1 = λN x1 denote the lineariza-

tion of (94) at x1 = 0, and x ′
1 = λMx1 denote the linearization of (94) at

x1 = −(w13+2w23)y
α1(w13+2w23)−α2(2w13+w23)

. We have

λN = −3
w13 + w23

w13 + 2w23
y = −λM . (95)

It is then clear that the eigenvalues along the consensus and the clustering manifolds
(λN and λM , respectively) have opposite signs and that there is an exchange in their
signs at y = 0. Finally we note that y = 0 precisely corresponds to the point p,
completing the proof. �


With the previous analysis we have shown that, at the singular level, the dynamics of
the symmetric and the nonsymmetric graphs are topologically equivalent. The reasons
for this are: a) the uniform positive eigenvalue of the Laplacianmatrix L and b) that the
dynamics of both systems are organized by a transcritical singularity corresponding to
the intersection of the consensus and of the clustering manifolds. It remains to show
that the passage through the transcritical singularity is also equivalent in both cases.
We shall show this in the central chart K2. We recall the the blow-up in the central
chart is given by

x1 = r2a2, x2 = r2b2, x3 = r2c2, y = r2y2, ε = r22 . (96)
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Accordingly, the blown-up vector field reads as

⎡

⎣
a′
2
b′
2
c′
2

⎤

⎦ = −
⎛

⎝

⎡

⎣
w∗ + w13 −w∗ −w13

−w∗ w∗ + w23 w23
−w13 −w23 w13 + w23

⎤

⎦

+r2(y2 + α1a2 + α2b2)

⎡

⎣
1 −1 0

−1 1 0
0 0 0

⎤

⎦

⎞

⎠

⎡

⎣
a2
b2
c2

⎤

⎦

y2 = −r2(1 + O(r2))

(97)

For r2 = 0 we get the linear system

⎡

⎣
a′
2
b′
2
c′
2

⎤

⎦ = −
⎡

⎣
w∗ + w13 −w∗ −w13

−w∗ w∗ + w23 −w23
−w13 −w23 w13 + w23

⎤

⎦

︸ ︷︷ ︸
L0

⎡

⎣
a2
b2
c2

⎤

⎦ (98)

Using similar arguments as in Sect. 3 we can show thatWc
2 =

{
c2 = w13a2+w23b2

w13+w23

}

is an attracting centre manifold. Restriction to Wc
2 and division of the vector field by

r2 result in

a′
2 = (y2 + α1a2 + α2b2)(b2 − a2)

b′
2 = (y2 + α1a2 + α2b2)(a2 − a2)

y′
2 = −1.

(99)

Note that (99) is exact same equation (67) that we obtained in the symmetric case.
This means that in both cases (symmetric and nonsymmetric), the restriction to the
centre manifoldWc

2 coincides. With the above analysis we have shown the following:

Proposition 12 Fast–slow system (92) with w13 > 0 and w23 > 0 is topologically
equivalent to the case w13 = w23 = 1.

In qualitative terms, the only difference between the symmetric and the nonsym-
metric cases is the convergence rate towards the invariant setA. Once trajectories have
converged to A, the dynamics are organized by the same transcritical singularity.

4.2 Arbitrary Graphs

Anatural question that arises is whether the analysis we have performed in Sect. 3, par-
ticularly in Sect. 3.3, has any relevance for consensus dynamics on arbitrary weighted
graphs. In this section we argue that indeed, given some natural assumptions, generic
consensus dynamics with one slowly varying weight behave essentially as the triangle
motif.
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Let us consider an undirectedweighted graphG = {V, E,W}.We assume that there
are no self-loops, i.e. wi i = 0 for all i ∈ 1, . . . ,m and that there is at most one edge
connecting twonodes.Next,without loss of generality, let us assume thatw12 = w ∈ R

