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Abstract Motivated by some string and plaster models dating back from the late
19th and early 20th century, this note recalls some of the early history of the clas-
sification of plane cubic curves over the real numbers. Examples of different clas-
sifications are provided, showing their connection with some of the models in the
Schilling collection.

The building of concrete mathematical models and dynamical instruments for higher
education received quite some impulse in the nineteenth century at many universities
in Europe as well as in the United States. In Europe collections of models were
constructed at the polytechnic schools in Germany [6, 8] during the second half
of the nineteenth century. This reached and became popular at universities in the
United States a little later (see for instance [7]).

Fig. 1 shows two of these models.
The one on the left is made of strings which all (at least in theory) pass through

a common point, indicating that the model represents a cone over a certain curve in
space. The plaster model on the right shows a sphere containing colored curves on
its surface. In fact both models illustrate the same geometric phenomena: particular
species occurring in a classification of plane cubic curves. It is exactly the beginnings
(up to the early 20th century) of this subject and its models that we intend to describe
in the text below.
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Fig. 1 Two models, a from Spe-
cial Collections of the University
of Amsterdam (reproduced with
permission); b from Bernoulli
Institute, University of Gronin-
gen (photo authors)

1 The history behind the models

In Germany, Ludwig Brill, brother of the mathematician Alexander von Brill, began
to reproduce and sell copies of quite a number of mathematical models, and in 1880
he founded a firm for the production of them. This firm was taken over in 1899 by
Martin Schilling who renamed it. Schilling’s 1911 catalog [18] describes forty series
consisting of almost four hundred models and devices and contains the name of the
models and a short mathematical explanation. In some cases this is accompanied by
a drawing. Several texts describe the origin and development of this model making,
for example (with a focus on the Göttingen collection) [16], and also [17] (mostly
discussing H. Wiener’s collection).

From the large collection of models, as already mentioned, we here focus on those
describing a classification of plane cubic curves. Several texts classifying plane cubic
curves exist, starting with the famous appendix Enumeratio Linearum Tertii Ordinis
written by Isaac Newton in 1704 as an appendix in his book Opticks (see [13]). For
an English translation including an abundance of notes, see [21pp. 588–645]. New-
ton’s work was extended in 1746 by the English mathematician Patrick Murdoch
[12]. Möbius in 1852 did this again [11], soon in 1864 followed by Arthur Cay-
ley [3]. The PhD thesis [2] at the University of Amsterdam by Hermann Gottfried
Breijer in 1893 also treats the subject. This work was presented in the Dutch Royal
Academy of Sciences by Breijer’s thesis supervisor Diederik Korteweg [10]. Ap-
parently unaware of the results by Breijer and Korteweg, in 1901 Hermann Wiener
[22] published a very similar classification. The Italian mathematician Giulio Gi-
raud in 1910 presented an expository text [9] on the theory of plane cubic curves,
including (§5 loc. sit.) a classification which can be regarded as an explicit version
of Wiener’s (and, although no reference is given, the one by Breijer and Korteweg).
Lastly, we mention the elaborate text [7] published around 1920 by the American
mathematician Arnold Emch.

Some models in Schilling’s collection illustrate these classifications of plane cubic
curves. Around 1900, Schilling describes the seven string models from Series XXV
as follows (Fig. 2).
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Fig. 2 Description of the mod-
els in Series XXV in Schilling’s
catalog

Fig. 3 Three string models, Series XXV. a, b © 2012 Collection of Mathematical Models, University of
Göttingen (Reproduced by permission); c Bernoulli Institute, University of Groningen (photo authors)
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Fig. 4 Description of models
nr 2 in Series XVII in Schilling’s
catalog

Fig. 5 Plaster models, Series
XVII nr. 2a and 2b, University
of Groningen (photo authors)

The Series XXV string models were designed by Hermann Wiener. His 1901 text
[22] describes the models and the mathematics behind them. Fig. 3 shows, from
left to right, using the description as given in the displayed page: Nr. 1 (292), Nr. 2
(293), and Nr. 6 (297). Fig. 3a shows Nr. 4 (295). Note that Dyck’s 1892 catalog,
under nr. 181, mentions five earlier string models by Wiener which do not belong
to Brill’s collection. The Addendum to Dyck’s catalog, which appeared in 1893,
mentions under nr. 183a Wiener’s seven string models. So one may conclude that
Wiener actually designed his series of seven in 1892/93.

Two plaster models from Series XVII illustrate the same classification of plane
cubic curves, and seem to have been designed around the same time. An advertise-
ment in the American Journal of Mathematics from 1890 mentions only 16 series,
as does the 1888 catalogue by Brill. Dyck’s 1892 catalog mentions the new models,
somewhat later introduced as Series XVII 2a and 2b of Brill’s catalog; see [4] for a
slightly more recent reference.

