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Angle-Constrained Formation Control for
Circular Mobile Robots

Nelson P. K. Chan , Graduate Student Member, IEEE , Bayu Jayawardhana ,

and Hector Garcia de Marina , Member, IEEE

Abstract—In this letter, we investigate the formation con-
trol problem of mobile robots moving in the plane where,
instead of assuming robots to be simple points, each robot
is assumed to have the form of a disk with equal radius.
Based on interior angle measurements of the neighboring
robots’ disk, which can be obtained from low-cost vision
sensors, we propose a gradient-based distributed control
law and show the exponential convergence property of the
associated error system. By construction, the proposed
control law has the appealing property of ensuring collision
avoidance between neighboring robots. We also present
simulation results for a team of four circular mobile robots
forming a rectangular shape.

Index Terms—Autonomous systems, distributed control,
robotics, cooperative control.

I. INTRODUCTION

FORMATION control studies the problem of controlling
the spatial deployment of teams of mobile robots in order

to achieve a specific geometric shape. By maintaining a certain
geometric shape, the teams can subsequently be deployed to
perform complex missions. Recent advances in this field focus
on the design of distributed algorithms such that the forma-
tion control problem can be solved by only exploiting local
information.

Over the years, different approaches for formation con-
trol have been studied, and these can be classified according
to the sensing and control variables that can be related to
a geometrical property of the desired deployment for the
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robots [1]. One class of formation control strategies is the
rigidity-based control strategies. In this class, rigidity theory
plays a key role in characterizing a (at least locally) unique
target deployment, which can be achieved by a systematic
design of distributed control laws. Utilizing the distance [1],
[2] (or bearing [3], [4]) rigidity theory, we can define a
specific deployment or target formation shape in terms of
a set of inter-robot distance (or bearing) constraints. The
robots use available relative position or distance (or relative
bearing) measurements in the design and execution of the dis-
tributed control laws. Recently, new rigidity theories, such as
angle rigidity [5], ratio-of-distance-rigidity [6], and bearing-
ratio-of-distance-rigidity theory [7] have also been developed
for characterizing a (at least locally) unique target formation
shape using a set of angle, ratio-of-distance, and bearing-ratio-
of-distance constraints, respectively. These theories focus on
providing more flexibility to the target deployment by allowing
scaling or rotational motions.

In addition, several works deal with practical aspects when
implementing the proposed rigidity-based control strategies
in real world settings. Among others, [8] considers robust
distance-based formation control with prescribed performance,
taking into account collision avoidance and connectivity main-
tenance between neighboring agents while they are subjected
to unknown external disturbances; [9] considers the bearing-
only formation control problem with limited visual sensing
while [10] introduces estimators for controlling distance rigid
formations under inconsistent measurements.

One common aspect in the above-mentioned rigidity-based
formation control theories is that the mobile robots are
assumed to be simple points. As each robot is represented by
a point in the plane, there can be only one relative position,
distance, or bearing measurement between a pair of neighbor-
ing mobile robots. Instead of treating each robot as a point, we
treat robots in this letter as objects with area so that multiple
features in the area can be measured by its neighbors. In
particular, we assume each mobile robot to have a circular
shape and move with single-integrator dynamics in the plane.
Furthermore, each mobile robot can observe two distinctive
features from its designated neighboring robots. These are the
outermost points of the neighboring robots’ disk that can be
seen from its centroid. In other words, we have the internal
angle information of the neighboring robots. The desired
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formation shape can then be described in terms of feasible
internal angle constraints, which have a close relationship to
the distance constraints that are used in distance-based forma-
tion control. This approach enables us to make the following
novel contribution in the field of formation control:

We provide an angle-constrained formation control algo-
rithm, which resembles distance-based formation control. The
main feature of our algorithm is that it requires only direc-
tion/bearing/unit vectors as measurements instead of a vector
(that requires range and direction). Furthermore, our algo-
rithm provides collision avoidance guarantees where the clear-
ance distance (which is twice the radius) between neighboring
robots is not breached by design.