is dynamic, while the rest of the weights wi j , (i, j) ∈ E and (i, j) �= (1, 2), are fixed
and positive. Denote by L(w) the Laplacian matrix corresponding to the graphs we
have defined so far. As in the analysis of the triangle motif we assume that the dynamic
weight w depends smoothly on the nodes it connects (namely (x1, x2)) and on an
extrinsic slow variable y ∈ R. Thus we consider the fast–slow system

x ′ = −L(w)x,

y′ = εg(x, y, ε),
w = w(x1, x2, y, ε), (100)

where x ∈ R
m , y ∈ R and L is a Laplacian matrix. Recall from the rescaling we

performed in Sect. 3.3 that it suffices to consider trajectories such that
∑m

i=0 xi (0) = 0,
and to set w = w∗ + y + a1x1 + α2x2 +O(2), where byO(2) we denote monomials
of degree at least 2. Moreover w∗ is a particular value at which dim(ker L(w∗)) > 1.

Lemma 4 Consider consensus protocol (100) as defined above. Then, the following
hold.

1. Generically, if dim ker(L(w)) > 1, then dim ker(L(w)) = 2.
2. Suppose that L(w) is analytic in w, and that dim ker(L(w)) = 2 at points (x, y)

defined by w = w∗. Then consensus protocol (100) undergoes a (singular) trans-
critical bifurcation at {w = w∗} ∩ {x = 0}.

Proof Recall that 0 is a trivial eigenvaluewith eigenvector 1n . Therefore, dim ker L(w)

increases its dimension whenever an eigenvalue crosses 0. Next, we note that smooth
one parameter families of symmetric matrices have generically simple eigenvalues
(Jonker et al. 1993). Thismeans that, generically, only one of the nontrivial eigenvalues
of L(w) can vanish for a certain value of w. Thus, the first item in the lemma follows.

Next, assuming analytic dependence of L(w) on w and according to (Kato
2013, II.6.2), the matrix L(w) can be orthogonally diagonalized as L(w) =
Q
(w)D(w)Q(w), where Q(w) and D(w) are also analytic in w. This means that
the layer equation of (100) is conjugate to

z′1 = 0

z′j = λ j (w̃)z j

y′ = 0,

j = 2, . . . ,m, (101)

where w̃ = w̃(z, y) = w∗ + y + A(z) + O(2), where A is a linear function with
A(0) = 0. We know from our previous arguments that there is a k ∈ [2, 3, . . . ,m]
such that λk(w

∗) = 0 while λ j (w
∗) �= 0 for all j �= k. Thus, we note that zk

undergoes an exchange of stability if λk crosses transversally the origin. But note that
∂λk
∂ y (0) = ∂λk

∂w̃
∂w̃
∂ y (0). Since we have that λk depends analytically on w̃, we expect that

∂λk
∂w̃

(0) is, generically, nonzero. Thus, we conclude that in a generic setting, whenever
eigenvalues cross the origin, they do it transversally and thus a typical exchange of
stability (transcritical bifurcation) occurs. �
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Remark 16 Wenote that singular pitchfork bifurcations can also occur, but this requires
extra conditions on w, namely w = y + α1x21 + α2x22 . In that case one can follow a
similar analysis as that performed here; see also Krupa and Szmolyan (2001b).

To finalize this section, we want to emphasize the relevance of the blow-up method
to study singularities of dynamic adaptive networks defined on arbitrary graphs. First,
we recall that nowadays, the blow-up method is an essential part of geometric singular
perturbation theory (GSPT). Thus, it is to be expected thatGSPTwill be used to analyze
the dynamics of adaptive networks with multiple timescales near singularities. Next,
we point out that motifs can be regarded as the most basic and simple structures in
a network. Motifs can serve as building blocks to model complex phenomena, yet
they carry essential properties of the network. In particular, the triangle motif studied
in this paper is fairly common in larger networks. Thus, as we have shown in this
section for consensus protocols, if the topological changes are due to one dynamic
edge, then generically the transcritical singularity is the organizing centre. Here by
generic we mean that the dynamic weight is affine on the nodes and on the extrinsic
variable y. The fact that the transcritical singularity organizes the dynamic implies
that for any communication protocol whose linearization is a consensus protocol, the
same transcritical singularity describes the local properties of the dynamics. See also
the simulations in “Appendix A”.

