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Normal Tissue Complication Probability (NTCP) models can be used for treatment plan optimisation and
patient selection for emerging treatment techniques. We discuss and suggest methodological approaches
to address key challenges in NTCP model development and validation, including: missing data, non-linear
response relationships, multicollinearity between predictors, overfitting, generalisability and the predic-
tion of multiple complication grades at multiple time points. The methodological approaches chosen are
aimed to improve the accuracy, transparency and robustness of future NTCP-models. We demonstrate
our methodological approaches using clinical data.
� 2020 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 148 (2020) 151–156 This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Normal Tissue Complication Probability (NTCP) models are pre-
diction models used in the field of radiotherapy to estimate the risk
of radiation-induced complications. These models aim to translate
radiation dose distributions, in combination with patient, disease
and treatment characteristics, into a predicted probability that a
complication will occur. In recent years, NTCP-models have been
increasingly integrated into daily clinical practice. They can assist
clinicians when evaluating and choosing the optimal treatment
plan among various conventional and emerging techniques, such
as proton therapy, by comparing the predicted complication risk
of each treatment plan [1,2]. Additionally, they can be used during
treatment plan optimisation to actively guide the dose distribution
to lower the complication risk [3]. Obviously, this requires reliable
and high quality NTCP-models. This means the models should: (1)
have adequate predictive performance in terms of calibration, the
agreement between predicted probabilities and observed outcome
(i.e. complication) frequencies, and in terms of discrimination, the
ability of the model to distinguish between patients with and with-
out the outcome; and (2) accurately describe the effects of radia-
tion dose to normal tissues and the risk of complications, rather
than reflect a mere correlation between radiation dose and compli-
cations [4]. This is a challenging combination of two worlds: the
world of prediction research and the world of causal inference.
On the one side, the focus is in obtaining accurate absolute proba-
bilities that can be used in (shared) decision making to decide on
the optimal treatment technique for each individual patient. On
the other side, the focus is on selecting the most relevant predic-
tors and obtaining reliable and interpretable predictor effects,
which is essential for effective treatment plan optimisation.

Accordingly, several challenges that are frequently encountered
in NTCP modelling should be addressed, including missing data,
non-linear response relationships, multicollinearity between pre-
dictors, overfitting, generalisability and prediction of multiple
complication grades at multiple time points. We discuss and sug-
gest methodological approaches to address these key challenges,
resulting in a strategy that is designed to improve the accuracy,
transparency and robustness of NTCP-models. During the develop-
ment of this strategy, interpretability and clinical usability were
important drivers in the decision-making process, ensuring a prag-
matic approach. A schematic overview of the proposed strategy is
shown in Fig. 1. A detailed explanation, including an example illus-
trating all aspects of the strategy in depth as well as the corre-
sponding R code, can be found in the supplementary data. We
will frequently refer to different sections of the detailed example
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Fig. 1. Flowchart with model development and validation steps.
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for further information. This will be indicated by ‘example’,
followed by the number of the section.

Note that our approach should not be considered as the final
approach to NTCP modelling, as alternative methods exist to deal
with the challenges encountered during NTCP model development
and validation. This is an evolving field of research and therefore
our proposed strategy should be viewed as an important step for-
ward to address the aforementioned challenges in NTCP modelling.
Missing data

Missing data is very common in medical research. Missing val-
ues can occur in both predictor and outcome variables. In NTCP
modelling, outcome variables are often missing due to various rea-
sons including non-compliance, lost to follow up due to recurrent
disease, follow up being too short or death (example 2.1). A com-
plete case analysis is often performed when (predictor or outcome)
data are missing. However, in addition to substantially reducing
the sample size and thus the precision of estimates, it has widely
been shown that a complete case analysis also tends to lead to
biased estimates of studied predictor-outcome associations [5–9].
An approach generally acknowledged to be better, is the use of
multiple imputation techniques (Fig. 1A and example 2.2) [5–9].
Multiple imputation techniques, e.g. the multivariate imputation
by chained equations (MICE), use all observed information of the
study patients to build so-called imputation models that estimate
as good as possible the distribution of the variables that have a
missing value [10]. Subsequently, from these estimated distribu-
tions, a value is drawn and replaces the missing value. This is done
multiple, e.g. 10, times. Each imputation set is then analysed as
planned. To account for the fact that imputed values are not
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formally observed but rather estimated and to penalise the analy-
sis for its inflated precision, the results of the imputation sets (i.e.
the regression coefficients and standard errors of the predictors in
the final prediction model) are pooled according to Rubin’s rule
[11]. The pooled standard errors reflect the uncertainty of the
imputation by taking the variance of the regression coefficients
within an imputation set as well as the variance across imputation
sets into account.

