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On the Computation of Equilibrium in Discontinuous
Economic Games

Pim Heijnen∗

April 21, 2020

Abstract

In many (game-theoretic) models of price competition, mixed-strategy Nash-
equilibria naturally occur. For firms, it is an equilibrium to randomly draw a price
from a non-degenerate distribution whose support is an interval on the real line.
Computing this distribution is a nontrivial task except in special cases. This pa-
per proposes a procedure to numerically calculate such an equilibrium. Examples
illustrate that the procedure is fast and accurate.

JEL-codes: C63, C71, L10

Keywords: mixed-strategy Nash equilibrium, numerical computation, Bertrand-Edgeworth

games

1 Introduction

In many price competition models, mixed-strategy Nash-equilibria naturally occur.1 For
firms, it is an equilibrium to randomly draw a price from a non-degenerate distribution
whose support is an interval on the real line. An analytic derivation of this distribution is
a nontrivial task, except in special cases. This paper proposes a procedure that allows the
researcher to numerically calculate such an equilibrium in a quick and stable manner.

Before I discuss the merits of being able to numerically calculate equilibria, it is insightful
to provide some detail about the kind of games that I have in mind. Consider a symmetric
game in which two firms compete in prices. The aim is to find a symmetric equilibrium.
Typically, the profit function of each firm is discontinuous along the line where both firms

∗Corresponding author: Faculty of Economics and Business, University of Groningen, P.O. Box 800,
9700AV, Groningen, e-mail: p.heijnen@rug.nl.

1While some unease arises from the concept of a mixed-strategy equilibrium, in the sense that it is not
clear what it means to play a mixed strategy, for models of price competition that want to explain price
dispersion for apparently homogeneous goods, mixed strategies are a godsend.
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charge the same price since there exists a group of consumers who always buy from the
cheapest firm but split their demand in case of equal prices. This discontinuity will destabi-
lize any pure-strategy equilibrium since firms can substantially increase profit by setting an
infinitesimally lower price. Therefore the equilibrium will be a mixed-strategy equilibrium.

Computing the mixed-strategy equilibrium is straightforward when profit only depends on
the firm’s own price and whether a firm sets the lowest price or not. However, in most
cases, deriving the equilibrium distribution is a cumbersome task at best and, to explore
properties of the model, a simple method that does not rely on the cumbersome derivation
of equilibrium conditions is valuable. Moreover, the numerical approach allows us to study
more complicated games where the analytical approach is of limited use.2

While there is a substantial literature on the computation of equilibrium in games with a
finite number of actions (see von Stengel (2007) for an overview) and an excellent software
package to perform the actual computations in the form of Gambit (McKelvey, McLennan,
& Turocy, 2014), to the best of my knowledge similar procedures for the computation of
equilibrium in games with a continuum of actions are unavailable. The current paper is a
first step in this direction.

The method to compute the equilibrium takes its cue from the proof of Theorem 5 in
Dasgupta and Maskin (1986), which establishes the existence of an equilibrium in the type
of game discussed in this paper.3 The proof shows that the equilibrium of a discretized
version of the game (where equilibrium existence obviously follows from Nash, 1950) con-
verges to the equilibrium of the original game. The computational procedure presented
here also approximates the equilibrium by discretizing the game.

It turns out that the choice of discretization is crucial to the performance of the algorithm.
The most straightforward discretization is to restrict the action space to a finite subset
of the action space, but then “ties” (where both players choose the same action) occur
with positive probability. The discontinuity of the payoff function at this point leads to
a poor approximation of the equilibrium. I circumvent this issue by dividing the action
space into intervals. An action in the discretized game is to choose an interval and the
action a player ultimately plays is a random draw from this interval, thereby smoothing
out the discontinuity. Note that any strategy of the original game can be approximated
with arbitrary precision by increasing the number of intervals.

The method is illustrated by three examples from the industrial organization literature.
The first example is the classic “model of sales” (Varian, 1980), where there are two groups
of consumers: uninformed and informed. The uninformed buy one unit from a random firm
as long as the price is below their willingness to pay, whereas the informed know which

2Since there is a tendency in economics to focus on games that are analytically solvable, examples where
the analytic approach fails, are hard to find in academic journals. The only example I know of is one of
my own working papers: Haan, Heijnen, and Obradovits (2019), available upon request.

3In fact, Theorem 6 shows that, in a symmetric game (which is the focus of the present paper), there
exists a symmetric mixed-strategy equilibrium.