They are announced in Fig. 4 and shown in Fig. 5, and consist of two plaster
balls with coloured curves drawn on them. According to catalogs [6] and [18] they
were designed by Tübingen University mathematics student H. Dollinger directed
by Alexander von Brill (who came to Tübingen in 1884).

The page from Schilling’s catalogue displayed in Fig. 2 contains a clue how
Series XVII 2ab and Series XXV are related. Indeed, the models in Series XXV are
described as “Kegel” (cones), so sets of lines passing through some common point
in space. Intersecting these cones with a ball centered around this common point
yields the colored curves in XVII 2ab.
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2 The geometry

As one reads in the description in Schilling’s catalog, all models from both series
XVII and XXV 2ab illustrate a classification of cubic curves due to Möbius. From
a modern point of view, the curves in question are given as embedded in the real
projective plane P2(R).

Geometrically, P2(R) can be regarded as the space of all lines in R3 that pass
through the origin. In this setup, curves in the projective plane are given as families
of lines. When making a model using this kind of representation, curves can be given
as a collection of threads (each representing a line) passing through a common point.
This is what one finds in Series XXV.

Instead of taking lines through the origin O, one can also take a sphere S2 with
center O and regard P2(R) as the set of pairs of antipodal points on S2 (so, pairs ob-
tained by intersecting S2 with a line through O). In modern language, one starts with
an irreducible cubic polynomial f 2 R[x,y]. The (real) plane cubic curve associated
to f consists of the set of zero’s of f in R2. This corresponds to the lines through
the origin in R3 whose points satisfy the homogeneous equation F(X,Y,Z)= 0, with
F (X,Y,Z)= Z3f (X/Z, Y/Z). Apart from lines passing through a point (a,b,1) with f
(a,b)= 0, the step from f to F adds “asymptotic directions”: solutions (a,b,0) to F= 0
with a, b not both zero correspond to lines through the origin in R3 not intersecting
the plane given by Z= 0, and a, b such that the “direction” (a,b) in the plane is
asymptotic to the plane curve defined by f= 0. If the sphere is taken with equation
X2+ Y2 + Z2 = 1, the curve on the sphere is given as

��
ap

a2 C b2 C c2
;

bp
a2 C b2 C c2

;
cp

a2 C b2 C c2

��

where (a, b, c) runs over the nontrivial solutions of F (X, Y, Z)= 0. The 9= 7+ 2 mod-
els that have been mentioned all represent real curves of degree three, either repre-
sented as sets of lines (threads, Series XXV, 7 models) through the origin in R3 or
as points on S2 (the surface of a plaster ball, Series XVII 2ab; 2 balls with 3 curves
drawn on one of them and 4 on the other). The models illustrate the seven different
types of real cubic curves as classified by Möbius (see [11] and the text below).

3 Why seven curves?

In order to understand the mathematics in Möbius’ classification, we recall some
well-known definitions and results on cubic curves.

3.1 Classification of plane cubic curves

Given a plane cubic curve C, which means C � P2(R) is defined as the zeros of
an irreducible, homogeneous F 2 R[X, Y, Z] of total degree 3. An inflection point
or a flex point p of C is a non-singular point of C such that the intersection of the
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tangent line at p with the curve C has multiplicity 3. The tangent line to C at a flex
point p is called a flex line of C.

It is a well-known result (compare [20], Thm. 6.4 and [15]) that every irreducible
cubic curve over R has a real flex point and can be given after a linear change of
variables defined over R, by X 3+ a X 2Z+ b X Z 2+ c Z 3 –Y 2Z= 0 with real constants
a, b, c. This form is called the Weierstrass form of the curve C.

Using the above standard form, Newton [13, 21] classified the irreducible cubic
curves over R into 5 types (and for each type he identified various curves in R2,
depending on a choice of embedding R2 into P2(R)). Newton in fact starts from the
given standard form, but he did not provide a proof of the fact that any homogeneous
cubic allows a (linear) change of variables bringing it in the desired form. Plücker
[14] refined Newton’s classification and gave a detailed and complete proof (see
[1]).