The second important observation derived from our analysis is that the blow-up
transformation preserves the network structure. This means that after blow-up, in
each chart, one obtains local vector fields that inherit network properties of the original
problem. Moreover, after blowing-up, the effects of the timescale separation are also
clearly visible in terms of the network topology. There is in principle no reason to
a priori (or before this paper) expect the aforementioned holds, especially because
the blow-up transformation is singular. Therefore, we have also shown that the blow-
up method remains a suitable tool of analysis in the context of dynamic networks.
Furthermore, although here we have shown the suitability of the blow-up method for
fairly simple network dynamics, it is a promising preamble and extensions to more
general dynamic networks are currently under development.

5 Summary and Outlook

Wehave studied a class of adaptive networks under a linear average consensus protocol.
The main property of the networks we studied here is that one of the edges is slowly
varying and can take values over the whole reals. The fact that the dynamic weight can
be negative implies that the Laplacian of the graph may not be positive semi-definite,
as is the case of nonnegative weights.We have shown that the dynamics of the network
are organized by a transcritical singularity. Interestingly, the network structure induces
a generic maximal canard [unlike the fast–slow transcritical singularity of Krupa and
Szmolyan (2001b)]. Moreover, we have shown that the blow-up method preserves the
network structure. That is, on each of the blow-up charts we have found a related
network but whose analysis is simpler compared to the full fast–slow one. Overall we
have provided a case study in which centre manifold reduction and tools of geometric
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singular perturbation theory, in particular the blow-up method, have been successfully
used to describe the dynamics of a class of two timescale networks with a dynamic
weight.

As we have considered one of the simplest network communication protocols, we
conjecture that similar andmore complicated problems are to be encounteredwhen one
studies general complex networks. For example, already assuming two slow weights
presents new mathematical challenges: on the one hand the critical manifold is poten-
tially more complicated leading to more complex singular dynamics; on the other
hand, it does not necessarily hold that the nonzero eigenvalues of the Laplacian are
simple, and that they cross zero transversally. These two obstacles imply that, prob-
ably, one needs to desingularize higher codimension singularities and that generic
results would be harder to obtain. Furthermore, although in this paper we have studied
continuous-time and continuous state-space network dynamics, we expect that anal-
ogous multiscale phenomena can be found in discrete systems. Similar relevance can
be expected in more general adaptive network scenarios including directed networks
or those incorporating stochastic phenomena. Beyond our work here, there are cur-
rently relatively few works linking techniques between multiple timescale dynamical
systems and network science (Ashwin et al. 2017; Cappelletti and Wiuf 2017; Kuehn
2012, 2019). Yet, we conjecture that the inclusion of multiscale dynamics into net-
work sciencewill have far-reaching consequences andwill have a high impact in better
modelling, analysis, and understanding complex phenomena.
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A Numerical Analysis and Simulations

In this section we briefly discuss a numerical issue that may appear when simulating a
fast–slow consensus network. This numerical issue is related to the presence of a max-
imal canard and yields trajectories not diverging when they should. Accordingly, we
present an algorithm that overcomes, to some extent, such an issue. Afterwards, since
the main part of the analysis of this paper concerns the triangle motif of Sect. 3, we
present some numerical examples of larger networks showcasing a transition through
a transcritical singularity. In this way, we also present numerical evidence of the gen-
eralizations presented in Sect. 4.2. At the end of this appendix, motivated by the fact
that a dynamic weight in the consensus protocol opens up the possibility for more
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complicated dynamics rather than simple average consensus, we numerically inves-
tigate the existence of periodic solutions. Although we do not rigorously study such
a problem here, the geometric understanding of the way the dynamics are organized
allows us to conjecture situations in which periodic solutions indeed appear.