This letter is organized as follows. Section II provides pre-
liminaries on graph and distance rigidity theory. Next, in
Section III, the problem setting and problem formulation are
presented. Section IV provides details concerning the control
design and the local exponential convergence of the associated
error dynamics. A numerical example is included in Sections V
and VI concludes this letter.

Notation: The cardinality of a given set S is denoted by
card(S). For a vector x ∈ Rn, x� is the transpose, x⊥ is
the perpendicular vector satisfying x�x⊥ = 0 = (

x⊥)�
x, and

‖x‖ = √
x�x is the 2-norm of x. The vector 1n (or 0n) denotes

the vector with entries being all 1s (or 0s). The set of all com-
binations of linearly independent vectors v1, . . . , vk is denoted
by span{v1, . . . , vk}. For a matrix A ∈ Rm×n, Null(A) ⊂ Rn,
Col(A) ⊂ Rm, and rank(A) denotes its null space, its column
space, and its rank, respectively. The n × n identity matrix
is denoted by In while diag(v) (or blkdiag(A1, . . . , Ak)) is
the diagonal (or block diagonal) matrix with entries of vec-
tor v (or matrices A1, . . . , Ak) on the main diagonal (or
block). Finally, given matrices A ∈ Rm×n and B ∈ Rp×q,
A ⊗ B ∈ Rmp×nq is the Kronecker product of A and B, and
we denote Ã = A ⊗ Id ∈ Rmd×nd.

II. PRELIMINARIES

This section provides the necessary concepts in graph theory
and distance rigidity theory. For a more detailed exposure of
the material, we refer to for instance, [11] on graph theory,
and [12], [13] on distance rigidity theory.

A. Graph Theory

An undirected graph G is defined as a pair (V, E), where
V := {1, 2, . . . , n} and E := {{i, j} | i, j ∈ V} denote the
finite set of vertices and the set of unordered pairs {i, j} of
the vertices, called edges. We assume the graph does not
have self-loops, i.e., {i, i} 
∈ E, ∀i ∈ V , and card(E) = m.
The edge {i, j} indicates vertices i and j are neighbors of
each other. The set of neighbors of vertex i is denoted by
Ni := {j ∈ V | {i, j} ∈ E}. By assigning an arbitrary orienta-
tion to each edge of G, we obtain an oriented graph Gorient.
The incidence matrix H ∈ {0, ±1}m×n associated to Gorient has
rows encoding the m oriented edges and columns encoding the
n vertices. [H]ki = (−1)+1 if vertex i is the (tail) head of edge
k and [H]ki = 0 otherwise. For a connected and undirected
graph, we have Null(H) = span{1n} and rank(H) = n − 1.

B. Distance Rigidity Theory

Let pi = [xi, yi]� ∈ R2 be a point in the plane and a collec-
tion of points, called a configuration, be given by the stacked
vector p = [

p�
1 · · · p�

n

]� ∈ R2n. We can embed the graph
G(V, E) into the plane by assigning to each vertex i ∈ V , a
point pi ∈ R2. The pair Fp := (G, p) denotes a framework
in R2. We assume pi 
= pj if i 
= j, i.e., no two vertices are
mapped to the same position. Related to Fp, we define the
distance rigidity function rdist : R2n → Rm

>0 as

rdist(p) := 1

2

[
· · · ∥∥pj − pi

∥∥2 · · ·
]�

, ∀ {i, j} ∈ E, (1)

with each entry of the vector being half the squared distance
between two points. Given the distance rigidity function (1),
we say a framework Fp is distance rigid, if there exists a
neighborhood Up of p such that, if q ∈ Up and rdist(p) =
rdist(q), then Fq is congruent to Fp. Let zij = pj − pi ∈ R2

be the relative position vector associated to {i, j} ∈ E , and
z ∈ R2m be the stacked vector of zijs. Using the incidence
matrix H̃ ∈ R2m×2n, we obtain z = H̃p. Besides, let Z(z) =
blkdiag

({
zij

}
{i, j}∈E

)
∈ R2m×m. Using these expressions, (1)

can be written in compact form as rdist(p) = 1
2 Z�(z)z. By tak-

ing the Jacobian of (1), we obtain the distance rigidity matrix
Rdist(p) as

Rdist(p) := ∂rdist(p)

