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ARTICLE INFO ABSTRACT

The bacterial twin-arginine (Tat) pathway serves in the exclusive secretion of folded proteins with bound co-
factors. While Tat pathways in Gram-negative bacteria and chloroplast thylakoids consist of conserved TatA,
TatB and TatC subunits, the Tat pathways of Bacillus species and many other Gram-positive bacteria stand out for
their minimalist nature with the core translocase being composed of essential TatA and TatC subunits only. Here
we addressed the question whether the minimal TatAyCy translocase of Bacillus subtilis recruits additional cel-
lular components that modulate its activity. To this end, TatAyCy was purified by affinity- and size exclusion
chromatography, and interacting co-purified proteins were identified by mass spectrometry. This uncovered the
cell envelope stress responsive LiaH protein as an accessory subunit of the TatAyCy complex. Importantly, our
functional studies show that Tat expression is tightly trailed by LiaH induction, and that LiaH itself determines
the capacity and quality of TatAyCy-dependent protein translocation. In contrast, LiaH has no role in high-level
protein secretion via the general secretion (Sec) pathway. Altogether, our observations show that protein
translocation by the minimal Tat translocase TatAyCy is tightly intertwined with an adequate bacterial response
to cell envelope stress. This is consistent with a critical need to maintain cellular homeostasis, especially when
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the membrane is widely opened to permit passage of large fully-folded proteins via Tat.

1. Introduction

To grow, thrive, and survive, bacteria must direct proteins to their
cytoplasmic membrane, cell wall and extracytoplasmic milieu.
Accordingly, the Gram-positive bacterium Bacillus subtilis has evolved
to secrete many different proteins, mostly enzymes, into its natural
habitat, the soil and plant rhizosphere [1]. This requires dedicated
machinery that drives proteins into and across the membrane. To this
end, B. subtilis employs two highly conserved pathways for protein
transport, namely the general secretion (Sec) pathway and the twin-
arginine (Tat) pathway. The Tat pathway stands out by its specializa-
tion in the export of fully folded proteins that often contain cofactors
[2-6]. These Tat substrates are defined by a consensus S/T-R-R-X-F-L-K
motif, including the so-called ‘twin-arginine’ residues, in the N-terminal
signal peptides that predestine them for export from the cytoplasm
[7,8].

* Corresponding author.
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The Tat machinery of B. subtilis entails two translocases that act in
parallel. Each translocase is minimal in the sense that it requires only
two components termed TatA and TatC for activity [9-11]. The TatA
component is relatively small (6-7.4 kDa) and has one N-terminal
transmembrane domain [12,13], whereas TatC has six trans-membrane
domains (28-28.9 kDa) [11,14-17]. The core translocase TatAyCy is
composed of the constitutively expressed TatAy and TatCy proteins. It is
known to direct the Rieske iron-sulfur protein QcrA into the cyto-
plasmic membrane [18], the metallophosphoesterase YkuE to the cell
wall [19], and the hemoprotein EfeB both to the membrane-cell wall
interface and extracellular milieu [20]. The second translocase Ta-
tAdCd, composed of TatAd and TatCd, is detectable only under phos-
phate starvation conditions where it facilitates secretion of the phos-
phodiesterase PhoD [9,21]. Of note, minimal Tat translocases as
typified by Bacillus TatAyCy lack a third component known as TatB,
which is common to translocases of Gram-negative bacteria and
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Fig. 1. Co-purification of LiaH with TatAyCy.

(A) The cytoplasmic membrane fraction of B. subtilis NZ8900 overexpressing TatAyCy-His was solubilized with 0.1% DDM and subject to metal affinity chroma-
tography. Proteins in elution fractions 2-20 collected during metal affinity chromatography (marked red in A) were separated by LDS-PAGE and visualized by
SimplyBlue staining (B) or Western blotting and immunodetection with specific antibodies against the His tag on TatCy (C), TatAy (D), or LiaH (E). Elution fractions
10-13 were pooled and subject to size exclusion chromatography on a Superdex 200 (10/300) column (F). Subsequently, the proteins in elution fractions 7-24 were
separated by LDS-PAGE and visualized by SimplyBlue staining (G) or Western blotting and immunodetection with specific antibodies against the Hisg tag on TatCy
(H), TatAy (1), or LiaH (J). Proteins in panels B and G were identified by MS, and the respective gels with marked protein identifications are shown in Fig. S1 and S2.
Note that TatCy runs at ~23 kDa and TatAy at ~9 kDa, which differs from the predicted molecular weight (Mw) of 28.9 and 6 kDa, respectively. LiaH runs at the
predicted Mw of ~27 kDa.
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thylakoids [22,23]. The role of TatB is performed by bifunctional TatA
proteins, as demonstrated for TatAy and TatAd of B. subtilis [22,24-26].
Interestingly, B. subtilis contains a third TatA protein, TatAc, which
supports protein translocation via TatAyCy, but cannot functionally
replace TatAy [27].

Since the mechanism of Tat translocation appears to be conserved
across species, it has been proposed that, in minimal Tat translocases, a
complex of TatA and TatC serves in the docking of cargo proteins
[6,16,28]. Subsequently, the docking complex with its bound cargo
recruits TatA oligomers in the membrane [6,29,30], leading to the ac-
tual translocation of cargo and cleavage of the signal peptide by signal
peptidase [21,31]. An intriguing question is whether the minimal Tat
translocases of Bacillus operate in isolation, or whether they also in-
volve other factors. This question is relevant, as it was previously shown
in Escherichia coli that the phage shock protein A (PspA) can be detected
in association with TatA [32,33]. PspA is a homologue of the IM30
(VIPP1) protein of thylakoid-harboring photosynthetic organisms [34],
and it has two paralogues, LiaH and PspA, in B. subtilis [35]. Under
stress conditions that compromise membrane integrity, the PspA, IM30,
and LiaH proteins form high-order oligomeric structures that bind
peripherally to the affected membrane regions to mitigate the poten-
tially lethal defects of phospholipid bilayer perturbations [34,36].
Previous studies have furthermore shown that LiaH is up-regulated via
the LiaRS two-component regulatory system in response to stresses
caused by antibiotics that affect the undecaprenol cycle [37], and by
secretion of some heterologous proteins via the Sec pathway [38]. In
contrast, PspA up-regulation in B. subtilis depends on the alternative
sigma factor SigW, which is responsive to cell envelope perturbations
and alkaline shock [39-41].

The present study was aimed at identifying potentially new mem-
bers of the minimal core translocase TatAyCy by using a biochemical
approach. Here we show that TatAyCy is less minimal than previously
believed, because the stress-responsive LiaH protein is functionally as-
sociated with this translocase.