A.1 An Issue with Numerical Integration

Due to the equivalences shown in Sect. 4, we shall restrict ourselves in this section
to the triangle motif with w13 = w23 = 1. For convenience we recall that the model
reads as

⎡

⎣
a′
b′
c′

⎤

⎦ = −
⎡

⎣
w + 1 −w −1
−w w + 1 −1
−1 −1 2

⎤

⎦

︸ ︷︷ ︸
L(a,b,y)

⎡

⎣
a
b
c

⎤

⎦

y′ = ε(−1 + O(a, b, c, y, ε))

(102)

wherew = − 1
2 + y+α1a+α2b and a(t)+b(t)+c(t) = 0 for all t ≥ 0.We know that

L(a, b, y) has eigenvalues λ1 = 0, λ2 = 3, λ3 = λ3(a, b, y). Thus, roughly speaking,
the numerical issue we present below has to do with which nontrivial eigenvalue
dominates at t = 0. Recall that the smallest nontrivial eigenvalue of the Laplacian,
called in some instances “spectral gap” or “algebraic connectivity”, bounds the rate
of convergence towards consensus.

Let us discretize (102) using the forward Euler approximation method x ′ ≈
xk+1−xk

�t , where xk = x(k�t) with k ∈ N0. This discretization preserves the invariant
a(t) + b(t) + c(t) = 0 for all t ≥ 0, resulting in ak + bk + ck = 0 for all k ≥ 0.
Taking into account that ck = −ak − bk , and disregarding the higher-order terms in
y′, we write the discretized version of (102) as

[
ak+1
bk+1

]
=
[
1 − �t(wk + 2) �t(wk − 1)

�t(wk − 1) 1 − �t(wk + 2)

]

︸ ︷︷ ︸
Ak (ak ,bk ,yk )

[
ak
bk

]

yk+1 = yk − ε�t,

(103)

where wk = − 1
2 + yk + α1ak + α2bk . The matrix Ak has spectrum spec Ak =

{λ2, λ3(k)} = {1 − 3�t, 1 − (2wk + 1)�t}. From Sect. 3.1, we further know that

the eigenvalue λ2 is related to the convergence rate towards
{
ck = ak+bk

2

}
, which

together with the invariant ak + bk + ck = 0 is equivalent to the convergence towards
{ak = −bk}. On the other hand, the eigenvalue λ3(k) is related to the stability of the
consensusmanifold, that is {ak = bk}. Since the aforementioned convergence rates are
both exponential, and formeaningful1 initial conditions both eigenvalues arewithin the

1 Those resulting in a transition from consensus to clustering, recall Theorem 2.
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unit circle for k = 0, the relationship between the two eigenvalues plays an important
role in the numerical integration.

Suppose that |λ3(0)| > M |λ2|, for some M > 0. Then, up to truncation and
computer precision errors, the relation ak = bk dominates over ak = −bk for some
k > K > 0. Substitution of ak = bk in (103) implies that the governing difference
equation is

ak+1 = (1 − 3�t)ak, (104)

where we observe that the weight wk does not play a role any more, and that ak = 0 is
invariant. Thismeans that, again disregarding numerical errors and approximations due
to computer precision, ak = 0 is in this case a unique equilibrium point, independent
of the value of the weight wk . In essence, this means that a computer algorithm may
not recognize the instability of the consensus manifold; we note that this mechanism
of “over-stabilization” induced by conserved quantities due to the network structure,
is in principle different from recently discovered extended stabilization by the Euler
method near transcritical and pitchfork singularities (Arcidiacono et al. 2019; Engel
and Jardón-Kojakhmetov 2019; Engel and Kuehn 2018).

On the contrary case, if |λ3(0)| < M |λ2| for some M > 0, then the relation
ak = −bk dominates and the governing difference equation is

ak+1 = (1 − (2wk + 1)�t)ak, (105)

where the transition through a transcritical singularity, depending on the value of wk ,
is present. Therefore, as expected from our analysis, there is a typical exchange of
stability through a transcritical singularity for some negative values of wk .