∂p
= Z�(z)H̃ ∈ Rm×2n. (2)

Let δp ∈ R2n be an infinitesimal variation of p. A motion
δp is said to be trivial if Rdist(p)δp = 0m corresponds to a
translation and or a rotation of the entire framework. Trivial
motions in the plane are a translation in the x- and in the
y-direction, a rotation, and the combination thereof, all applied
to the entire framework. We say a framework Fp is infinites-
imally distance rigid if and only if the set of infinitesimally
distance motions consists of only the trivial motions. This can
be translated to the following condition on the distance rigidity
matrix: rank(Rdist(p)) = 2n − 3. Furthermore, an infinites-
imally distance rigid framework must have at least 2n − 3
edges. If the number of edges m is exactly 2n − 3, then the
framework is said to be minimally and infinitesimally distance
rigid.

III. PROBLEM SETUP

We consider a group of n mobile robots moving in the plane.
Let V = {1, 2, . . . , n} be the index set of the robots. Each
robot has a circular shape with center specified by pi ∈ R2

and radius by ri ∈ R>0. For simplicity, we assume the radii
of the robots have the same value and let r ∈ R>0 represent
this common value. We assume the robots are moving with
single-integrator dynamics, i.e.,

ṗi(t) = ui(t), ∀ i ∈ V, (3)

where ui ∈ R2 is the controlled velocity to be designed. The
group dynamics is given by ṗ(t) = u(t) with the stacked
vectors p = [

p�
1 · · · p�

n

]� ∈ R2n and u = [
u�

1 · · · un
]� ∈ R2n.
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Fig. 1. Sensing setup with robot i being the ‘observer’ and robot j the
‘observed’ robot. On the left panel, robot i detects the points pjLi

and pjRi
of robot j and the internal angle θij can be obtained from the bearing
measurements gijL and gijR . In the middle panel, we use geometrical
arguments to relate θij to the inter-center distance dij and the radius r .
On the right panel, we have a geometrical view supporting Proposition 2.

Each robot is equipped with a sensory system mounted at
the center pi of the robot. With the equipped sensory system,
we assume the robots are able to detect two points on the sur-
face of each of its designated neighbors. To illustrate this, let
us consider without loss of generality a pair of robots labeled
i and j within the group of robots, see Fig. 1. We assume robot
i has the role of ‘observer’ and robot j is the ‘observed’ robot.
Since robot i is the observer, it is able to detect two points on
the surface of robot j. We denote the position of the detected
points as pjLi and pjRi to indicate these are the positions of
robot j as detected by robot i. The measurements from robot j
that are available to robot i are the relative bearing measure-
ments gijL = zijL

‖zijL‖ and gijR = zijR

‖zijR‖ , with zijL = pjLi − pi and
zijR = pjRi − pi being the relative position from the detected
points to the center of robot i. The two bearing vectors form
an angle θij centered at pi, as can be seen in Fig. 1. By the
inner product rule, we obtain

cos θij = g�
ijLgijR. (4)

Remark 1: It should be noted the lines in the direction of
the unit vectors gijL and gijR are both tangent lines from the
point pi to robot j. Hence, these lines are perpendicular to the
radius of the circle, i.e.,

(
pjLi − pj

) ⊥ zijL and
(
pjRi − pj

) ⊥
zijR. Furthermore, the triangle �pjpjLipi with vertices pj, pi,
and pjLi and the triangle �pjpjRi pi with vertices pj, pi, and
pjRi are reflections of each other with the line connecting pj

and pi as the line of reflection. Hence, the angle ∠pjLi pipj =
∠pjpipjRi = 1

2θij.
By considering the geometry, we can obtain an alternative

expression for cos θij, which is related to the radii of and the
inter-center distance between the robots. To this end, we first
define some auxiliary relative state variables. For robots i and
j, let zij = pj − pi denotes the relative position, dij = ∥∥zij

∥∥ the
distance, and gij = zij

dij
the relative bearing between the centers

of the robots. Also, g⊥
ij is the perpendicular vector obtained

by rotating gij counterclockwise by 90◦. We have g⊥
ij = Jgij

with J := [ 0 −1
1 0 ] being the rotation matrix.