2. Results
2.1. LiaH binds both TatAy and TatCy

To obtain a biochemical perspective on possible interaction partners
of the TatAyCy translocase, the TatAyCy complex was overexpressed
with a C-terminal hexahistidine tag (Hisg) in a B. subtilis tatAyCy mutant
strain [30]. Importantly, previous studies showed that the Hise tag does
not interfere with TatAyCy translocation activity [30]. To achieve Ta-
tAyCy overexpression, the subtilin-inducible SURE system was applied
[42]. TatAyCy-overexpressing cells were disrupted by bead-beating,
membranes were purified from the disrupted cells, and membrane
proteins solubilized in 0.1% Lauryl-3-D-maltoside (DDM) were used for
metal affinity chromatography as previously described [30]. Upon ex-
tensive washing, bound proteins were eluted from the column with an
imidazole gradient, and the different elution fractions were collected.
As shown by monitoring the absorption at 280 nm, proteins eluted in
one major peak (Fig. 1A). Proteins in the respective elution fractions
were separated by lithium dodecyl sulphate polyacrylamide gel elec-
trophoresis (LDS-PAGE) and stained with SimplyBlue SafeStain
(Fig. 1B). Since multiple proteins eluted, the dominant bands were
analyzed by Mass Spectrometry (MS), demonstrating the presence of
TatCy-His and TatAy (Fig. S1, Table S1). In addition, the MS analysis
revealed the presence of LiaH and the ribosomal proteins RplM, RplR,
RpsC, RpsE, RpsJ, RpsS and RplB (Fig. S1). Of note, despite its similarity
to LiaH, the PspA protein of B. subtilis was not found to co-elute with
TatAyCy. To verify the MS identifications, the elution fractions were
analyzed by Western blotting using antibodies specific for the Hisg tag
on TatCy (Fig. 1C), TatAy (Fig. 1D), and LiaH (Fig. 1E). This revealed
that, with an increasing imidazole concentration, increasing amounts of
TatCy were co-eluted with decreasing amounts of TatAy, reaching a
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constant TatAy:TatCy ratio from elution fraction 13 onwards
(Fig. 1C,D). Most notably, LiaH was found to be abundantly present in
all elution fractions, even at high imidazole concentrations (Fig. 1E),
showing an elution profile similar to that of TatAy (Fig. 1D,E). To assess
the specificity of the observed co-isolation of LiaH with TatAyCy-His,
metal affinity chromatography was performed under the same condi-
tions using lysates of two control strains that did not overexpress Ta-
tAyCy (i.e. B. subtilis NZ8900 and B. subtilis NZ8900 carrying the empty
vector pNZ8910). In these experiments, no TatAy or TatCy-His was
eluted from the column (as expected) but, importantly, the detectable
amounts of LiaH were also negligible compared to the amounts of LiaH
co-eluted with TatAyCy in the TatAyCy-overexpressing strain (data not
shown). Together, these findings were suggestive of possible interac-
tions between LiaH and the eluted TatAyCy complexes, interactions
between TatAy and LiaH in particular.

To verify a possible TatAyCy-LiaH interaction, elution fractions
10-13 were pooled, concentrated and subjected to size exclusion
chromatography. The respective chromatograms showed three major
peaks with masses of ~150-600 kDa (fractions 11-13), ~100 kDa
(fraction 14-15) and ~20 kDa (fractions 16-18; Fig. 1F). Next, the
collected fractions were subjected to LDS-PAGE and the separated
proteins were visualized by SimplyBlue staining. This revealed that
fractions 11-13, corresponding to the elution peak of ~150-600 kDa,
encompassed three dominant protein bands that MS identified as TatAy,
TatCy and LiaH (Fig. 1G, Fig. S2). The other peak fractions were mostly
composed of ribosomal proteins, including RplB, RplC, RplM, RpIR,
RpsB, RpsC, RpsD, RpsJ and RpsS (Fig. S2). Western blotting showed
that the 150-600 kDa peak includes complexes of TatAyCy and LiaH
(Fig. 1, H-J; Fig. S2), which validated the MS data. Taken together,
these results suggested close interactions between the overexpressed
minimal TatAyCy translocase and the LiaH protein of B. subtilis.

Since LiaH is known to be upregulated upon stress in the membrane
and cell wall [37,43], we decided to further explore its interactions
with TatAyCy by co-immunoprecipitation (co-IP) experiments. For this
purpose, membranes of TatAyCy-His-overexpressing cells of the wild-
type B. subtilis SURE strain NZ8900 were solubilized and incubated with
protein A dynabeads that had been pre-incubated with anti-Hisg anti-
bodies. Next, the beads were washed and bound proteins were eluted
with 2 X LDS loading buffer and subjected to LDS-PAGE and Western
blotting. As shown in Fig. 2A-C, along with TatCy-His, the TatAy and
LiaH proteins co-eluted from the beads, showing that LiaH directly
interacts with TatAyCy. The next question we asked was whether LiaH
interacts with TatAy, TatCy or both. To this end, TatAy-His or TatCy-
His were individually overexpressed in B. subtilis using the SURE system
and co-IP was performed on solubilized membrane proteins from the
respective overexpressing strains. Of note, we were unable to over-
produce TatAy-His in the wild-type NZ8900 strain, whereas this was
possible in the genome-reduced B. subtilis strain IIG-Bs27-47-24.
Fig. 2D,E shows that indeed, LiaH eluted from the beads along with the
overexpressed TatAy-His. Unexpectedly however, LiaH also co-eluted
from the beads with the overexpressed TatCy-His (Fig. 2F,G). Since the
co-IP of LiaH with TatCy-His was performed in a TatAy-proficient
background, we wanted to know whether this reflected a direct inter-
action of TatCy and LiaH, or an indirect interaction via the chromo-
somally-encoded TatAy. To this end, we repeated the co-IP experiment
with TatCy-His overexpressed in a tatAyCy-deficient strain. Also, in the
absence of TatAy, LiaH was found to co-immunoprecipitate with TatCy-
His, indicating a direct interaction between TatCy-His and LiaH (Fig.
S3A-C). As a negative control, we also subjected membranes of non-
overexpressing B. subtilis NZ8900, grown in the presence of 1% subtilin,
to this same procedure. As expected, neither TatCy-His nor LiaH were
detectable in the elution fraction (Fig. S3D,E). Further, we wondered
whether the Hisg tag on TatCy might have an effect on the co-IP of LiaH
with overexpressed TatAyCy. Therefore, we performed the same ex-
periment using a strain that overexpresses TatAyCy with a Strepll tag
attached to TatCy (Fig. S4). Also when TatCy contained the Strepll tag,
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Fig. 2. Co-immunoprecipitation of LiaH with TatAyCy, TatCy, and TatAy.

Solubilized cytoplasmic membranes (CM) from B. subtilis NZ8900 overexpressing TatAyCy-His (A-C), B. subtilis IIG-Bs27-47-24 overexpressing TatAy-His (D, E), or B.
subtilis NZ8900 overexpressing TatCy-His (F, G) were incubated for 1 h with Hisg-specific antibodies bound to Protein A dynabeads. Subsequently, the beads were
separated from the sample with a magnet. The supernatant (SN) was collected, the beads were washed three times (W1-3), and proteins were eluted (Elu) with LDS
loading dye. Proteins in the different fractions were separated by LDS-PAGE and analyzed by Western blotting with specific antibodies for the Hise tag (A, D, F),
TatAy (B), or LiaH (C, E, G). Ab-HC/LC, antibody heavy/light chain. Negative control co-IP experiments performed on solubilized cytoplasmic membranes from the
non-Tat overexpressing wild-type strain 168 and a TatAc-overexpressing strain are respectively shown in Figs. S3 and 6.

we observed co-IP of TatAy and LiaH with TatCy (Fig. S4A-C). More-
over, using antibodies specific for TatAy in the same experimental
setup, TatCy-Strep and LiaH were co-immunoprecipitated with TatAy
(Fig. S4D-F). Conversely, using antibodies specific for LiaH, TatCy-
Strep and TatAy were co-immunoprecipitated with LiaH (Fig. S4G-I).
Altogether, these ‘post-mortem’ analyses show that LiaH can tightly
bind both TatAy and TatCy, even if the two Tat proteins are expressed
in isolation.

2.2. TatAyCy expression and LiaH induction are intimately linked in vivo

LiaH is a known member of the LiaRS regulon, which senses and
responds to perturbations in the membrane and cell wall milieu as
imposed by antimicrobials, such as bacitracin [37,44]. Since it has been
proposed that Tat-dependent protein translocation could rely on
membrane-weakening [5,45,46], we sought to identify a possible re-
lationship between TatAyCy expression and LiaRS activation in vivo,
which would lead to increased LiaH levels. As a first approach, the
expression levels of LiaH in response to TatAyCy overexpression were
measured by Western blotting (Fig. 3A). Indeed, titration of TatAyCy
expression with increasing amounts of subtilin resulted in con-
comitantly increasing LiaH levels with an optimum at 5% subtilin. In
contrast, LiaH was barely detectable in the TatAyCy-proficient wild-
type control strain, irrespective of the amounts of subtilin added
(Fig. 3A). These results indicate that the two-component regulatory
system LiaRS senses TatAyCy overexpression. Similarly, the LiaH levels
increased strongly when TatAy or TatCy were overexpressed in-
dividually (Fig. S5). Here it should be noted that TatAy expression in
the IIG-Bs27-47-24 strain was already saturated in absence of the
subtilin inducer leading to high-level induction of LiaH expression,

whereas LiaH expression followed the titratable TatCy-His expression in
the NZ8900 strain.