2



firm charges the lowest price and buy from this firm. This is the simplest way to generate a
discontinuous profit function. Since we know the mixed-strategy equilibrium for this game,
it shows how well our numerical approximation performs.4

The second example is “competition on the Hotelling line”, where the distribution of con-
sumers along the line has an atom at the point where consumers are equidistant from
both firms.5 The third example falls into the category of Bertrand-Edgeworth games (see
Vives (2001, Chapter 5) for an overview of the literature) and is based on a symmetric
version of the game in Davidson and Deneckere (1986).6 In Bertrand-Edgeworth games,
consumers buy from the cheapest firm (Bertrand competition), but the firms have limited
capacity, which makes it attractive to set a high price and serve only those consumers who
get turned down at the cheapest firm. The main purpose of these examples is to show that
the method also works in more elaborate games.

The rest of the paper is structured as follows. Section 2 introduces the structure of the
game. In Section 3, the details of the computational procedure are discussed. Finally, in
Section 4, the numerical method is illustrated by three examples.

2 The game

Consider a symmetric game with two players indexed by i = 1, 2. Players choose an action
xi ∈ [x, x̄] ⊂ R which results in a payoff πi = π(xi, xj), where j 6= i. Note that the payoff
function is bounded and it is continuous everywhere except along the line xi = xj; to be
precise for all x ∈ (x, x̄), we have limy↑x π(y, x) > π(x, x) ≥ limy↓x π(y, x). Moreover there
exists x ∈ (x, x̄] such that π(x, x) > π(x, x). Note that in many economic models the
payoff function is of this form, as remarked in the previous section. While this game has
no symmetric equilibrium in pure strategies, there exists a symmetric equilibrium in mixed
strategies (Dasgupta & Maskin, 1986, Theorem 6).

4In this example, calculating the equilibrium is very easy, but even in minor variations of this game the
calculation become very involved very quickly, cf. Obradovits (2014) who uses a couple of neat tricks to
figure out the equilibrium distribution of prices. Alas, it is not easy to see how these tricks may lead to a
more general procedure for solving these kind of games. The same applies to the attempts of Osborne and
Pitchik (1986a, 1986b, 1987) to compute the equilibrium in Hoteling-type location games and Bertrand-
Edgeworth games.

5This game is based on the price game in Anderson, Goeree, and Ramer (1997), but their focus is
on specifications where there is a unique pure-strategy equilibrium. Another way to generate this kind of
demand structure in Hotelling-type games is to have consumers who are located on graphs (Heijnen &
Soetevent, 2018).

6Note that Davidson and Deneckere (1986) do not attempt to actually calculate equilibrium strategies.
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3 Computational procedure

First, partition the action space into n bins:

{B1, . . . , Bn} = {[x0, x1], . . . , [xn−1, xn]},

where

xk = x+
x̄− x
n
· k for k = 0, . . . , n.

Then we construct a game where action k = 1, . . . , n is to randomly pick an action from
bin k. This game has a payoff matrix A = {ak`}, where

ak` =

(
n

x̄− x

)2 ∫
Bk

∫
B`

π(x, y)dydx for k, ` = 1, . . . , n. (1)

Note that the constant in front of the integral follows from the fact that the density function
of the uniform distribution on the rectangle Bk × B` is constant and equal to the inverse
of the area of Bk ×B`. This game is referred to as the discretized game.

Observe that as n → ∞, any strategy of the original game can be approximated by our
discretization. Moreover this discretization is very close to the discretization that Dasgupta
and Maskin (1986) use to proof existence of a symmetric equilibrium in mixed strategies.
In particular, Dasgupta and Maskin choose n points from that action space and make sure
that the distance between any point and its closest neighbor is sufficiently small. For any
rectangle Bk×B` where the payoff function is continuous, the integral in (1) can of course
be replaced by a single action in that rectangle where the payoff is equal to ak`. The only
difference between the approach taken here and in Dasgupta and Maskin is for rectangles
where the payoff function is not continuous. The numerical illustration in Section 4.2 will
show that the choice to smooth out the payoff function in rectangles where discontinuities
appear increases the accuracy of the calculations.

To calculate the Nash-equilibrium of the discretized game, let fi be a vector on the n-
dimensional simplex which represents the strategy of player i, i.e. the k-th entry of the
vector is the probability that player i selects bin k. The expected payoff of player i is
f>i Afj, where j 6= i. It follows from Mangasarian and Stone (1964) that a symmetric Nash
equilibrium is the solution of a quadratic program, i.e. let

(f ∗, γ∗) = arg min
f,γ

γ − f>Af (2)

such that

Af ≤ γι (3)

ι>f = 1 (4)

f ≥ 0 (5)
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where ι = (1, . . . ,1). Then f ∗ is a symmetric Nash equilibrium of the discretized game and
γ∗ = f ∗>Af ∗ is the equilibrium payoff. In the computations below, I find Nash-equilibria
by solving the quadratic program above.7