With the above-simplified analysis we have argued that numerical integration of
(102) may not be correct when |2w(0) + 1| > 3M for some M > 0. To prevent the
aforementioned issue, one may adapt the analysis presented in Sect. 3.3 as shown in
Algorithm 1 and Fig. 13.

A.2 Ring, Complete, and Star Networks

To complement the analysis performed in Sect. 4, we present here a couple of numer-
ical simulations of fast–slow consensus protocols defined on ring, complete, and star
networks with more than 3 nodes. In all the simulations shown in Fig. 14 we keep the
dynamic weightw = y+α1x1 +α2x2 between nodes x1 and x2, while all other edges
are fixed to 1. We note that we produce simulations for initial conditions that lead to
exchange between consensus and clustering. We observe that in all cases of Fig. 14,
we have a qualitative behaviour similar to the one analyzed in the triangle motif, thus
validating the arguments of Sect. 4.
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Data: t0 (initial time), �t (time step), t f (final time), (a0, b0, c0, y0, ε) (initial conditions and ε),

eA (a distance bound from the set A =
{
ck = ak+bk

2

}
)

begin

for k = 0, . . . ,
[ t f −t0

�t

]
do

⎡

⎣
ak+1
bk+1
ck+1

⎤

⎦ = (I − �t L(ak , bk , yk ))

⎡

⎣
ak
bk
ck

⎤

⎦

yk+1 = yk − ε�t

if
∣∣∣ck − ak+bk

2

∣∣∣ ≤ eA then
Stop and exit for loop saving (ak , bk , ck , yk , k).

end
end

for j = k, . . . ,
[ t f −t0

�t

]
do

a j+1 = a j − 2�t(y j + (α1 − α2)a j )a j

b j+1 = −a j+1

c j+1 = 0

y j+1 = y j − ε�t

end
end

Algorithm 1: Pseudo-code used to simulate (102). The first for-loop numerically
integrates (27) via (102). This for-loop stops when the trajectories reach a small
neighbourhood of the globally attracting set A. Such a threshold is set by eA in
the algorithm. Afterwards we switch to a simplified system which is obtained as a
restriction to A. Note the resemblance between the system in the second for-loop
and (67). Naturally, the actual numerical integration method is arbitrary, here for
simplicity we have implemented forward Euler, yet providing reliable simulation
results, see Fig. 13.

A.3 Periodic Orbits on the Triangle Motif

Commonly, and historically, one considers consensus protocols seeking consensus
among the nodes. This behaviour is the only possible one if the weights of the graph
are nonnegative. However, as we have seen in the main part of this paper, introducing
negative weights enriches the dynamics. In this section we want to provide numerical
evidence on the existence of periodic orbits in consensus networks. We do not attempt
to give a full treatment of the problem. Rather, we present two instances that are
constructed from the geometric description we developed in Sect. 3.

Let us then consider triangle motif (102) and let us consider initial conditions with
y(0) > 0. In order to produce periodic orbits one must introduce a return mechanism
that allows trajectories to return to y > 0 after they have crossed the origin. Since we
already know that the dynamics are organized as sketched in Fig. 3, we propose two
return mechanisms.
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Fig. 13 Numerical simulation of (102) realized in MATLAB 2017b. The values of the parameters are
(α1, α2, ε) = (2, 1, 0.05), and the initial conditions of the nodes are (a(0), b(0), c(0)) = (1.5, 1,−2.5).
The plots on the left are for y(0) = 1.9, while the plots on the right for y(0) = 2. In both figures we
show: a integration via forward Euler on the first row; b integration via ode15s on the second row;
and c integration via the proposed algorithm in the third row, where we set eA = 1 × 10−9. The Euler
integrations are performed with �t = 1× 10−3, while for the ode15s we set the MaxStep to 1× 10−3.
We observe that for y(0) = 1.9 the three algorithms provide similar outcome, namely the trajectories first
approach consensus and then, when the weight is sufficiently negative, they transition towards clustering.
The delay on the transition towards clustering is due to the trajectories being exponentially close to the
maximal canard. However, for the case y(0) = 2, only our proposed method provides a result aligned with
the qualitative analysis of Sect. 3. Note that the simulation for y(0) = 2 falls under the case where after
sometimes the dynamics are governed by (104), explaining the observation of the trajectories remaining at
(or close to) consensus even though the weight is largely negative. We recall that a negative weight means
that the consensus manifold is unstable, yet trajectories remain close to it. In conclusion, our conjecture is
that, in general, numerical algorithms for fast–slow consensus networks in the context of this paper work
well when initial conditions are near the invariant set A and y(0) is not too large. Otherwise, numerical
integration methods may require careful set-up in order to guarantee correct simulations