In the presence of cell envelope stress, the lial promoter (Pj,;) will
be activated leading to transcription of the downstream lia operon,
which includes liaH [37]. Activation of the LiaRS system can thus be
measured with a previously constructed Py, lux reporter cassette,
where promoter activity leads to expression of luciferase that can be
quantified by recording light emission [47]. To validate the Western
blotting data in Fig. 3A, we assessed whether and to what extent Ta-
tAyCy overexpression would cause Py, lux activation-dependent light
emission. As shown in Fig. 3E,F, subtilin-induced expression of TatAyCy
led to high-level Py, activation. Of note, due to some leakiness of the
SURE expression system, low-level activity of Pj;,; was also detectable in
the absence of subtilin (Fig. 3E), but in terms of light emission this
represented < 1% of the Py, activity measured when TatAyCy expres-
sion was fully induced (Fig. 3F; please note the different y-axes scales in
panels E and F). On the other hand, exposure of the non-Tat-over-
expressing strain carrying the Py, lux reporter to 1% subtilin did not
result in any detectable light emission (Fig. 3F). Unexpectedly, the Pjq;
activity recorded in the presence of 30 pg/ml bacitracin, a known in-
ducing cue for Pjq [48] reached maximally ~20% of the induction
level that was reached upon fully induced TatAyCy expression
(Fig. 3G). These observations, together with the Western blotting data
in Fig. 3A-C, imply that the LiaRS system is super-responsive to the
expression of TatAyCy. In fact, compared to the previously described
inducer bacitracin, TatAyCy expression is a much stronger stimulus for
the LiaRS system.

Since the cellular LiaH level was increased upon TatAyCy over-
expression, we asked the question whether the LiaH level might be
reduced upon tatAyCy deletion. However, this was not the case, as
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Fig. 3. TatAyCy overexpression is trailed by LiaH induction.

Cells of B. subtilis NZ8900 or B. subtilis NZ8900 AtatAyCy pNZ-tatAyCyHis were exposed for 5 min to varying concentrations of subtilin (0-10%) to induce TatAyCy-
His overexpression. Culture samples were collected and normalized according to the respective ODggo. Subsequently, cells were pelleted by centrifugation, and
disrupted by bead-beating. Proteins from the disrupted cells were separated by LDS-PAGE and analyzed by Western blotting with antibodies specific for LiaH (A), the
Hise tag on TatCy (B), TatAy (C), or the cytoplasmic control protein TrxA (D). To assess Py, induction, exponentially growing cells of B. subtilis 168, B. subtilis 168
Pjiarlux, or B. subtilis NZ8900 Pj;,r-lux pNZ-tatAyCyHis were diluted in fresh LB medium to an ODggo of ~0.015 and aliquots of 150 uL were transferred to a black-
bottomed 96-well plate and incubated. Subtilin (1%), Bacitracin (30 pg/ml), or Milli-Q water (1%) were added when the cells had reached an ODgqo of ~0.1 (marked
with an arrow). The relative light units (RLU) related to lux gene expression and the ODgoo were measured over time. (E) Luciferase activity produced by the
investigated Pj,-lux reporter strains in the absence of inducing cues (1% Milli-Q water was added as a negative control), (F) upon TatAyCy-His overexpression
induced by 1% subtilin, or (G) upon LiaRS activation with 30 ug/mL bacitracin. Upward pointing arrows mark the time point at which milli-Q, subtilin or bacitracin

were added.
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Fig. 4. Bacitracin elicits an elevated cellular level of TatAy.

The expression levels of LiaH were assessed by Western blotting using wild-type
B. subtilis 168 and a tatAyCy-deficient B. subtilis 168 mutant strain. Cells were
grown to an ODggo of ~3 in LB supplemented with 1% xylose. As a control for
LiaH induction, B. subtilis 168 was also grown in the presence of 30 pg/ml
bacitracin. Culture samples were collected and normalized according to the
respective ODggo. Subsequently, bacteria were collected by centrifugation,
disrupted by bead-beating, and subjected to LDS-PAGE, Western blotting, and
immunodetection with specific antibodies against TatAy or LiaH.

shown by Western blotting (Fig. 4), which is in line with the fact that
the native expression levels of TatAy and TatCy are very low [9,21,49].
Remarkably, we noticed instead that the cellular level of chromoso-
mally-encoded TatAy was significantly increased when LiaH over-
production was provoked with bacitracin (Fig. 4). Since tatAy expres-
sion is neither controlled by LiaRS nor by SigW [40,41,50], this
observation suggests that TatAy is stabilized by overproduction of LiaH
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in the presence of bacitracin. This would be consistent with the ob-
served interaction between TatAy and LiaH.

2.3. Overexpression of the Tat substrate EfeB or the third TatA protein of B.
subtilis, TatAc, does not have a significant impact on LiaH levels

To determine whether the induction of LiaH is specific for TatAyCy
overexpression, or whether other Tat-related proteins might also lead to
LiaH induction, we investigated the levels of LiaH upon induced over-
expression of the TatAyCy substrate EfeB using the SURE system. Of
note, EfeB is a DyP-type peroxidase that oxidizes ferrous iron in a first
step of iron acquisition via the membrane-embedded EfeUOB system
[20]. Accordingly, most EfeB is found in a membrane-associated form.
As shown in Fig. 5, induction with subtilin for 5 min or 2 h resulted in
overexpression of EfeB, which was associated with low-level induction
of LiaH. However, this LiaH induction remained marginal compared to
the massive levels of LiaH that were produced upon TatAyCy over-
production from the same promoter under the same experimental
conditions (Fig. 5). This implies that the strong LiaH response is highly
specific for the TatAyCy translocase, rather than for its substrate EfeB.
Of note, the overexpression of neither TatAyCy nor EfeB led to de-
tectable release of the cytoplasmic marker protein thioredoxin A (TrxA)
into the growth medium, which indicates that the integrity of the cells
was not affected under these conditions [51].

For a fair comparison of the LiaRS-mediated response to TatAyCy
overexpression, we also wanted to know whether a similar effect could
be observed in response to the overexpression of a related membrane
protein. To this end, we overexpressed the TatAc protein using the
SURE system. Importantly, TatAc is structurally similar to TatAy and it
can aid in the function of TatAyCy [27]. As shown in Fig. 6A-C, the
overexpression of TatAc resulted in only a very minor raise in the cel-
lular LiaH level compared to the overexpression of TatAyCy, or com-
pared to overexpression of TatAy or TatCy alone (Fig. S5). Instead, the
observed induction of LiaH was comparable to the level observed upon
EfeB overexpression (Fig. 5). The observation that TatAc did not lead to
severe overexpression of LiaH was further exploited to serve as an ad-
ditional negative control for the co-IP experiments presented in Figs. 2
and S3. Indeed, as in the latter experiments, co-IP of TatAy, TatAc or
LiaH from TatAc-overproducing cells was not observed with the anti-
Hise antibodies (Fig. 6D-G). Together, these observations show that the
massive induction of LiaH upon TatAyCy overproduction is specific for
the TatAyCy translocase.