Other, more advanced, techniques are available to deal with
missing repeated outcome data, e.g. multi-state models, multilevel
imputation by joint modelling or fully conditional specification, or
by using multilevel analysis to predict radiation-induced complica-
tions over time as these models are well equipped to handle miss-
ing outcome data [12,13]. It remains, however, important to strive
for complete and high quality data, regardless of the technique
used to deal with missing data, as it will not compensate for low
quality data.
Non-linear transformations and representations of predictors

In NTCP modelling, all relevant candidate predictors should be
considered for multivariable analysis. This includes baseline com-
plaints, patient-, tumour- and treatment characteristics as well as
dose predictors. For continuous predictors, a linear relationship
with the risk of the outcome is often assumed. However, non-
linear transformations, e.g. a square root or log transformation,
might better describe the associations of continuous predictors.
Non-linear associations are rarely included in prediction models,
including in NTCP-models, even though these may substantially
improve the prediction accuracy. Not exploring non-linear rela-
tionships may even preclude important predictors in the model.

Therefore, we propose to always evaluate non-linear transfor-
mations for all continuous predictors (Fig. 1B and example 3.2)
[14]. A calibration plot, showing the agreement between predicted
and observed outcomes, can help in visualising the need for (and
type of) transformation. Also the biological and clinical rationale
and plausability of transformations should be taken into
consideration.

Ideally, relevant predictors are selected based on existing liter-
ature and clinical reasoning, with in the case of radiation therapy, a
focus on one DVH parameter (e.g. mean, median, D1% (i.e. the dose
received by at least 1% of the volume), V20 (i.e. the volume receiv-
ing at least 20 Gy)) for each organ at risk (OAR). Then, in a consec-
utive step, the (non-)linearity of the continuous candidate
predictors can be assessed. However, if no convincing evidence
exist on relevant DVH parameters, multiple DVH parameters of
the same OAR may be considered potentially relevant and each
of them can be transformed in multiple ways (e.g. log, square root).
Furthermore, some OAR can be divided into sub-structures (e.g.
ipsilateral and contralateral parts), further increasing the availabil-
ity of DVH parameters since DVH parameters for both the whole
organ as well as its sub-structures are available, and each of them
can be transformed in multiple ways.

Transforming (multiple) DVH parameters of the same OAR (in
multiple ways), however, leads to multiple representations of dose
predictors of the same OAR, while data limitations often demand a
reduction in the number of predictors. Therefore, we suggest a pre-
selection of these representations of dose predictors of the same
OAR before entering the predictors in the multivariable analysis
(Fig. 1C and example 3.3). We use the Bayesian Information Crite-
rion (BIC) value for this purpose, with additional penalties for non-
linear transformations, organ sub-structures and unfavoured DVH
parameters. These penalties are arbitrary but reflect our preference
of general vs. more specific dose predictors, to facilitate the use of
the NTCP-models in clinical practice and encourage acceptance by
physicians. It is difficult to clearly define ‘general’. But it should be
regarded as the most prevailing DVH parameter for the OAR and
the endpoint evaluated (e.g. mean dose, or near-maximum dose
for serial organs), in its most original (i.e. not transformed) form.
It is up to the researchers to decide on the penalties for transforma-
tions and/or unfavoured DVH parameters to balance evidence from
the data with prior knowledge or experience. Apart from the pre-
selection of representations of (transformed) predictor forms with
similar meaning, we do not pre-select predictors based on univari-
able significance since this is ill-advised, as the correlation
between predictors may influence their association with the out-
come (stronger or weaker) once combined in a multivariable
model [15].
Multicollinearity

Another challenge in NTCP modelling is multicollinearity
between predictors, i.e. when two or more predictors in a multi-
variable model are highly correlated. Multicollinearity tends to dis-
turb the predictor selection process. It yields an unreliable and
unstable estimation of predictors’ regression coefficients with
stepwise logistic regression, a commonly used method in NTCP
modelling (example 4.1) [16].

To deal with multicollinearity and preserve the most relevant
radiation dose parameters in the models, we suggest to modify
the commonly used stepwise logistic regression method in four
steps (Fig. 1D and example 4.2). First, before performing stepwise
logistic regression, highly correlated predictors are identified and
separated into different predictor groups. Each predictor group is
as large as possible without containing predictors with a mutual
Spearman correlation above a specified threshold, here 0.8. This
correlation threshold corresponds with a Variance Inflation Factor
(VIF) of 5 or higher. A VIF �5 is often considered a cut-off value for
high multicollinearity [17,18]. Second, with each predictor group, a
prediction sub-model is developed using stepwise logistic regres-
sion. This is performed in each imputation set. The final predictor
selection is based on the majority rule, i.e. a predictor should be
selected in more than half of the imputation sets. The final sub-
model is fitted on each imputation set and results are pooled
according to Rubin’s rules [11]. Third, sub-models are selected or
rejected by model performance (BIC) and expert opinion based
on clinical plausability and relevance. Finally, the selected sub-
models are combined into a single logistic regression model, also
called a composite model, by taking the average of the linear
predictors.