The Nash equilibrium of the discretized game is an ε-equilibrium of the original game, i.e.
by deviating from the equilibrium the increase in the payoff is at most ε. Since the payoff
function is bounded, there exists an ε for which this is true, however, to assess the accuracy
of the approximation, it can be useful to calculate the minimal value of ε. Define

π∗(x) =
n

x̄− x

n∑
`=1

f ∗`

∫
B`

π(x, y)dy

as the payoff of deviating to action x if the other player sticks to the Nash-equilibrium.
Observe that if f ∗k > 0, then a player will receive an expected payoff of γ∗ if he randomly
picks an action in bin k. Therefore there exists an action in bin k whose payoff is at least
γ∗. Hence maxx π

∗(x) ≥ γ∗. Let ε∗ ≡ maxx π
∗(x) − γ∗ ≥ 0 denote the maximum payoff

of deviating. The symmetric Nash equilibrium of the discretized game is an ε-equilibrium
of the original game for all ε ≥ ε∗. We refer to ε∗ as the accuracy of the equilibrium. We
conjecture that ε∗ → 0 as n→∞. Remark that:

• I focus on a symmetric equilibrium of a symmetric two-player game. Three questions
naturally arise: (1) Is there a way to calculate all symmetric equilibria? (2) What if
the game is not symmetric? and (3) What if the game has more than two players?
Ad (1): In most symmetric economic games, the symmetric equilibrium appears to
be unique. Therefore, in practice, this is not of great importance. Ad (2) and (3):
Asymmetric two-player games and symmetric n-player games can easily be handled
by modifying the program in (2–5) in an appropriate fashion. Since Mangasarian
and Stone (1964) actually consider the general asymmetric two-player case, this only
requires a bit of tweaking for the symmetric n-player case.

• The computations that I report below were executed with Matlab on a run-of-the-
mill desktop. Hence, the time to calculate the equilibrium can be drastically improved
by people with better programming skills and access to better hardware than me.
Moreover, n = 1024 was the largest-scale problem that ran decently on my setup:
again there is scope for improvement in that direction.

• In solving the quadratic program, I used the Matlab-routine fmincon from the
optimization-package instead of the quadprog-routine, i.e. I used a general min-
imization routine (using the sequential quadratic programming algorithm) instead
of an algorithm specifically designed for quadratic programming. The problem is

7It is more common to use the Lemke-Howson algorithm (Lemke & Howson, 1964), but for large n this
algorithm is very slow compared solving a quadratic program. For instance, for n = 1024, the game in
Section 4.1 takes 43 seconds to solve when using the quadratic program approach, but the Lemke-Howson
algorithm was running for 11 hours (and 500,000 pivots) and had not found a solution yet. It appears that
Lemke-Howson does not scale up well.
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that the objective function is not necessarily convex (which the quadprog-routine re-
quires), nonetheless in all cases I achieved convergence to a global minimum (which
is zero by construction).

• Constructing the payoff matrix is the most computationally-intensive part of the
procedure since it requires the evaluation of n2 double integrals. I used simple Monte
Carlo integration, which seemed to perform well. Note that one can choose to only
smooth the payoff function for bins where a discontinuity is present in order to
increase the speed of computation.

4 Illustrations

To conclude the paper, the computational method is illustrated with three examples. The
first example is based on Varian (1980), where the equilibrium can be derived analytically.
This allows us to see how accurate the method is. The second example is a model of
horizontal product differentiation akin to the price game in Anderson et al. (1997), which
shows that the equilibrium distribution may have unexpected features. The third example
is based on Davidson and Deneckere (1986) and shows that the discretization process will
lead to a decent approximation of the cumulative distribution function, but the accuracy
of approximation of the probability distribution function may be lower.

4.1 A model of sales

There is a unit mass of consumers who demand one unit of a good as long as the price does
not exceed 1. A fraction λ ∈ (0, 1) of the consumers are informed, the rest are uninformed.
Two firms, who face no cost production, simultaneously set prices. The informed consumers
buy from the cheapest firm, the uninformed split equally between the two firms. When both
firms set equal prices, the informed also split equally between the two firms.

In terms of the notation of the previous section, x = 0, x̄ = 1 and

π(x, y) =


1
2
(1− λ)x if x > y

1
2
x if x = y

1
2
(1 + λ)x if x < y

where x and y denote respectively own price and price of the competitor.

This game has a mixed-strategy equilibrium with a distribution

F (x) = 1− (1− λ)(1− x)

2λx

6



n Accuracy Payoff Time
16 2 0.4075 1
64 2 0.3982 1
256 3 0.3999 2
1024 6 0.4000 43

Table 1: Accuracy indicates the largest integer m such that ε∗ ≤ 10−m, payoff is the
equilibrium payoff of the discretized game (which is 0.4 in the actual equilibrium of the
game), time is time needed to calculate the equilibrium, measured in seconds.

and support [(1 − λ)/(1 + λ), 1]. Equilibrium profit is (1 − λ)/2 (cf. Varian, 1980). We
take λ = 1/5. Table 1 shows the performance of our approach for several values of n, the
number of bins. Note that for relatively small values of n, we get a decent approximation
of the equilibrium payoff, starting from n = 64 the payoff is correct up to two decimals.
However, to get a decent approximation of the equilibrium price distribution, n should be
quite large: at n = 1024, the maximum distance between F and the equilibrium of the
discretized game drops to approx. 3× 10−4.