2.4. LiaH determines the quantity and quality of TatAyCy activity

Having observed a direct interation of LiaH with TatAyCy, as well as
super-induction of LiaH expression by TatAyCy overexpression, we
wanted to know whether the presence or absence of LiaH makes a
difference for TatAyCy activity. To this end, we first examined the se-
cretion of EfeB, which was expressed from a xylose-inducible promoter
(X-efeB) as the endogenous cellular and secreted levels of EfeB are re-
latively low (Fig. 7A,B). Further, we compared the physiological levels
of TatAyCy production to a situation where TatAyCy was overexpressed
about 5-fold from the low-copy number plasmid pCAyCy [21,52]. The
levels of EfeB in cell and growth medium fractions were then monitored
by Western blotting. The results in Fig. 7A,B show that the overall level
of EfeB in cells and medium of the wild-type strain 168 were sub-
stantially enhanced upon xylose induction of EfeB expression, while
TatAyCy overexpression by itself had no effect. Combined over-
expression of EfeB and TatAyCy in the otherwise wild-type 168 back-
ground did, however, lead to a significantly enhanced level of EfeB
secretion (Fig. S6A). As expected, an increased level of LiaH in the cells
was observed upon TatAyCy overexpression (Fig. 7C). This implies that
higher amounts of the TatAyCy translocase and possibly LiaH allow for
enhanced secretion of the EfeB substrate. Very different results were
obtained in a liaH mutant background. In particular, the absence of
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LiaH led to a substantial reduction of EfeB secretion in the strain
overexpressing both EfeB and TatAyCy (Figs. 7A,B and S6A). This
means that LiaH is indeed needed for optimal EfeB secretion via Ta-
tAyCy.

Intriguingly, the combined overexpression of TatAyCy and its EfeB
substrate led to increased release of LiaH into the growth medium
(Fig. 7D), suggesting an increase in membrane permeability for LiaH
under these conditions. As shown with the cytoplasmic marker protein
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Fig. 5. EfeB overexpression elicits only marginal
LiaH induction.

Expression levels of LiaH were compared upon
overexpression of TatAyCy or the TatAyCy substrate
EfeB in B. subtilis NZ8900, and wild-type B. subtilis
168 was used as a control. Cells were grown to an
ODgoo of ~0.8 and induced with 1% subtilin for
5 min or 2 h. Culture samples were collected and
normalized according to the respective ODggo.
Proteins in the cell (labelled ©) and medium fractions
(labelled M) were separated by centrifugation and
subjected to LDS-PAGE, Western blotting, and im-
munodetection with specific antibodies against the
Hise tag on TatCy (A), TatAy (B), EfeB (C), LiaH (D),
or the cytoplasmic marker protein TrxA (E,F) as in-
dicated. Note that the growth medium fractions
were 3-fold concentrated compared to the cell frac-
tions.

4TatCy-His®

4TatAy¢

4 EfeB€

dLiaHC¢

4 TrxAC

4TrxAM

TrxA, this cannot be related to unspecific protein leakage into the
growth medium as no changes in extracellular TrxA were detectable,
irrespective of the presence or absence of LiaH (Fig. 7E,F). This implies
that, under the tested conditions, membrane integrity was not affected
by LiaH-deficiency, and that effects of the absence of LiaH on EfeB
secretion must be attributed to its interaction with TatAyCy. Likewise,
the increased release of LiaH into the growth medium upon induced
expression of TatAyCy and its EfeB substrate is apparently not
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Fig. 6. TatAc overexpression does not lead to LiaH induction.
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Expression of TatAyCy-His or TatAc in B. subtilis NZ8900 was induced with 1% subtilin, and the wild-type strain 168 was used as a control. At 5 min or 2 h post
induction with subtilin, culture samples were collected and normalized according to the respective ODgqo. Cells were separated from the medium by centrifugation,
and the cellular proteins were analyzed by LDS-PAGE and Western blotting with specific antibodies against LiaH (A), the Hise tag on TatCy (B), TatAy (B) or TatAc
(C). Subsequently, a control co-IP experiment was performed as in Figs. 2 and S3, where cytoplasmic membranes (CM) from B. subtilis NZ8900 overexpressing TatAc
were isolated, solubilized and incubated for 1 h with Hise-specific antibodies bound to Protein A dynabeads. The beads were then separated from the sample with a
magnet. The supernatant (SN) was collected, the beads were washed three times (W1-3), and proteins were eluted (Elu) with LDS loading dye. Proteins in the
different fractions were separated by LDS-PAGE and analyzed by Western blotting with specific antibodies for the Hise tag (D), TatAy (E), TatAc (F), or LiaH (G). Ab-

HC/LC, antibody heavy/light chain.

unspecific but, instead, it is seemingly related to the intimate interac-
tion of LiaH with the translocase. This interaction may set a limit to the
level of EfeB secretion.

Of note, as shown in Fig. 7A,B, TatAyCy does have activity in the
absence of LiaH, indicating that LiaH is an accessory subunit to Ta-
tAyCy rather than an essential component. This is fully consistent with
previous observations showing that TatAyCy heterologously expressed
in E. coli is active, albeit that it cannot fully replace the native E. coli
TatABC translocase [23,53,54].

The Rieske iron-sulfur protein QcrA is an abundantly produced
menaquinol:cytochrome ¢ oxidoreductase in the membrane-embedded
cytochrome bcl complex of B. subtilis, which requires TatAyCy activity
for correct membrane insertion [18,55]. Importantly, we have pre-
viously shown that a fraction of membrane-assembled QcrA (denoted
QcrA*) is aberrantly cleaved by signal peptidase and secreted in a

TatAyCy-dependent manner [18,55]. The secreted QcrA fraction can
thus be used as a read-out for TatAyCy activity [18,55]. Therefore, we
also inspected the impact of a liaH deletion on QcrA secretion, using
cells that allow for individual or combined overexpression of EfeB and
TatAyCy. Firstly, as shown in Fig. 7G,H, overexpression of EfeB alone or
in combination with TatAyCy had relatively moderate effects on the
cellular levels of QcrA in the wild-type and liaH mutant strain. Further,
the xylose-induced expression of EfeB [9,21] led to a severe reduction
in the secretion of QcrA* in the wild-type strain, indicating that EfeB
competes with QcrA for export via TatAyCy (Fig. S6B). Intriguingly, this
competition cannot be relieved by TatAyCy overexpression alone, even
in the wild-type background where the LiaH level is increased (Fig. 71)
due to the plasmid-mediated TatAyCy overexpression (Fig. 7J). This
suggests that another, as yet, unidentified factor is insufficiently
available for QcrA export under these conditions. Importantly however,
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compared to the wild-type situation, the level of a smaller form of
QcrA* is drastically increased if LiaH is absent (Fig. S6B). This shows
that LiaH sets a limit to the aberrant signal peptidase cleavage of QcrA
and subsequent secretion of the processed QcrA* form into the growth
medium. The high-level QcrA* secretion in the liaH mutant is reduced
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Fig. 7. LiaH determines the quantity of EfeB secretion and the quality of QcrA
export.

EfeB overexpression in the wild-type B. subtilis 168 background, or a liaH-de-
ficient mutant (AliaH) was induced with 0.5% xylose (A-F) or 1% xylose (G-J)
using a xylose-inducible promoter fused to efeB-myc (X-efeB). Constitutive
TatAyCy overexpression was achieved using plasmid pCAyCy. Culture samples
were collected and normalized according to the respective ODggo. Proteins in
the growth medium (labelled M) and cell fractions (labelled ©) were separated
by centrifugation and subjected to LDS-PAGE, Western blotting, and im-
munodetection with specific antibodies against EfeB (A, B), LiaH (C, D, I), the
cytoplasmic marker TrxA (E, F), QcrA (G, H), or TatAy (J). Note that the growth
medium fractions were 3-fold concentrated compared to the cell fractions. A
quantification of the secreted levels of EfeB and QcrA* is shown in Fig. S6.

upon EfeB expression, in line with the apparent competition of these
TatAyCy substrates in the wild-type background, and it is non-detect-
able if TatAyCy is co-overexpressed with EfeB (Figs. 7G,H and S6B).
Altogether, these observations demonstrate a role for LiaH in the
quality of TatAyCy-mediated QcrA assembly in the membrane.

