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For a finite irreducible subgroup H ⊂ PSL(Cn) and an 
irreducible, H-invariant curve Z ⊂ P(Cn) such that C(Z)H =
C(t), a standard differential operator Lst ∈ C(t)[ d

dt
] is 

constructed. For n = 2 this is essentially Klein’s work. For 
n > 2 an actual calculation of Lst is done by computing an 
evaluation of invariants C[X1, . . . , Xn]H → C(t) and applying 
a scalar form of a theorem of E. Compoint in a “Procedure”. 
Also in some cases where Z is unknown evaluations are 
produced.
This new method is tested for n = 2 and for three 
irreducible subgroups of SL3. This supplements [18]. The 
theory developed here relates to and continues classical work 
of H.A. Schwarz, G. Fano, F. Klein and A. Hurwitz.
© 2020 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and summary

Let C denote an algebraically closed field of characteristic zero. Let k be C(z) and let 
k denote the algebraic closure of k. Both fields are provided with the C-linear derivation 
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f �→ f ′ with z′ = 1. The positive but not explicit or constructive answer to the inverse 
problem of Galois theory is:

For any finite group G there is a Galois extension � ⊃ k with group G.
Indeed, a proof for the complex case uses analytic tools, in particular the “Riemann 
Existence Theorem”. The proof for any field C as above is deduced from the complex 
case. There is an extensive literature on solving the inverse problem explicitly for certain 
finite groups.

A finite Galois extension � ⊃ k can be given as the splitting field of a polynomial P
in k[T ]. Sometimes, a more efficient way is to describe � ⊃ k as the Picard–Vessiot field 
of a linear differential operator L in k[∂] with ∂ = d

dz . From a polynomial P for � ⊃ k

one can easily compute a differential operator L for � ⊃ k, see [18, §1] and [8, §2]. The 
other direction is far more complicated (see (ii) below).

Let π denote the profinite Galois group of k/k. There is a well known bijection between 
the monic differential operators L ∈ k[∂] of order n, such that all solutions are algebraic 
over k, and the C-vector spaces V ⊂ k of dimension n which are stable under π.

Indeed, one associates to L the π-stable space {f ∈ k | L(f) = 0} (i.e., the contravari-
ant solution space). On the other hand, let the π-stable V ⊂ k have basis b1, . . . , bn over 
C. There is a unique operator L = ∂n + an−1∂

n−1 + · · · + a1∂ + a0 with all ai ∈ k such 
that all L(bj) = 0. The uniqueness and the π-stability of V imply that all ai ∈ k.

A more abstract way to compare differential equations and Galois extensions � ⊃ k is 
the following. The category Diffk/k that we study here, has as objects the finite dimen-
sional differential modules M over k which become trivial over the field k. This condition 
on M is equivalent to M having a finite differential Galois group. The morphisms in this 
category are the k-linear maps that commute with differentiation.

Let Reprπ denote the category of the (continuous) representations of π on finite dimen-
sional C-vector spaces. The functor Diffk/k → Reprπ, which associates to a differential 
module M its (covariant) solution space ker(∂, k ⊗k M), is known to be an equivalence 
of (Tannakian) categories.

The aim of this paper is to make this equivalence of categories explicit for special 
cases. There are two directions to consider:
(i) Compute a differential operator connected to a given representation of a given finite 
group and some additional data.
(ii) Describe or construct the Picard–Vessiot field for a given module M ∈ Diffk/k, when 
M is represented by a differential operator L.
We recall some earlier results on (i) and (ii).
Regarding (i): The Schwarz’ list (see [18] for a modern version) and Klein’s theorem 
(e.g., see [1] and [2]) are classical results for the special case of order n = 2. We recall 
the statement of Klein’s theorem:
for each of the irreducible subgroups G ⊂ PSL(C2) (so G ∈ {Dn, A4, S4, A5}), there is 
a standard order two differential operator Lst having G as projective differential Ga-
lois group. It has the universal property that any order two differential operator with 
projective group G is a “weak pullback” (see Definition 3.6) of Lst.
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In the case n = 3 Hurwitz’ paper [12] produces examples. This method was refined 
in [18]. Klein’s theorem is generalized in, e.g., [2,20–22]. Not much seems to have been 
done for n > 3. Here (Section 3) we treat the general case.
Regarding (ii): This was initiated by J. Kovacic in his paper [14] dealing with n = 2. 
There are many subsequent papers [23,10,11] considering small n. For general n there is 
work of E. Compoint and M.F. Singer [6,7]. The paper [4] discusses the particular case 
of hypergeometric differential equations.