With this modified stepwise logistic regression method, we aim
to select the most relevant predictors, even those with high mutual
correlation. Additionally, it allows for a reliable estimation of the
predictor effect. Furthermore, it results in an NTCP-model that is
interpretable and easy to implement in clinical practice. Other
approaches, such as combining collinear predictors, using pena-
lised regression techniques (e.g. least absolute shrinkage and selec-
tion operator or ridge regression), principal component analysis, or
more advanced deep learning approaches, can also adequately deal
with multicollinearity. However, with these methods reliable esti-
mation of the predictor effect, interpretability and clinical usability
of the models are not guaranteed.
Validation

Model validation is an important aspect of prediction modelling
research and can be differentiated as: (1) internal validation, to
correct the model for overfitting and improve the model’s perfor-
mance with new patients; and (2) external validation, evaluating
the generalisability of the model, i.e. the variation in its perfor-
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mance between populations, by applying it to a new population set
and assessing whether a model adjustment (i.e. model update) is
necessary to achieve appropriate performance.

For internal validation (example 5.1), we suggest the use of a
bootstrapping procedure, in which model development (Fig. 1D
step 1, 2 and 4) is repeated in a sufficiently high number of boot-
strap samples (at least 100) that are of equal size as the develop-
ment sample, but drawn at random with replacement (Fig. 1E)
[19,20]. Performance of the bootstrap model is assessed in both
the bootstrap sample and development cohort in terms of discrim-
ination and calibration. Discrimination is quantified with the c-
index. Calibration is quantified by the calibration intercept and
slope, and assessed graphically by a calibration plot. The estimated
optimism of the model is the mean difference in performance mea-
sures between the bootstrap model as applied in the bootstrap
sample vs. application in the development cohort. This estimated
optimism is used to shrink the performance measures and regres-
sion coefficients, thereby correcting the model for overfitting [19].
Since the univariable analysis with pre-selection of representations
of predictors is not included in the bootstrapping procedure, a
small portion of optimism will not be corrected for. However, the
optimism induced by this pre-selection step is expected to only
be minor since the univariable predictor-outcome association is
not considered for selection.

For external validation (example 5.2), the model performance is
evaluated for a patient cohort that was not used for model devel-
opment. There is no clear definition on what qualifies as an ‘exter-
nally valid model’, as this also depends on the purpose of the
model [21]. At least the model performance in the external valida-
tion set should be reported to evaluate the generalisability of the
model. Model adjustments, such as recalibration-in-the-large (re-
estimation of model intercept), recalibration (re-estimation of
intercept and slope) or model revision (re-estimation of all coeffi-
cients), can be applied to improve model performance. For this, we
suggest the use of a closed testing procedure; an automated
method to evaluate whether and to what degree a model adjust-
ment is needed (Fig. 1F) [22]. In case of a model revision, an exter-
nal validation of the updated model is advised to evaluate the
model’s generalisability. When only an update of the model inter-
cept is indicated, to adjust for differences in the prevalence of the
outcome across the development and validation population, the
consensus is that no additional external validation study is needed
and that the model may be carefully applied in new patients,
unless these new patients substantially differ from those that were
used to develop and update the model [23]. For recalibration there
is currently no consensus on the need of an additional external
validation.
Multidimensional toxicity risk prediction

NTCP-models are generally developed for a single complication
grade at a single time point (e.g. moderate-to-severe patient
Fig. 2. Multidimensiona
reported xerostomia at 12 months after treatment). Although this
provides valuable information, it lacks important guidance for
effective treatment optimisation as dose–response relationships
might change for different complication grades (e.g. severe patient
reported xerostomia), or at other time points during or after radio-
therapy. Therefore, we aim to evolve to the prediction of NTCP-
profiles, i.e. to predict the risk of various complication grades at
multiple time points. At the same time, to facilitate usability and
clinical acceptance of the NTCP-models, we prefer the model pre-
dictors to be consistent among the respective NTCP-models.