2.5. Absence of LiaH does not affect high-level Sec-dependent secretion of
AmyE

Previous studies have shown that LiaH can be upregulated in re-
sponse to high-level secretion of the heterologous a-amylase AmyQ via
the Sec pathway of B. subtilis, suggesting a possible relationship be-
tween LiaH and Sec-dependent protein secretion [38]. Also, it was
conceivable that a deletion of liaH could cause defects in the cyto-
plasmic membrane that would indirectly result in altered protein se-
cretion via the Tat pathway. Therefore, we investigated whether Sec-
dependent protein secretion might be affected by a liaH mutation. To
this end, we overexpressed the B. subtilis a-amylase AmyE to semi-in-
dustrial levels (g/1) in a liaH mutant strain, or the respective wild-type
strain, and compared the resulting secretion levels of AmyE by LDS-
PAGE. As shown in Fig. 8, the absence of LiaH did not detectably affect
the high-level secretion of AmyE. This shows that Sec-dependent pro-
tein secretion by B. subtilis is not affected in the absence of LiaH. In turn,
this implies that the here-described effects of the liaH mutation on Tat-
dependent protein secretion in B. subtilis cannot be attributed to aspe-
cific effects on membrane integrity, membrane polarization or the en-
ergy status of liaH mutant cells that would be expected to affect both
Sec- and Tat-dependent protein secretion [56,57].

3. Discussion

The present study was aimed at identifying possible partner proteins
of the B. subtilis TatAyCy preprotein translocase through a biochemical
approach. This led to the identification of the cell envelope stress-re-
sponsive LiaH protein as an accessory subunit of TatAyCy. The asso-
ciation between TatAyCy and LiaH was sufficiently strong to allow co-
purification of LiaH with TatAyCy-His upon metal affinity chromato-
graphy and subsequent gel filtration, or via co-IP experiments with
antibodies specific for a Hisg tag or a Strepll tag on TatCy, and co-IP
with antibodies specific TatAy or LiaH.

As evidenced by gel filtration, the detected TatAyCy-LiaH com-
plexes ranged in size between ~150-600 kDa. This substantial varia-
tion in size is indicative of complexes containing variable amounts of
TatAy and/or LiaH, as is also suggested by the elution profiles observed
for TatCy-His, TatAy and LiaH upon metal affinity chromatography.
Here the elution profiles of TatAy and LiaH resembled each other,
whereas the elution profile of TatCy-His was different. This observation
on the TatAyCy complex of B. subtilis is fully in line with the results
from a recent study in E. coli, where it was shown that three major,
differently-sized, TatABC complexes can form, depending on the
amount of TatA that is bound [58]. For the here identified B. subtilis
TatAyCy-LiaH complexes, it is conceivable that the variable complex
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Fig. 8. Absence of LiaH does not affect high-level secretion of AmyE via Sec.
Wild-type (wt) or liaH mutant (AliaH) cells of B. subtilis strain CB15-14 over-
producing the B. subtilis a-amylase AmyE were grown for 16 h in MBU medium.
Culture samples were collected and normalized according to the respective
ODggo. Subsequently, cells were separated from the growth medium by cen-
trifugation. Proteins in the cell and growth medium fractions were separated by
LDS-PAGE and visualized by SimplyBlue staining.

size may not only relate to varying amounts of TatAy, but also to
varying amounts of LiaH. If so, the smallest complexes observed by size
exclusion chromatography would have relatively little LiaH and TatAy
bound, as is the case for the complexes that eluted from the metal af-
finity chromatography resin at the highest imidazole concentrations.
Conversely, complexes with a relatively high LiaH load will be larger,
also because LiaH has the intrinsic propensity to form high-order oli-
gomeric structures [36,59]. Of note, next to the possibility that the
observed complexes have recruited differing amounts of TatAy and
LiaH, it is also conceivable that TatAy is dissociating to some extent
from TatAyCy complexes during metal affinity- and size exclusion
chromatography, along with a fraction of the bound LiaH. At present,
we cannot distinguish between these possible scenarios.

A novel finding was that LiaH interacts both with TatAy and TatCy.
Especially the latter finding was unexpected as the elution profile of
LiaH upon metal affinity chromatography of TatAyCy-His was more
similar to the elution profile of TatAy than that of TatCy-His. Previous
studies have shown that PspA of E. coli and VIPP1 of Synechocystis sense
areas in the membrane with high ‘stored curvature elastic stress’ (SCE
stress) and packing defects. Both proteins are thought to help in sta-
bilizing the membrane by binding to areas with high SCE stress in the
form of high-order oligomeric structures [60,61]. In E. coli, over-
expression of TatA has been shown to lead to activation of the Psp re-
sponse due to membrane destabilization caused by high levels of TatA,
which in turn could lead to SCE stress [46,62,63]. In addition, high
levels of TatA led to changes in the transmembrane proton gradient
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(ApH). PspA seems to counteract this effect by interacting with TatA
[62,63]. It has been proposed that LiaH of B. subtilis supports membrane
stabilization in a similar manner in response to membrane stress-in-
ducing cues [34,57]. In particular, Dominguez et al. showed that
membrane stabilization by LiaH requires the interaction with its
membrane anchor, Lial, in static spots [34,36]. Therefore, LiaH could
act as a peripheral membrane protein that senses SCE stress or changes
in the membrane stability upon TatAy and TatCy overexpression. Im-
portantly, the interaction of TatCy with LiaH was clearly detectable in a
TatAy-deficient background, strengthening the view that not only
TatAy, but also TatCy interacts directly with LiaH. Accordingly, the
observed TatCy-LiaH interaction seems to suggest that TatCy over-
expression may also lead to SCE stress.

Our results show that the Py, promoter is highly responsive to
elevated TatAyCy levels in the cell. On the other hand, deletion of the
tatAyCy genes had no detectable effect on the cellular LiaH levels. The
latter can be explained by the fact that, in wild-type B. subtilis 168, the
levels of TatAy and TatCy expression are extremely low [9,21,49].
However, this lack of effect of the tatAyCy deletion does not necessarily
mean that the interaction between TatAyCy and LiaH is absent in wild-
type B. subtilis cells, and that the observed interaction with LiaH upon
overproduction of TatAyCy does not exist when this protein translocase
is present at physiological levels. In particular, the finding that elevated
LiaH production, which was triggered with the LiaRS-inducing cue
bacitracin, led to elevated levels of TatAy is indicative of a TatAy-sta-
bilizing activity of LiaH under physiological conditions, especially since
tatAy gene expression is not modulated by LiaRS or SigW [40,41,50].
Conversely, we have previously shown that the cellular levels of TatAy
are decreased in absence of its partner protein TatCy [19], which im-
plies that TatAy requires a cognate partner protein for stabilization. In
agreement with the idea that the interaction between TatAyCy and LiaH
is specific, we observed that neither overexpression of TatAc, nor
overexpression of the Tat substrate EfeB triggered substantially en-
hanced levels of LiaH. The fact that overexpression of TatAc did not
elicit enhanced LiaH levels is particularly noteworthy, as it is in stark
contrast with the massive LiaH induction observed upon TatAyCy,
TatAy or TatCy overproduction [27]. In fact, this is in line with our
previous observation that TatAc cannot functionally replace TatAy in
Tat-dependent protein translocation [27], and it suggests that the LiaH
response is associated with Tat function.

Interestingly, LiaH seems not only involved in responding to the
cellular TatAyCy levels, but it also influences the activity of the
TatAyCy translocase. Even though LiaH is not essential for the Tat-de-
pendent protein translocation process per se, absence of LiaH affects the
translocation of EfeB and leads to aberrant secretion of QcrA. A LiaH
deficiency thus impacts on export of the two major cargo proteins of the
TatAyCy translocase. These observations are reminiscent of a previous
study, which showed that the absence of PspA may lead to exacerbated
saturation of the E. coli Tat translocase for native and heterologous Tat
cargo proteins [64]. By contrast, the absence of LiaH did not affect
high-level protein secretion of the B. subtilis a-amylase AmyE via the
Sec pathway, which indicates that, at least under the present experi-
mental conditions, LiaH had a specific function in modulating the ac-
tivity of the TatAyCy translocase. This conclusion is consistent with the
results from other studies, which have implicated PspA and VIPP1 in
Tat-dependent protein transport in E. coli [32] and thylakoids from
Pisum sativum [65], respectively.