4.2 Horizontal product differentiation

Consider a market where two firms, indexed by i = 1, 2 and who face no cost of production,
are active. Firm i sets a price xi. There is a unit mass of consumers. A fraction λ consumers
consider the firms’ products to be perfect substitutes. The remaining consumers attach a
value vi to the consumption of firm i’s product. Suppose that δ ≡ v2 − v1 is uniformly
distributed on [−1/2, 1/2], i.e. there is horizontal product differentiation. The consumer buys
from firm 1 if and only if v1− x1 ≥ v2− x2 =⇒ δ ≤ x2− x1. Demand for firm 1 from this
group of consumers is (1− λ) times the probability that δ ≤ x2 − x1. The payoff function
for firm i is then given by

πi =



xi if xi − xj ≤ −1
2

[λ+ (1− λ)(1
2
− (xi − xj))]xi if xi − xj ∈ (−1

2
, 0)

1
2
xi if xi − xj = 0

(1− λ)[1
2
− (xi − xj)]xi if xi − xj ∈ (0, 1

2
)

0 if xi − xj ≥ 1
2

where j 6= i. Observe that consumers always buy from either firm 1 or firm 2, hence there
is no natural upper bound on prices. This means that we need to establish some upper
bound on price, which requires either experimentation or a bit of preliminary analysis. For
this particular game, there is a pure-strategy equilibrium when λ = 0 at x1 = x2 = 1/2.
Given that competition intensifies if more consumers think that the goods are perfect sub-
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Figure 1: Equilibrium price distribution for λ = 2/5 (cumulative).

stitutes, it seems that we can restrict the support to [0, 1/2].8 Figure 1 shows the cumulative
equilibrium price distribution for λ = 2/5. It shows that prices range from roughly 0.09 to
0.35. The equilibrium shows a surprising feature. While most of the probability mass is
clustered around the lower end of the price distribution with a small chance of drawing a
high price, at the top end of the distribution we see another “lump” of probability mass:
it happens relatively often that a firm sets a very high price.

For this particular game, a discretization of the game along the lines of Dasgupta and
Maskin (1986), where the player’s actions are restricted to n points evenly distributed on
the interval [0, 1/2], does not work very well. For n = 1024, the accuracy is only ≈ 10−4

compared to ≈ 10−6 for the preferred method and Matlab’s minimization routine struggles
to find the global minimum. More worryingly, when the number of gridpoints is increased
to 2048 (which takes forever to calculate), the accuracy does not increase. This is a clear
example where the smoothing of the payoff function produces better results.

4.3 Capacity constraints with a proportional sharing rule

Consider a market where two firms, indexed by i = 1, 2 and who face no cost of production,
are active. Consumers have downward-sloping demand D(x). Firm i sets a price xi, but
no firm can serve more than K consumers (capacity constraint). The game is as follows:
when xi < xj, firm i gets the first pick of the consumers and demand is D(xi) if capacity

8In general, by restricting the action space to the smallest possible interval, we can speed up the
calculation of the Nash-equilibrium. Of course one needs to be careful not to exclude actions that are part
of the Nash-equilibrium.
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is sufficient. In case K < D(xi), there are 1 −K/D(xi) unsatisfied consumers, who go to
firm j and demand D(xj) units. The payoff for firm i is

πi =


xi ×min{D(xi), K} if xi < xj

xi ×min{D(xi)/2, K} if xi = xj

xi ×min
{

max
{

0, D(xi)
(

1− K
D(xj)

)}
, K
}

if xi > xj

Take D(x) = 1 − x.9 Davidson and Deneckere (1986) show that for 1/4 ≤ K ≤ 1, there is
only a symmetric equilibrium in mixed strategies. Note that xi ∈ [0, 1].10

Figure 2 shows the cumulative equilibrium distribution for K = 2/3, which appears unre-
markable: the steep slope at the lower end of the support reveals that price tend to be low
and occasionally the firms set a very high price. The scatter plot in Figure 3 shows the
probabilities per bin. Note the probabilities per bin fluctuate between a low value and a
high value. This has little impact on the smoothness of the cumulative distribution func-
tion, but it does show that the discretization of the game can lead to equilibrium behavior,
that is unlikely to be observed in a game with a continuous action space: one should always
examine the outcome critically.
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