We now describe the present paper, which is mainly concerned with (i) but also 
contributes to (ii) by exploiting invariant theory for finite groups and Compoint’s work 
[6].

Section 2 associates to a differential operator L ∈ k[∂] with all solutions in k, geomet-
ric objects: a Picard–Vessiot curve, a Fano curve, Schwarz maps, projective differential 
Galois groups and an evaluation of invariants.

In Section 3 Klein’s theorem for order two is generalized, resulting in a subtle con-
struction of a standard differential operator Lst (Theorem 3.1). The data for this con-
struction are a finite irreducible subgroup H ⊂ PSL(Cn), an H-invariant irreducible 
curve Z ⊂ P (Cn) such that the normalization of Z/H has genus zero and a variable z
with C(Z/H) = C(z). In the construction of Lst the group H is replaced by a subgroup 
H̃ ⊂ SL(Cn) which is minimal such that H̃ → H is surjective.

The “universal property” of Lst is the following:
any differential operator L with projective differential Galois group isomorphic to H

and Fano curve isomorphic to Z is a weak pullback of Lst (see 3.1 and 3.7). This clarifies 
and extends the work of [2,20–22].

Section 4. For order n = 2 the Fano curve is by definition P (C2) and the computation 
of the standard operators Lst is easy and produces the classical operators. For n >
2 however, the construction of Lst as described in Section 3 does not in an obvious 
way result in a computation of this operator. A new method for the computation of 
Lst is introduced. We derive a “scalar version” of Compoint’s theorem (see 4.2) which 
is roughly the following. Let the homogeneous polynomials f1, . . . , fN be generators 
for the ring of invariants C[X1, . . . , Xn]H̃ . An evaluation of the invariants is a suitable 
homomorphism ev : C[X1, . . . , Xn]H̃ → C(t) and the Picard–Vessiot field of Lst is 
K := C(t)[X1, . . . , Xn]/(f1 − ev(f1), . . . , fN − ev(fN )).

Our “Procedure” 4.3 computing Lst works as follows. A set of homogeneous generators 
f1, . . . , fN and their relations are taken (if possible) from the literature. The given H-
invariant irreducible curve Z ⊂ P (Cn) with C(Z)H = C(t) effectively produces an 
essentially unique evaluation, see 4.6. From the explicit presentation of K one computes 
the derivation D on K extending d

dt . Then one obtains the monic operator L ∈ C(t)[ d
dt ]

of degree n with kernel CX1 + · · · + CXn, where Xi denotes the image of Xi in K. 
Finally Lst is obtained by normalizing L such that its coefficient of ( d

dt )
n−1 is zero.

Our Procedure can be seen as the “opposite” of an algorithm, by M. van Hoeij and J.-
A. Weil [11], which computes for a given differential operator, the associated evaluation 
of the invariants C[X1, ..., Xn]G → C(z).
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Section 5. For order n = 2, we show how to obtain evaluations of the invariants and 
apply the Procedure to produce the known standard operators. For the group G168 ⊂
PSL(C3) and the Klein curve Z ⊂ P 2

C , a direct computation of the standard operator 
from its construction in §3 fails. However, evaluation and the Procedure produce the 
standard operator.

The LIST, copied from [18], contains all possibilities, determined by the Riemann 
Existence Theorem, of order 3 differential operators over C(z) (up to equivalence) with 
group G168 and singular locus {0, 1, ∞}. In most of these cases one does not know a 
stable Z ⊂ P 2

C such that the normalization of Z/G168 has genus zero. The methods 
of [18] produced explicit third order equations for about half of the cases. For the same 
cases our new method of evaluation and the Procedure produces more easily the standard 
equations.