Proposition 1: The internal angle θij is related to the inter-
center distance dij between the robots i and j and the radii r
of the robots as

cos θij = 1 − 2

(
r

dij

)2

. (5)

Proof: The desired result can be obtained by employing
the cosine double-angle identity cos α = 1 − 2 sin2 1

2α and
noting from Remark 1 that �pjpjLipi is a right triangle with
sin 1

2θij = r
dij

. Fig. 1 provides the geometric illustration.
Note that (4) and (5) are equivalent for obtaining the

internal angle θij; the former is based on the available bearing
measurements while the latter is based on geometry.

Remark 2: As robots i and j are of circular shape, the feasi-
ble interval for the inter-center distance dij is dfeas

ij ∈ (2r,∞).
This also poses restrictions on the value for θij and cos θij.
From (5), it follows that dfeas

ij ∈ (2r,∞) implies cos θ feas
ij ∈(

1
2 , 1

)
and θ feas

ij ∈ (0, 60◦). Correspondingly, an increase in
the value of dij results in an increase of cos θij and a decrease
of θij.

We can rewrite (5) as dij =
√

2r2

1−cos θij
. By obtaining cos θij

from (4) and knowing r, we can infer the inter-center distance
dij. With this observation, we define an internal angle rigidity
function rangle :R2n → Rm

>0 given by

rangle(p) = [· · · cos
(
θij

) · · ·]�, ∀ {i, j} ∈ E (6)

for describing a framework Fp(G, p). By Remark 2, there is
a one-to-one relationship between the newly defined rigid-
ity function (6) and the distance rigidity function (1). The
Jacobian of (6) is

Rangle(p) = ∂rangle(p)

∂p = ∂rangle(p)

∂q
∂q
∂p = D(d)Rdist, (7)

with d ∈ Rm being the stacked vector of distances dijs,

q = (diag(d)d) ∈ Rm, and D(d) = 4r2diag
({

d−4
ij

}

{i, j}∈E

)
∈

Rm×m. The matrix D(d) is positive definite as each dij > 2r >

0. Thus, we have rank
(
Rangle

) = rank(Rdist).
Now we can define the desired target formation shape by

a framework Fp� (G, p�) where the vector p� ∈ R2n satisfies a
set of desired internal angle constraints rangle(p�). One way to
obtain the internal angle constraints is to employ (5) when the
desired distance constraints are given. Moreover, the formation
Fp� is minimally and infinitesimally rigid in the distance rigid-
ity sense. The formation control problem that is considered in
this letter can be formulated as follows:

Angle-constrained Formation Control Problem with
Collision Avoidance: Given a set of feasible internal angle
constraints1

{
θ�

ij

}

{i, j}∈E obtained using (5) from a minimally

and infinitesimally rigid framework Fp� and an initial config-
uration p(0) ∈ R2n with

∥∥pj(0) − pi(0)
∥∥ > 2r,∀ {i, j} ∈ E .

Design a control law ui(t), ∀ i ∈ V utilizing only the neigh-
boring measurements obtained as in (4) such that ∀{i, j} ∈ E

• Collision avoidance:
∥∥pj(t) − pi(t)

∥∥ > 2r, ∀t ≥ 0;
• Convergence: θij(t) → θ�

ij as t → ∞.

IV. GRADIENT-BASED CONTROL DESIGN

In this section, we pursue a gradient-based control design
approach utilizing angle-based potential functions for solving
the formation control problem. To each edge {i, j} ∈ E , we
define the error signal eij(t) = cos θij(t)−cos θ�

ij . By Remark 2,

1We give a formal definition of such a set in Section IV-E.
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we deduce the feasible region for the error signal is efeas
ij ∈(−cij, fij

)
, with cij = cos θ�

ij − 1
2 and fij = 1 − cos θ�

ij . Both cij

and fij are strictly positive.