Altogether, our present study shows that LiaH is super-responsive to
TatAyCy expression, and that a LiaH-deficiency has important con-
sequences for TatAyCy-dependent protein export in B. subtilis. We
propose that this relates to direct interactions between TatAyCy and
LiaH. However, we can presently not fully exclude the possibility that
the observed TatAyCy-LiaH interactions are a consequence of enhanced
expression of the TatAyCy translocase in our experimental setup, and a
corresponding response of the LiaRS system. In a previous study in E.
coli, Alcock and coworkers observed that high expression levels of the
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TatA, TatB and TatC components can lead to changes in the stoichio-
metry and behavior of the TatABC translocase [66]. Therefore, it is
possible that TatAyCy overexpression could also lead to similar struc-
tural rearrangements in this translocase with consequences for mem-
brane integrity that provoke a LiaRS response. Nevertheless, it is
tempting to hypothesize that the molecular association of LiaH and
TatAyCy relates to the recently reported membrane-weakening by TatA
proteins, which suggests that membrane-weakening is fundamental to
Tat-mediated protein translocation [46]. In turn, this would explain
why cell envelope adaptation mediated by the LiaRS two-component
system and minimal Tat translocation are functionally intertwined in
Bacillus.

4. Materials and methods
4.1. Growth conditions

B. subtilis and E. coli strains were grown in Lysogeny Broth (LB)
broth at 37 °C with shaking at 250 rpm. For transformation, B. subtilis
was grown in Paris Medium (PM) as previously described [19]. When
required the medium was supplemented with antibiotics: kanamycin
(20 pg/ml), erythromycin (2 pg/ml), chloramphenicol (10 pug/ml), or
bacitracin (30 pg/ml). Lactococcus lactis PAO1001 was grown at 30 °C
without shaking in M17 broth supplemented with 0.5% glucose, or on
M17 agar supplemented with 0.5% glucose (w/v) and erythromycin
(5 pg/ml) for plasmid selection.

4.2. Plasmids and strains

Plasmids and strains used for this study are listed in Tables 1 and 2,
respectively. Primers used to construct particular plasmids are listed in
Table S2.

To overexpress TatAy and/or TatCy in B. subtilis, the pNZ8910
plasmid was amplified by PCR with primers containing overlapping
regions for the tatAy and/or tatCy genes. The tatAy and/or tatCy genes
were amplified with primers containing overlapping sequences for
PNZ8910. The reverse primers also encoded a Hisg tag. All fragments
were amplified with Phusion High Fidelity Polymerase and joined using
the NEB Gibson Assembly® according to the manufacturer's instruc-
tions. The resulting plasmids were first introduced into L. lactis
PAO1001 by electrotransformation. All constructs thus obtained were
verified by PCR and sequencing, prior to their introduction in B. subtilis.

To overexpress TatAc in E. coli for subsequent purification and
polyclonal antibody generation, the full-length tatAc gene was ampli-
fied from chromosomal DNA of B. subtilis 168 by PCR and cloned in
pET26b. Likewise, for overexpression of TatAc in B. subtilis, the tatAc
gene was amplified with specific primers and cloned in pNZ8910.
Correct insertion of TatAc in pET26b and pNZ8910 was verified by PCR
and sequencing.
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4.3. Markerless gene deletion of liaH

The strain TMB1778 containing a markerless gene deletion of liaH
was generated using the chromosomal integration-excision vector
PMAD [67]. In brief, 1 kb fragments up- and downstream of liaH gene
were amplified by using the primer pairs liaHclean upfwd BamHI/
liaHclean_uprev and liaHclean_downfwd/ liaHclean_downrev_Sall, re-
spectively (Table S2). Then, fragments were fused in a second joining
PCR. The joining product and the chromosomal integration-excision
vector pMAD were restricted with BamHI and Sall, and ligated resulting
in plasmid pMAD-liaHclean. After sequencing the plasmid, B. subtilis
168 was transformed and cells were plated onto LB agar containing
erythromycin (1 pg/ml), lincomycin (25 pg/ml) and X-Gal (100 pg/ml).
Blue colonies with pMAD integrated in the liaH locus were picked,
excision of the integrated pMAD from the chromosome was triggered by
incubation at 42 °C, and white offspring colonies that had lost liaH
along with the excised pMAD plasmid were identified by colony PCR.

4.4. Overexpression of TatAyCy, TatAy and TatCy

TatAyCy, TatAy or TatCy were overexpressed using the subtilin-
inducible SURE system as previously described [42]. To this end, B.
subtilis 168 containing pNZ-tatAyCyHis or pNZ-tatCyHis was plated on
LB at 37 °C. Single colonies were used to inoculate 20 ml overnight
cultures in LB with proper antibiotics, which were incubated at 37 °C
with vigorous shaking (250 rpm). The following morning, the cultures
were diluted to an ODggo of 0.05-0.08. Once an ODggo of 0.8 was
reached, the overexpression of TatAyCy or TatCy was induced by ad-
dition of 1% subtilin. After 2.5 h incubation, cells were harvested by
centrifugation (4 °C, 5500 X g, 10 min). To overexpress TatAy, we ap-
plied the genome-reduced strain IIG-Bs27-47-24 containing plasmid
pNZ-taAyHis and followed the above procedure for overexpression of
TatAyCy and TatCy.

4.5. Cell fractionation

Cells overexpressing TatAyCy, TatCy or TatAy were fractionated as
previously described [30,68]. Briefly, the pellet was resuspended in
protoplast buffer (0.1 M Tris-HCl pH 8.2 with 1 mg/ml lysozyme,
0.01% DNAse, 20 mM MgCl2, 20% sucrose, and one tablet of cOmplete
Mini EDTA-free protease inhibitor cocktail™; Roche). The resulting
protoplasts were collected by centrifugation (4000 xg, 10 min) and
disrupted with a Precellys24 bead beater (Bertin Technologies, Mon-
tigny-le-Bretonneux, France). Subsequently, the cytoplasmic membrane
fraction was obtained by ultracentrifugation (250,000 xg, 60 min), re-
suspended in solubilisation buffer (20 mM Tris pH 8.0, 50 mM NaCl,
10% glycerol, 0.1% DDM and solubilized overnight at 4 °C.

Table 1

Plasmids used in this study.
Plasmids Description Reference
PpNZ8910 SURE expression vector; EmR [42]
PNZ-tatAyCyHis PNZ8910 carrying the tatAyCy genes; only tatCy contains a 3’ His, tag-encoding sequence; Em® [30]1
PNZ-tatAyCyStrep PNZ8910 carrying the tatAyCy genes; only tatCy contains a 3’ Strepll tag-encoding sequence; Em® [30]
PNZ-tatAyHis PNZ8910 carrying the tatAy gene with a 3’ His, tag-encoding sequence; Em® This study
PNZ-tatAc PNZ8910 carrying the tatAc gene; Em® This study
PNZ-tatCyHis PNZ8910 carrying the tatCy gene with a 3’ Hise tag-encoding sequence; Em® This study
PNZ-efeBstrepll PNZ8910 carrying the efeB gene with a 3 Strepll tag-encoding sequence, Em" This study
pBS3Clux Plial sacA::pCHIlux101; Cm® [70]
pGDL48 Constitutive expression vector; Ap®, Km® [75]
pCAyCy PGDL48 derivative; expresses the tatAyCy operon from a constitutive promoter; Ap®, Km® [21]
PMAD Integration-excision vector for markerless chromosomal gene deletions; ori pE194-Ts; MCS-PclpB bgaB; ori pBR322; Em® in Bacillus; Ap® in E. coli [67]
PMAD-liaHclean PMAD carrying the merged upstream and downstream liaH sequences This Study
PET26b-tatAc PET26b carrying the TatAc gene, Km" This study
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Table 2