4 Newton’s classification

For curves given by an equation

Y 2Z D X3 C aX2Z C bXZ2 C cZ3

Fig. 6 Parabola pura: g(x) has
precisely one real zero and this
zero is simple. In this case the
curve is non-singular and its real
locus has one component

Fig. 7 Parabola campaniformis
cum ovali: g(x) has three distinct
real roots. In this case the curve
is non-singular and its real locus
has two components
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Fig. 8 Parabola nodata: g(x)
has a real double root α and
a real simple root β with α> β.
Then the curve has an ordinary
double point with real tangents

Fig. 9 Parabola punctata: g(x)
has a real double root α and a real
simple root β with α< β. Then
the curve has an isolated double
point with complex conjugate
tangents

Fig. 10 Parabola cuspidata:
g(x) has a triple root. In this case
the curve has a cusp

Newton identified 5 types depending on g(x):= x3+ ax2+ bx+ c, as shown in
Figs. 6, 7, 8, 9 and 10 (the drawings sketch the zeros of f (x, y):= y2 – g(x) in R2;
they are taken from the English translation [19] of Newton’s original text).

5 Möbius’ classification

Möbius studied the five types in Newton’s classification in terms of their real flex
points. It is known that irreducible cubic curves have at most 9 flex points over C
and they can either have either 1 or 3 flex points over R. The Parabola nodata and
cuspidata have one real flex point. In this case, Möbius’ and Newton’s classification
coincide; the two types are shown in Fig. 11.

The remaining three “Parabolas” in Newton’s classification have three real flex
points, and these points are collinear. Möbius now considers the three flex lines
l1, l2 and l3 at the three flex points and also the line l containing the three real flex
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Fig. 11 Parabalo nodata and Parabola cuspidata on a sphere

points. Via the antipodal map Φ: S2! P2(R) these four lines correspond to four large
circles Φ–1(lj), Φ–1(l) � S2 which give a tiling of the sphere S2. It can happen that this
tiling contains only triangles; if not then it contains both triangles and quadrangles.
Taking this into account, and by considering whether the curve lies in the area of
the quadrangles or in the area of the triangles, Möbius arrives at a slightly finer
classification compared to Newton, by distinguishing the cases where indeed 3 real
flex points exist:

0-curves The tiling of the sphere contains only triangles. This can only happen
for the Parabola Pura.

3-curves The tiling of the sphere contains both triangles and quadrangles, and the
curve lies in the area of the triangles. This happens for every Parabola Campani-
formis cum ovali as well as for every Parabola punctata. Moreover it can happen
for the Parabola pura. An example of a 3-curve is shown in Fig. 12.

4-curves The tiling of the sphere contains both triangles and quadrangles, and the
curve lies in the area of the quadrangles. As for the 0-curves, this can only happen
for the Parabola Pura. An example of this type of curve is shown in Fig. 13.

So considering how the curve is located with respect to the flex lines and the
line passing through the flex points, Möbius subdivides the “parabola pura” of
Newton into 3 distinct types. Model XVII 2b in the Schilling collection, shown as
the rightmost plaster ball in Fig. 5, shows exactly this subdivision.

Using the same criteria, none of the other 4 types given by Newton results in
a finer subdivision. Hence in total, the classification by Möbius consists of 7 types.
In his paper [11], Möbius indeed shows that all three refined cases for the Parabola
pura occur; see Fig. 14. He refers to the in total 7 types obtained like this by
rather uninformative names; later Cayley [3] uses names for them which are more
suggestive. These are listed in Table 1.
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Fig. 12 Every Parabola campaniformis cum ovali and every Parabola punctata turns out to be a 3-curve,
as is illustrated here on a sphere

Fig. 13 Example of a 4-curve (Parabola Pura) on a sphere (a) and on a string model (b) from Series
XXV. © 2012 Collection of Mathematical Models, University of Göttingen. Reproduced by permission

Fig. 14 a to c The three types of Parabolas Pura. a to c 0-curve, 3-curve, and 4-curve
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Table 1 Names of the seven types according to Newton, Möbius, and Cayley, respectively

Parabola Möbius Cayley

Pura (0-curve) Gattung 5 Neutral simplex cone

Pura (3-curve) Gattung 1 Trilateral simplex cone

Pura (4-curve) Gattung 4 Quadrilateral simplex cone

Camp. cum ovali Gattung 3 Complex cone

Nodata Gattung 6 Crunodal cone

Punctata Gattung 2 Acnodal cone

Cuspidata Gattung 7 Cuspidal cone

6 H.G. Breijer and H. Wiener

To conclude this paper, we mention how Breijer [2] and H. Wiener [22] arrive at
essentially the same classification as Möbius.

Breijer starts from a real (cubic) curve C in the projective plane P2, and any point
in P2(R). Now he asks how many (real) lines through this point are tangent to C.
In this way P2(R)\C is subdivided into regions bounded by C and by the flex lines.
This approach is in fact motivated by work of Plücker, who introduced what is now
called the “class curve” or “dual curve” of C.