A. Proposed Angle-Based Potential Function

For a robot pair {i, j}, we take as potential function

Vij
(
eij

) = 1

2
r

(
cos θij − cos θ�

ij

cos θij − 1
2

)2

= 1

2
r

(
eij

eij + cij

)2

. (8)

The denominator term cos θij − 1
2 ensures collision avoidance

between the neighboring robots i and j, i.e.,
∥
∥pj(t) − pi(t)

∥
∥ >

2r, ∀t > 0 given that
∥∥pj(0) − pi(0)

∥∥ > 2r. The function
Vij

(
eij

)
is non-negative in efeas

ij . Furthermore, Vij
(
eij

) = 0 if
and only if eij = 0 and Vij

(
eij

) → ∞ if eij approaches the
lower bound −cij from above, i.e., when the mobile robots
are approaching each other.

The first derivative vij
(
eij

)
:= ∂

∂eij
Vij

(
eij

)
can be obtained as

vij
(
eij

) = r
eijcij

(eij+cij)
3 . The value of vij

(
eij

)
equals zero if and

only if eij = 0 and the sign of vij depends on the sign of eij.
The second derivative kij

(
eij

)
:= ∂2

∂e2
ij

Vij
(
eij

)
is given

as kij
(
eij

) = r
cij

(eij+cij)
4

(−2eij + cij
)
. kij

(
eij

)
is positive when

eij < 1
2 cij. Recall efeas

ij ∈ (−cij, fij
)
; therefore, we need

to determine when 1
2 cij � fij. By some algebraic computa-

tions, we obtain 1
2 cij � fij if and only if cos θ�

ij � 5
6 . When

cos θ�
ij < 5

6 , we have the region for which kij
(
eij

)
is positive is

a subset of efeas
ij , whereas when cos θ�

ij ≥ 5
6 , we have kij

(
eij

)

is positive over the entire domain efeas
ij .

The properties of (8) will be used later for deriving the
exponential convergence of the error dynamics.

B. Gradient-Based Control Law for Each Robot

The local potential function for each robot i is Vi(e) =∑
j∈Ni

Vij
(
eij

)
with e ∈ Rm being the stacked vector of error

signals eijs. The control input ui(t) is then

ui(t) = −
(

∂

∂pi
Vi(e)

)�
= −

∑

j∈Ni

(
∂

∂pi
Vij

(
eij

))�
. (9)

Utilizing (5), the term ∂
∂pi

Vij
(
eij

)
can be evaluated as

u�
ij := ∂

∂pi
Vij

(
eij

) = −vij
(
eij

)4r2

d4
ij

z�
ij . (10)

Note that (10) requires relative state variables dij, zij, and
the knowledge of r. However, robot i has access to only the
relative bearing measurements gijL and gijR for each j ∈ Ni.
Nonetheless, we show that the gradient-control law (9) can be
implemented using these available measurements.

Proposition 2: The gradient-based control law (9) can be
implemented by each robot i ∈ V using the set of available
measurements

{{
gijL

}
j∈Ni

,
{
gijR

}
j∈Ni

}
.

Proof: To implement (9), we need to rewrite (10) in terms
of the available measurements gijL and gijR. To this end, first,

we seek expressions for the positions pjLi and pjRi. Let us con-
sider again Fig. 1. Denote the intersection between the lines
connecting the center of the robots and the two intersection
points as pM (marked with the ×-symbol in the right panel
of Fig. 1). Let

∥∥pjLi − pM
∥∥ = h ,

∥∥pj − pM
∥∥ = k, and

‖pi − pM‖ = l satisfying k + l = dij. l can also be writ-
ten as a fraction of the inter-center distance dij, i.e., l = sdij

with s ∈ (0, 1). We can now express the positions pjLi and
pjRi as pjLi = pj − kgij + hg⊥

ij , and pjRi = pj − kgij − hg⊥
ij .