Strains used in this study.
Strain Characteristics Reference
Bacillus subtilis
ATCC6633 Subtilin producer [76]
168 trpC2 [771
NZ8900 168 derivative, trpC2, amyE::spaRK, subtilin-inducible expression, Km® [42]
NZ8900 pNZ-tatAyCyHis TatAyCy-His overexpression, TatCy contains a C-terminal His, tag, Km®, Em® [30]
NZ8900 pNZ-tatAyCyStrep TatAyCy-Strep overexpression, TatCy contains a C-terminal Strepll tag, Km®, Em® [30]
NZ8900 pNZ-tatCyHis TatCy-His overexpression, TatCy contains a C-terminal Hise tag, Km®, Em® This study
NZ8900 tatAyCy::spec pNZ-tatCyHis TatCy-His overexpression in a TatAyCy-deficient background. TatCy contains a C-terminal His6 tag, Km®, Em®, Spc® This study
NZ8900 pNZ-tatAc TatAc overexpression, Km®, Em® This study
1IG-Bs27-47-24 Genome-reduced strain; Tat-related genes that are still present: tatAd, tatCd, tatAy, tatCy, qcrA, efeB, ykuE, phoD; [78]

Absent: tatAc
11G-Bs27-47-24 amyE::spaRK 1IGBs-27-47-24 derivative carrying the spaRK genes in the amyE locus, Km® [79,801]
1IG-Bs27-47-24 amyE::spaRK pNZ-tatAyHis TatAy-His overexpression, TatAy contains a C-terminal Hise tag, Km®, Em® This study
NZ8900 sacA::pCHIlux101 Pjiar lux reporter strain, Cm® This study
NZ8900 sacA::pCHIlux101 pNZ-tatAyCyHis Py lux reporter, amyE::spaRK, pNZ-tatAyCyHis, Cm®, Km®, Em® This study
168 X-efeB amyE::xylA-efeB(ywbN)-myc [21]
168 pCAyCy Constitutive overexpression of TatAyCy [20,21]
168 X-efeB pCAyCy Xylose-inducible expression of efeB-myc and constitutive overexpression of TatAyCy, Km® This study
168 AliaH (TMB 1778) liaH markerless deletion This study
168 AliaH X-efeB liaH markerless deletion and xylose-inducible expression of efeB-myc, Cm" This study
168 AliaH X-efeB pCAyCy liaH markerless deletion, xylose-inducible expression of efeB-myc and constitutive overexpression of TatAyCy, Cm~, This study
Km®

CB15-14 AmyE degUHy32, amyE::xyIR Pyyia comK-ermC, aprE::Py,z-amyE cat® Tbpn’, Aupp::neo®, Em®, Cm"®, Neo® [72]
CB15-14 AmyE AliaH See CB15-14 AmyE, AliaH::upp-phleo®-cI Em®, Cm®, Neo®, Phleo® This study
NZ89100 pNZ-efeBstrepll EfeB overexpression, EfeB contains a C-terminal strepll tag, Km®, Em® This study
Lactococcus lactis
PA1001 MG1363 derivative, pepN::nisRK, nisin-inducible expression, AacmA AhtrA [81]
Escherichia coli
E. coli BL21(DE3) E. coli host strain for protein overexpression [82,83]
E. coli BL21(DE3) pET26b-tatAc TatAc overexpression, Km® This study

Cm, chloramphenicol; Em, erythromycin; Km, kanamycin, Neo, neomycin; Phleo, phleomycin.

4.6. Metal affinity chromatography and size exclusion chromatography of
TatAyCy-His

Purification of TatAyCy-His by metal affinity chromatography and
size exclusion chromatography was performed using an AKTA Avant
(GE Healthcare Life Sciences) as previously described with minor
modifications [30]. A His-trap HP 1 ml column (Amersham Biosciences)
was equilibrated with 3 column volumes at a flow rate of 1 ml/min with
Buffer A (20 mM Tris-HCI, pH 8.0, 400 mM NaCl, 5 mM Imidazole, and
0.02% [w/v] DDM). Next, the solubilized membranes containing
overexpressed TatAyCy-His were diluted to 10 ml in Buffer A and
loaded onto the column at a flow rate of 1 ml/min. The column was
washed 5 times with buffer A (flow rate 1 ml/min) and then TatAyCy-
His along with associated proteins was eluted using a gradient of
5-300 mM imidazole in buffer B (flow rate 1 ml/min; 20 mM Tris-HCI,
pH 8.0, 400 mM NacCl, 0.02% (w/v) DDM). Elution fractions of 1 ml
were collected and stored at 4 °C. Size exclusion chromatography was
performed in SEC buffer (20 mM Tris, pH 8.9, 200 mM NacCl, 0.02 [w/
v] DDM) using a Superdex 200 10/300 column (GE Healthcare Life
Sciences). The chromatography experiments were repeated twice.

4.7. TatAc purification for antibody production

To obtain high levels of recombinant TatAc protein, E. coli
DL21(DE3) carrying pET26b-tatAc was used to inoculate 5 L of LB
broth. TatAc expression was induced with 0.4 mM IPTG when the
culture reached an ODggq of ~1.0. After 2 h of growth in the presence of
IPTG, cells were harvested by centrifugation. The collected pellets were
resuspended in 25 ml of Buffer A, containing 20 mM Tris-HCl, pH 8.0,
400 mM NaCl, 5 mM Imidazole, and supplemented with the cOmplete
Mini protease inhibitor cocktail™ (Roche). Subsequently, the cells were
disrupted by sonication with a Misonix Sonicator 4000-010 (3 min with
3 s pulses at pulse amplitude 50, followed by 3 min with 1 s pulse at
amplitude 40), followed by two cycles of bead-beating (30 s, 3779 g)
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with a Precellys 24 bead beater. The cell lysate was then centrifuged
(40 min, 10,000 rpm, 4 °C), and the supernatant was collected and
supplemented with a final concentration of 0.1% DDM and incubated
for 15 min at 4 °C. Next, TatAc was purified by metal affinity chro-
matography using an AKTA Avant as described above. TatAc-containing
elution fractions were desalted with a HiTrap Desalting column (50 mM
Tris-HCI, pH 6.8, 400 mM NacCl) and concentrated using a 5 K MWCO
Pierce™ Protein Concentrator. The purified TatAc protein was used for
rabbit immunization according to a standard protocol (Eurogentec).

4.8. LDS-PAGE and Western blotting

Proteins were separated on 10% pre-cast Bis-Tris NuPaGE gels,
which were either stained with SimplyBlue SafeStain (Thermo Fisher)
or used for Western blotting where the separated proteins were trans-
ferred to a nitrocellulose membrane (Amersham™ Protran® 0.45 um, GE
Health Care Sciences) by semi-dry blotting. Membranes were blocked
overnight with 5% (w/v) skim milk. The next day, the membranes were
washed three times for 5 min with phosphate-buffered saline plus
Tween20 (PBS-T). The membranes were then incubated with polyclonal
rabbit antibodies (1:5000) raised against EfeB, LiaH, QcrA, TatAc,
TatAy or TrxA, or monoclonal antibodies (1:5000) specific for the Hisg
tag (Invitrogen)(Table 3). After 1 h incubation, the membranes were
washed with PBS-T, and incubated for 45 min with fluorescent goat-
anti rabbit IgG® 680RD (1:5000) or goat-anti mouse IgG® 680RD
(1:5000; LI-COR). The membranes were washed three times for 5 min
with PBS-T, and twice for 5 min with PBS. Lastly, bound antibodies
were visualized with an Odyssey Infrared Imaging System (LI-COR). All
Western blots were performed in duplicate or triplicate.