Therefore, we first suggest to develop an NTCP-model at one
specific time point and for the lowest complication grade (Fig. 2,
black boxes). Subsequently, a closed testing procedure can be used
to evaluate this model for a higher complication grade as required
(Fig. 1G, Fig. 2 light grey boxes and example 6.1), and adjacent time
points (Fig. 1H, Fig. 2 white boxes and example 6.2), and adjust the
model if required. In this way, model predictors are consistent for
different complication grades and over time, while the response
relationships may differ per grade or time point, if evident from
the data. Only when a model with different predictors for another
complication grade (Fig. 2, dark grey boxes) or time point is sub-
stantially better in terms of performance and clinical relevance, a
model with different predictors might be preferred over a model
with consistent predictors.

Different complication grades could also be modelled using an
ordinal modelling approach, in which for each complication grade
a different intercept will be estimated, while other response rela-
tionships remain consistent. However, we believe that for different
complication grades the predictor effects might be different (e.g.
stronger or weaker). Therefore, we prefer to use a closed testing
procedure which also allows response relationships to change.
For the modelling of different time points, a time-to-event analysis
(e.g. Cox regression) can be an alternative approach for toxicities
that do not recover (e.g. hypothyroidism, cerebrovascular event,
myelopathy). However, for most toxicities a dynamic pattern
exists, which cannot be encompassed with a time-to-event
analysis.
Discussion

We discuss and suggest methodological approaches for model
development and validation to address key challenges in NTCP
modelling. The underlying aim was to improve the accuracy, trans-
parency and robustness of future NTCP-models that can be used for
treatment plan optimisation, treatment plan comparison, and
selection of patients for emerging treatment techniques, such as
proton therapy.

There are multiple ways of handling the key challenges
addressed in this paper. The proposed pragmatic strategy is only
one way of handling these challenges and was developed as an
answer to the problems we encountered while modelling various
complications. Interpretability and clinical usability of the result-
l NTCP prediction.
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ing NTCP-models were key drivers in the realisation of the pro-
posed strategy. We believe this strategy offers a solid modelling
framework that may improve modelling consistency. However,
careful thinking about every analysis step upfront and critical eval-
uation of results regarding biological or clinical plausability
remains important. Throughout the manuscript we highlighted
alternative, sometimes more complex, methodological approaches
to address key NTCP modelling challenges. Future research should
be aimed at comparing competing methodologies to unravel which
approach performs better under which conditions.

Even with an adequate model development strategy, many
other factors influence the quality and performance of NTCP-
models [24]. This includes the right study design, the use of consis-
tent definitions of predictor and outcome variables across centres
by using standardised validated scoring systems that aim to reduce
interobserver variability, instruction and training of staff to prop-
erly collect data, completeness of follow-up, and the use of uniform
delineation guidelines to improve OAR delineation consistency.
Poor data quality, insufficient sample size (i.e. few outcome events
per estimated coefficient) and inadequate model building strate-
gies can lead to biased and sub-optimal NTCP-models. To assess
the risk of bias of prediction models, the PROBAST quality assess-
ment tool can be used [24]. Additionally, complete and transparent
reporting of model results is the key to facilitate the clinical imple-
mentation of NTCP-models. Such reports should provide full
regression equations (including the intercept or baseline hazard)
or nomograms to calculate NTCP-values, and information on model
performance (e.g. discrimination and calibration) [25].

We aim to confirm the value of this strategy with simulation
studies on the one hand and clinical validation of the produced
NTCP-models on the other hand. In the simulation study, we want
to compare the proposedmodelling strategy to other (known)mod-
elling strategies. We especially want to evaluate the ability of the
different modelling strategies to select themost relevant predictors
andaccurately estimate thepredictor effects,with varying collinear-
ity between predictors. In the clinical validation, the accuracy of the
producedNTCP-modelswill be tested inpatients treatedwithNTCP-
optimised treatment plans and with prospectively collected data.
Ideally, this clinical validation should be embedded in a rapid learn-
ing healthcare system, in which NTCP-models are continuously
tested and, if necessary, adjusted in an ever growing patient cohort,
aiming to continuously improve theNTCP-models [26,27].However,
such an iterative system requires large amounts of patient datawith
sufficient followup time. Therefore, the success and progress of new
NTCP-models to converge to accurate models largely depend on the
accuracy of the initial models.

Obviously, the proposed strategy can be extended to other mod-
elling methods, such as multinomial, ordinal, or Cox regression,
mixed models, or Lyman–Kutcher–Burman models, and methods
that account for data from multiple centres (clustered data). Also,
using a weighted average of the sub-models may further improve
the performance of the composite models. Other advanced mod-
elling techniques from the fields of machine learning and artificial
intelligence may have advantages in more detailed learning abili-
ties. However, these refinements may conflict with the transparent
and pragmatic character of the proposed strategy.
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