Recall gij is the unit vector between the centers of the robots.
Subsequently, the relative position zijL and zijR can be obtained
as zijL = lgij + hg⊥

ij , and zijR = lgij − hg⊥
ij , while their sum

equals zij+ = zijL + zijR = 2szij. Due to the reflection observa-
tion in Remark 1, we have

∥∥zijL
∥∥ = ∥∥zijR

∥∥ = √
l2 + h2 =: a.

Using the previous computations, we obtain for the sum of
the relative bearing measurements gij+ = gijL + gijR = 2 s

a zij.

In addition, gij+
‖gij+‖2 = 2 s

a zij

4( s
a )

2d2
ij

⇐⇒ 2 zij

d2
ij

= 4 s
a

gij+
‖gij+‖2 . Since

s = l
dij

, we can rewrite s
a as s

a = l
dija

r
r = 1

r sin 1
2θij cos 1

2θij =
1
2r sin θij by using sin 1

2θij = r
dij

, cos 1
2θij = a

dij
= l

a , and the
sine double-angle identity sin 2α = 2 sin α cos α. Substituting
the obtained expressions in (10) and utilizing (5) yield

u�
ij = −2̂vij

(
eij

)(
1 − cos θij

)
sin θij

∥
∥gij+

∥
∥−2

gij+, (11)

where v̂ij
(
eij

) = vij(eij)
r = eijcij

(eij+cij)
3 , i.e., using (11), we can

implement (9) without knowledge of the range information
and the radii of the robots.

C. Gradient-Based Control Law for the Group of Robots

The overall potential function V(e) can be expressed as
the sum of all the individual potential functions Vij

(
eij

)
, i.e.,

V(e) = ∑
{i, j}∈E Vij

(
eij

)
. The control law ui(t) in (9) is

then ui(t) = −
(

∂
∂pi

V(e)
)�

. By noting ∂
∂p V(e) = ∂V(e)

∂e
∂e
∂q

∂q
∂p ,

we obtain the following compact form for the closed-loop
formation control system:

ṗ(t) = −R�
anglev(e), (12)

with the vector v(e) ∈ Rm denoting the gradients of (8) for
each robot pair {i, j} ∈ E .

Lemma 1: The closed-loop formation control system (12)
has the following properties: (1.)

1) The formation centroid pcent = 1
n

(
1�

n ⊗ I2
)
p is station-

ary, i.e., pcent(t) = pcent(0), ∀t ≥ 0;
2) Each mobile robot can have its own local coordinate

system for obtaining the required relative state measure-
ments and implementing the desired control action.

Proof: The proof is similar to [14, Lemma 4], and thus not
provided here.

D. Internal Angle Error System

Using the definition of the error vector e, and expressions (5)
and (12), we can obtain the error dynamics

ė(t) = ∂e

∂p
ṗ = −RangleR�

anglev(e) = −Fv(e). (13)
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The matrix F = RangleR�
angle = D(d)RdistR�

distD(d) ∈ Rm×m is
symmetric and at least positive semidefinite. Moreover, for any
infinitesimally and minimally distance rigid framework Fp� , F
can be shown to be a function of the error vector e around the
origin by employing the law of cosines. By this observation,
we conclude the error dynamics given by (13) constitute an
autonomous system.

The main result will be the local exponential stability of the
error dynamics (13). To this end, we first construct a compact
and invariant sub-level set for the overall potential function
V(e).

Previously, we have kij
(
eij

)
> 0 holds if and only if eij <

bij := min
{

1
2 cij, fij

}
, ∀ {i, j} ∈ E . Let b = min

{
bij

}
{i, j}∈E > 0.

We define the ‘hypercube’ as

Hb = {e ∈ CF | |ek| < b, k ∈ K}, (14)

with CF being the Cartesian product (−c1, f1) × · · · ×
(−cm, fm) and K = {1, . . . , m} being the ordered edge index
set. Choose q ∈ (0, b) such that

Bq = {e ∈ Hb | ‖e‖ ≤ q} ⊂ Hb. (15)

Let α = min‖e‖=q V(e). As q 
= 0, we have V(e) > 0 and also
α > 0. Choose β ∈ (0, α) and define

	β = {
e ∈ Bq | V(e) ≤ β

}
. (16)