4.9. GeLC —MS analysis

Samples were subjected to GeLC-MS/MS analysis as previously de-
scribed [69]. Briefly, upon staining with SimplyBlue SafeStain, gels
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Table 3
Antibodies used in this study.
Antibody Characteristics Reference
Hise tag Monoclonal Mouse monoclonal antibody ThermoScientific
Antibody MA1-21315
Anti-LiaH Rabbit polyclonal antibody [44]
Anti-EfeB Rabbit polyclonal antibody [20]
Anti-TatAy Rabbit polyclonal antibody; note [26]
that this antibody recognizes
both TatAy and Hise tags
Anti-TatAc Rabbit polyclonal antibody This study
Anti-TrxA Rabbit polyclonal antibody [84]
Anti-QcrA Rabbit polyclonal antibody [18,55]
StrepMAB classic Mouse monoclonal antibody iba StrepMAB classic
2-1507-001

were washed twice with water to remove excessive stain. Protein bands
of interest were excised, transferred into low-binding Eppendorf tubes,
and washed/destained at least three times for 15 min with 750 uL of gel
washing buffer (0.2 M ammonium bicarbonate in 30% [v/v] acetoni-
trile) at 37 °C under vigorous shaking. The destained gel pieces were
dried in a vacuum centrifuge at 30 °C and rehydrated with trypsin so-
lution (2 pug of modified trypsin [Promega] in 1 mL of water) for 15 min.
Excess trypsin solution was removed, and digestion was performed
overnight at 37 °C. Next day, the gel pieces were covered with water,
and peptides were eluted from the gel matrix by immersion of the re-
action tube in an ultrasonic bath for 15 min. The supernatant con-
taining the peptides was transferred to a glass vial and concentrated to a
final volume of 10 pL in a vacuum centrifuge. For LC — MS/MS ana-
lyses of 1D gel samples, in-house self-packed columns were prepared
and used with an EASY-nLC II system (Thermo). In brief, fused-silica
emitter tips with an inner diameter of 100 pm and an outer diameter of
360 um were prepared by using a P-2000 laser puller (Sutter Instru-
ments). The resulting emitter tips were then packed with Aeris C18
reversed-phase material (3.6 um particles) in a custom-built pressure
bomb to obtain a 20 cm nano-LC column. The peptides were loaded
onto the column by the LC system with 10 pL of buffer A (0.1% [v/v]
acetic acid) at a constant flow rate of 500 nL/min without trapping. The
peptides were subsequently eluted using a nonlinear 100 min gradient
from 1 to 99% buffer B (0.1% [v/v] acetic acid in acetonitrile) with a
constant flow rate of 300 nL/min and injected online into the mass
spectrometer. MS and MS/MS data were acquired with a Linear Trap
Quadrupole Orbitrap (Thermo). After a survey scan at a resolution of
30.000 in the Orbitrap with activated lockmass correction, the five most
abundant precursor ions were selected for fragmentation. Singly
charged ions as well as ions without detected charge states were not
selected for MS/MS analysis. Collision-induced dissociation (CID)
fragmentation was performed for 30 ms with normalized collision en-
ergy of 35, and the fragment ions were recorded in the linear ion trap.

Database searching was done with Sorcerer-SEQUEST 4 (SageN).
After extraction from the raw files, *.dta files were searched with
Sequest against a target —decoy database with a set of common la-
boratory contaminants. The target database was the Uniprot reference
database of B. subtilis 168 (downloaded May 21, 2014). The resulting
*.out files were compiled with Scaffold 4. Proteins were only considered
as identified if at least two unique peptides matching solid quality
criteria (delta cN > 0.1 and XCorr > 2.2; 3.3; 3.75 for doubly, triply,
or higher charged peptides) had been assigned, resulting in a false-
positive rate (FPR) below 0.1% on protein level.

4.10. Co-Immunoprecipitation

For co-IP analyses to assess interactions between TatAyCy, TatCy or
TatAy with LiaH, strains were grown in LB and induced with 1% sub-
tilin when an ODgpp ~0.8 was reached. Isolation of cytoplasmic mem-
branes was performed as described above. Next, 50 pl of Protein A
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Dynabeads (Thermo Scientific) were washed with PBS-T, and incubated
with 50 pl of anti-Hisg antibody and 150 pl of PBS-T for 30 min. The
beads were subsequently washed with 200 pl of PBS-T and incubated
with 150 pl of solubilized cytoplasmic membrane fractions mixed with
150 pl of PBS-T for 1 h under rotation. The beads were then washed
three times with 800 pl of PBS-T, and eluted in 40 pl of 2 x LDS loading
dye at 80 °C for 10 min. Upon elution, the samples were subjected to
LDS-PAGE and Western blotting. All co-IP experiments were performed
in triplicate.

4.11. Luminescence assays

Luminescence assays were performed in triplicate as previously
described with minor modifications [70]. Single colonies were used to
inoculate 10 ml of LB medium supplemented with antibiotics. The
cultures were incubated overnight at 37 °C (250 rpm). The following
morning, each culture was diluted 500-fold in 10 ml of LB medium
without antibiotics and incubation was continued until an ODggo of
0.2-0.5 was reached. The cultures were then diluted in fresh LB to an
ODggo of 0.015, and 150 pl aliquots of each culture were transferred
into a Nunc™ MicroWell™ 96-Well Optical-Bottom Plate (Thermo Sci-
entific). The ODggo and relative light units (RLU) were measured for
16 h using a Synergy™ plate reader (BioTek). In B. subtilis carrying pNZ-
tatAyCyHis, the overexpression of TatAyCy-His was induced with 1%
subtilin when an ODgq of 0.1 was reached. Likewise, a LiaRS-mediated
cell envelope stress response was induced with 30 ug/ml bacitracin at
an ODgq of 0.1. To calculate the luminescence the RLU was divided by
the OD600.

4.12. Assessment of EfeB and QcrA* secretion

Bacteria were grown overnight in LB medium with appropriate
antibiotics. Next morning, the bacteria were diluted 50-fold in fresh LB
medium and growth was continued for 3 h. To induce the X-efeB cas-
sette (formerly referred to as X-ywbN), 1% xylose was added to the
medium. Cells were then separated from the growth medium by cen-
trifugation (17,000 xg, 10 min). Proteins in the growth medium fraction
were precipitated with 10% trichloroacetic acid (TCA) as previously
described [71]. The cell pellet was resuspended in LDS loading buffer
and disrupted with 0.1 pm glass beads by bead-beating (three cycles
30 s, 3779 g, 30 s intervals) using a Precellys24 bead beater. The cy-
toplasmic and extracytoplasmic proteins were separated on 10% pre-
cast Bis-Tris NuPaGE gels, and the presence of EfeB, LiaH, QcrA, TatAy
or TrxA was visualized by Western blotting as described above.

4.13. Assessment of high-level AmyE secretion in the absence of LiaH

Deletion of the liaH gene from the B. subtilis strain CB15-14
Aupp::neo® was performed as described previously [72], using the
modified mutation delivery method described by Fabret et al [73]. The
5’ and 3’ regions of liaH were amplified using the primer pairs desig-
nated LiaHP1/LiaH-P2 and LiaH-P3/LiaH-P4 (Table S2). The resulting
fragments were fused to a deletion-cassette containing a phleomycin
resistance marker, the upp gene and the cI gene. The fusion product was
then used to transform B. subtilis CB15-14 Aupp::neo®. The deletion of
liaH was confirmed by PCR using the primer combinations LiaH-P0O/
LiaH-P4 and LiaH-PO/CI2.rev (Table S2). The chromosomal AmyE ex-
pression cassette was introduced by transformation and, subsequently,
amplified by growing transformants at increasing chloramphenicol
concentrations up to 25 pg/ml [72]. Sec-dependent secretion of AmyE
was assayed as described previously [72,74]. Bacteria were grown for
~8 h in LB broth with 25 pg/ml chloramphenicol. The cultures were
then diluted 1000-fold in MBU medium [72] with 2.5 pg/ml chlor-
amphenicol and incubated for approximately 16 h at 37 °C under vig-
orous shaking (250 rpm). After measuring and correcting for the optical
density at 600 nm (ODgq0), equal amounts of cells were separated from
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the growth medium by centrifugation. Proteins in the cellular and
growth medium fractions thus obtained were analyzed by LDS-PAGE as
described above and the gels were subsequently stained with Simply-
Blue™ SafeStain (Life Technologies).

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbamcr.2020.118719.
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