Breijer (and Korteweg who somewhat simplified his results) show that in case
the cubic curve contains more than one real flex point (as is the case whenever the
irreducible cubic contains no singular points), one can choose coordinates such that
one flex point is the point (0 : 1 : 0)2 P2 with corresponding flex line Z= 0, and the
other two flex points are (0 : ±1 : 1)2P2. The cubic is now given by an equation

Y 2Z D X3 C .bX C Z/2Z

and the two remaining flex lines have equation Y= ±(bX+ Z). The different types are
described in terms of how the curve together with the three flex lines partition P2(R)
(or the sphere S2):

� if 4b3> 27, one has a campaniformis cum ovali, and in this case there are regions
with 0, with 2, with 4, and with 6 tangent lines passing through any point in the
interior of that region;

� if b D 3
2

3
p
2 we have a parabola punctata (and there are regions with 0, 2, and 4

tangent lines passing through any given interior point);
� for 0 < b < 3

2
3

p
2 one obtains a parabola pura which is a 3-curve. For the tangent

lines count, one finds the numbers 0, 2, and 4.
� the case b= 0 yields a different kind of parabola pura, namely a 0-curve. Here the

tangent line count only yields 2 and 4;
� finally, if b< 0 one obtains a parabola pura which is a 4-curve. Here the outcomes

of the tangent line count are 2, 4, and 6.
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Fig. 15 Three drawings from Breijer’s thesis showing, respectively, a pura 3-curve; a pura 0-curve; a pura
4-curve

The last three possibilities mentioned above are illustrated in Fig. 15. The remain-
ing two cases from Newton’s classification (nodata and cuspidata) are described
from this point of view as well; in total Breijer, although using different criteria,
finds precisely the same classification as Möbius did.

Eight years after Breijer’s thesis H. Wiener presents a very similar classification,
in which he distinguishes 13 instead of 7 types of curves. Much of this appears to be
inspired by the book [5] on cubic curves by Heinrich Durège. G. Giraud [9] explains
Wiener’s classification by first reducing to the case of homogeneous equations

X3 C Y 3 C Z3 C 6�XYZ D 0.

In case λ= –1/2 the given polynomial has a factor X+ Y+ Z, so it is reducible. For
all other real values of λ one obtains cubic curves without singularities. The points
(0 : 1 : –1) , (1 : 0 : –1), and (1 : –1 : 0) are flex points with flex lines respectively
Y+ Z= 2 λ X, X+ Z= 2 λ Y , and X+ Y= 2 λ Z. This readily leads to a classification:

� For λ< –1/2 the curve has two real components (so, using Newton’s terminology
it is a campaniformis cum ovali ). Still, Wiener distinguishes three cases here:

II if λ=� 1
2 � 1

2

p
3, the curve is a so-called harmonic cubic (in modern language:

a curve with an automorphism of order 4 fixing one of the flex points);

I, III Wiener also separates the cases � 1
2 � 1

2

p
3< λ<� 1

2and λ<� 1
2 � 1

2

p
3. How-

ever the reasoning behind this appears somewhat obscure.

� For λ> –1/2 the curve has one real component (in fact, it is Newton’s parabola
pura). Wiener considers three very special cases and then divides the remaining
possibilities into four more kinds:

IX if λ= 0, the curve is a so-called equianharmonic one (in modern language: it has
an automorphism of order 6 fixing a flex point). Moreover in this case the Hessian
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(determinant of the matrix . @2F
@Xi@Xj

/ where F= 0 is the equation of the curve) factors
into three linear forms over R;
VII if λ=� 1

2 C 1
2

p
3, one has a harmonic curve (now with only one real compo-

nent);

V if λ= 1, the curve is equianharmonic and the Hessian factors into one real and
two complex conjugate linear forms; the curve is a 0-curve.

IV For λ> 1 one obtains 4-curves;

VI, VIII, X in the three remaining intervals between –1/2 and 1, one obtains
3-curves. Again it is not clear why Wiener separates these cases.

In addition to these 10 types of irreducible cubics not containing any singular
point, Wiener mentions the usual singular ones (nodata: XI and cuspidata: XII
and punctata: XIII). Although his classification consists of more types than the
earlier ones, presumably the observation that several types have exactly the same
appearance kept him from designing models for his refined cases. Wiener restricted
himself to making models illustrating the classification given by Möbius.

7 Conclusion

This text discusses an example of how classical models may illustrate a geometric
classification. In particular, we note how models from Series XXV and XVII 2ab
in Schilling’s collection show different representations of the types of plane cubic
curves as described by Möbius [11]. Some history and mathematics behind the
models together with pictures of most of them is presented. Hopefully this helps to
understand and appreciate the beauty of these geometric objects.
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