By definition, the sub-level set 	β is closed and as 	β ⊂
Bq, it is also bounded. Thus, 	β is a compact set. The time-
derivative of V(e) can be obtained as

V̇(e) = ∂

∂e
V(e)ė = −v�(e)F(e)v(e) ≤ 0. (17)

This implies V(e(t)) ≤ V(e(0)). Whenever e(0) ∈ 	β , we
have by (17) that e(t) ∈ 	β ; therefore, the set 	β is also
positive invariant. As V(e) ≥ 0 and V̇(e) ≤ 0, the overall
potential function can serve as a candidate Lyapunov function.
We are ready to state and prove the main result.

Theorem 1: Consider a group of circular shaped robots
modeled with single-integrator dynamics (3) and having a
graph topology G such that the desired formation is minimally
and infinitesimally rigid in the distance rigidity sense. Let e(0)

be such that it is in the compact and invariant set 	β (16).
Then e = 0m is a locally exponential stable equilibrium point
of the error dynamics (13).

Proof: The proof can be divided into three main stages.
First, we consider the asymptotic stability of the origin e =
0m. The set 	β has the property of being compact and pos-
itive invariant. In addition, the value for β can be chosen
such that for every vector e ∈ 	β , the formation is mini-
mally and infinitesimally rigid in the distance rigidity sense,
and close to the target formation. Due to our choice of β,
we have that Rdist has full row rank. Since Rangle = D(d)Rdist
and D(d) positive definite, also Rangle has full row rank. This
in turn implies F(e) = RangleR�

angle is positive definite. Let
λ be the minimal eigenvalue of the matrix F(e) in 	β , i.e.,
λ = mine∈	β eig(F(e)) > 0. It follows from (17) that

V̇(e) = −v�(e)F(e)v(e) ≤ −λ‖v(e)‖2 (18)

holds. The value V̇(e) is negative definite for all e ∈ 	β \{0m};
therefore, local asymptotic stability of the origin is attained.

Next, we aim to show the following two inequalities as is
done in [2]:

c1‖e‖2 ≤ V(e) ≤ c2‖e‖2; ‖v(e)‖2 ≥ ρ‖e‖2, (19)

with c1, c2, and ρ being positive constants that we need to
determine. These inequalities facilitate the proof to exponential
stability of the origin. To this end, recall the overall potential
function V(e)

V(e) =
∑

k∈K
Vk(ek) =

∑

k∈K

∫ ek

0
vk(s) ds. (20)

Within the set 	β , we can find a value for δ such that

Hδ = {
e ∈ 	β | |ek| ≤ δ, k ∈ K}

. (21)

By [15, Lemma 3.2], we have the function vk(ek) is Lipschitz
continuous in Hδ . In addition, the function kk(ek) is positive
within the set 	β , and thus also in the subset Hδ . The remain-
der of the proof for obtaining the positive constants c1, c2, and
ρ of (19) follows closely [2] and for this reason, it is omitted.

Finally, we can show exponential stability of the origin as
a result of the previous two steps. Substituting (19) in (18),
we obtain

V̇(e) ≤ −λ‖v(e)‖2 ≤ −λρ‖e‖2. (22)

By [15, Th. 4.10], we can conclude that the origin is expo-
nentially stable in Hδ . The error norm can be shown to be
bounded by an exponential decreasing function as

‖e(t)‖ ≤
(

c2

c1

) 1
2 ‖e(0)‖ exp

(
−γ

2
t
)
, (23)

with γ = λρ
c2

. This concludes the proof.

E. Equilibrium Sets

Theorem 1 concerns the local exponential convergence of
the formation control system to the desired formation shape.
In general, the set of equilibrium points of the mobile robots
can be given by W :=

{
p ∈ R2n | R�

anglev(e) = 02n

}
. The

set of correct formation shapes can be given by Wc :={
p ∈ R2n | e = 0m

}
while the set of incorrect formation shapes

is Wi := W \ Wc. Considering the target formation shape is
minimally and infinitesimally rigid, we can conclude that the
formation shapes in Wi are not infinitesimally rigid, since the
null space of R�

angle also consists of a non-trivial vector v(e) 
=
0m. As in distance-based control, the set Wi includes configu-
rations where all the robots’ center are collinear. Moreover,
we can obtain the following on the equilibrium set of the
p-dynamics and the e-dynamics:

Lemma 2: The equilibrium sets of the error system (13) is
the same as the equilibrium sets of the closed-loop formation
control system (12).