1. The first natural way to introduce a return mechanism is to add a drift on the slow
variable y that acts away from the consensus manifold Nε. For this strategy to
result in periodic orbits, one further requires that the clustering manifold M0 is
aligned with the fast foliation, that is α1 − α2 = 0. For this example we them
propose
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Fig. 14 Simulation of fast–slow consensus protocol (100) under several graph topologies. For all these
simulations we consider the dynamic weight w = y + 2x1 + x2 on the edge {1, 2} and all other weights
fixed to 1. We also set ε = 0.05 and y(0) = 0.5. We observe in all cases that the trajectories first converge
towards the origin (average consensus), and then, when w reaches some negative value, the trajectories
leave a small vicinity of the consensus manifold and approach a clustering state. The actual convergence
rate in each case is given by the so-called spectral gap, or the smallest nontrivial eigenvalue

⎡

⎣
a′
b′
c′

⎤

⎦ = −
⎡

⎣
w + 1 −w −1
−w w + 1 −1
−1 −1 2

⎤

⎦

⎡

⎣
a
b
c

⎤

⎦ , w = −1

2
+ y + α(a + b),

y′ = ε(−1 + k1a
2
1) (106)

We emphasize that in this case, the existence of periodic solutions does not follow
from the singular limit. However, we know from our geometric analysis, especially
in the chart K2, that this model indeed has periodic solutions. We show in Fig. 15
a simulation of (106).
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Fig. 15 Simulation of (106) with (y(0), α, k1, ε) = (0.5, 1, 1, 0.05). From left to right, the first two plots
are the time series for the nodes and the weight, while the third plot depicts the corresponding phase portrait

Fig. 16 Singular limit for a
return mechanism via
higher-order terms in the weight
w

N0

M0

a

y

2. Another way to produce a return mechanism is to add higher-order terms to the
dynamic weight. Based on the singular limit sketched in Fig. 3, the idea is to
achieve a singular limit as depicted in Fig. 16.

We note that near the origin, the singular limit is just as in Fig. 3. Furthermore, by
inspecting Fig. 16 we observe that returning on the left side ofM0 is “easier” than on
the right, because, to produce a return mechanism on the right side we would actually
require to generate a canard cycle. So, for the purposes of this example we shall
concentrate on the case where the dynamics with a2 < 0 exhibit periodic solutions.
Following Fig. 16 we propose the weight

w = −1

2
+ α1a + α2b + α3a

3 + α4b
3, (107)
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Fig. 17 An example of periodic orbits on the triangle motif due to a cubic weight. We have used parameters
(α1, α2, α3, α4, β, ε) = (2, 1, 1, 1.01,−.5, .05)

with α1 − α2 > 0 and α3 − α4 < 0. Next, we must introduce a new slow vector field
so that trajectories can travel back along the left branch of the cubic critical manifold.
Naturally there are many ways to achieve this. For example:

⎡

⎣
a′
b′
c′

⎤

⎦ = −
⎡

⎣
w + 1 −w −1
−w w + 1 −1
−1 −1 2

⎤

⎦

⎡

⎣
a
b
c

⎤

⎦ , w = −1

2
+ α1a + α2b + α3a

3 + α4b
3,

y′ = ε(−1 + β1a),

(108)

for some β1 < 0. Figure 17 shows a corresponding simulation.
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