Proof: Since ė(t) = Rangleṗ(t), obviously ṗ(t) = 02n =⇒
ė(t) = 0m. It remains to show ė(t) = 0m =⇒ ṗ(t) =
02n. Assume ∃ṗ(t) 
= 02n such that ṗ(t) ∈ Null

(
Rangle

)

holds. From (12), we also have ṗ(t) ∈ Col
(

R�
angle

)
. Since,

Authorized licensed use limited to: University of Groningen. Downloaded on July 09,2020 at 09:39:58 UTC from IEEE Xplore.  Restrictions apply. 



114 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 1, JANUARY 2021

Fig. 2. Simulation with a team of 4 circular mobile robots having radii r = 1. On the left panel, we have the robot trajectories; dashed circles
represent initial configuration while solid circles are final robot positions. The solid lines are the robot center trajectories. In the center panel, the
convergence of the distances dij (dashed) to their desired values d�

ij (solid) is depicted. The black solid line represents dmin = 2 between the robots.
The right panel shows the convergence of the internal angle errors. The black solid line depicts the value b = 0.08 for the hypercube Hb .

Null
(
Rangle

) ⊥ Col
(

R�
angle

)
, we obtain Null

(
Rangle

) ∩
Col

(
R�

angle

)
= {02n}, contradicting the assumption ṗ(t) 
= 02n.

This concludes the proof.

V. NUMERICAL EXAMPLE

A. Simulation Setup

We apply the proposed control law to a team of 4 circular
robots with radii r = 1. The collective goal is to form a rect-
angular shape with the inter-center distances given as d�

12 =
d�

34 = 3, d�
13 = d�

24 = 4, and d�
14 = 5. Using (5), we obtain

cos θ�
12 = cos θ�

34 = 0.7778, cos θ�
13 = cos θ�

24 = 0.8750, and
cos θ�

14 = 0.9200. The initial configuration, depicted as dashed
circles in Fig. 2(a), has center positions p1(0) = [0, 0]�,
p2(0) = [2.05, 0]�, p3(0) = [−2.05, 0.05]�, and p4(0) =
[−1, 1.85]�. Using this initial configuration, we can illustrate
the collision avoidance feature of the proposed control law and
the convergence to the desired formation shape, even though
p(0) 
∈ Hb. We can obtain b = 0.08, and set the gain K = 50
for speeding up the convergence.

B. Simulation Results

The trajectories of the robots are depicted in Fig. 2(a). In
addition, the inter-center distances and the internal angle errors
between the robots are given in Figs. 2(b) and 2(c), respec-
tively. Let us focus on robot 2, the green robot in Fig. 2(a).
It has the neighboring robots 1 (red robot) and 4 (magenta
robot). From the figure, we observe that since robots 2 and
1 are close to each other initially, robot 2 quickly moves
away from robot 1, and almost attains the desired constraint
with robot 1. However, due to this motion, its distance to the
neighboring robot 4 has increased to about 4.9. This can also
be observed from Fig. 2(c), where we see an increase in the
magenta colored signal representing error |e24|. Since robot 2
is now sufficiently far from robot 1, it then tries to satisfy the
internal angle constraint with robot 4 as can be observed in
both Figs. 2(b) and 2(c). By zooming in on Fig. 2(c), we can
observe exponential convergence of the error signals starting
around t = 3s. All the error signals are then well below the
threshold value of b = 0.08.

VI. CONCLUSION

In this letter, we have solved the formation control problem
for circular mobile robots subjected to internal angle con-
straints. A gradient-descent control law requiring only relative
bearing measurements for implementation has been proposed.
This control law enjoys local exponential convergence for
the error dynamics and ensures collision avoidance between
neighboring robots.
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