In [18] no standard equation for the group HSL3
72 was found. Our new methods produce 

an equation.
In Section 6 standard equations for A5 ⊂ SL3 are studied. Moreover, properties in 

relation with the preimage ASL2
5 ⊂ SL2(C) of A5 ⊂ PSL(C2) and the lists of differential 

operators in [18] are discussed.

2. Objects associated to a differential operator L over k = C(z) with finite 
differential Galois group

L has the form dnz + an−1d
n−1
z + · · ·+ a0 with all ai ∈ C(z), dz = d

dz and all solutions 
are supposed to be algebraic over C(z). Associated to L is:
(1) The Picard–Vessiot field K ⊃ C(z) with its Galois group G.
(2) The (contravariant) solution space V ⊂ K of L with the action of G on it. The 
image of G ⊂ GL(V ) into PGL(V ) will be denoted by Gproj and is called the projective 
differential Galois group.
(3) The Picard–Vessiot curve Xpv is the smooth, irreducible, projective curve over C
with function field K. G acts on Xpv and there is an isomorphism Xpv/G ∼= P 1

z . Here 
P 1
z denotes the projective line with function field C(z).

(4) Evaluation of the invariants. One considers a C-linear homomorphism φ : C[X1, . . . ,
Xn] → K which sends the variables X1, . . . , Xn to a basis of V . The C-linear action 
of G on C[X1, . . . , Xn] is defined by the G-invariance of CX1 + · · · + CXn and the 
G-equivariance of φ. This makes G into a subgroup of GL(n, C). The homomorphism 
φ induces a homomorphism ev : C[X1, . . . , Xn]G → KG = C(z) which we will call the 
evaluation of the invariants. Write C[X1, . . . , Xn]G = C[f1, . . . , fN ] where f1, . . . , fN are 
homogeneous generators and ev maps each fi to an element in C(z).

Now suppose that the action of G on V is known and is irreducible, i.e., no proper linear 
subspace 
= (0) of V is invariant under G. If we define the action of G on CX1+· · ·+CXn

such that an equivariant φ with φ(CX1 + · · · + CXn) = V exists, then this φ is unique 
up to multiplication by a scalar c ∈ C∗. As a consequence, the evaluation map is unique
up to changing each ev(fi) into cdeg fiev(fi) for all i.
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(5) The Fano curve. H ⊂ ker(φ), the “homogeneous kernel”, is the ideal generated by 
the homogeneous elements in ker(φ). For n = 2 one has H = 0. For notational reasons 
we will call P (V ) = P 1 itself the Fano curve in this case.

Suppose that n > 2, then H defines an irreducible curve in Pn−1, invariant under 
the action of G. Indeed, H is the homogeneous ideal induced by the kernel J of the 
corresponding homomorphism C[X2

X1
, . . . , Xn

X1
] → K. It is a curve since K/C has tran-

scendence degree 1. The curve in Pn−1 defined by H will be denoted by Xfano and 
will be called the Fano curve. This curve was indeed considered by Fano in his 1900-
paper [9]. We note that Xfano can have singularities. From the definition one sees that 
C(Xfano) = C(x2

x1
, . . . , xn

x1
), where x1, . . . , xn is a basis of V ⊂ K.

(6) The Schwarz map. The homomorphism C[X1, . . . , Xn]/H → K induces a morphism 
of curves Xpv → Xfano which is G-equivariant. After dividing by G we obtain a multi-
valued map Schw : P 1

z = Xpv/G · · · → Xfano called the Schwarz map. For n = 2 it is 
the well known classical Schwarz map.

After dividing by G we obtain qSchw : P 1
z = Xpv/G → Xfano/G

proj which can be 
called the quotient Schwarz map. We note that Xfano/G

proj can have singularities. The 
relation between Xpv and Xfano is in general not obvious.

Lemma 2.1. Suppose that qSchw : P 1
z = Xpv/G → Xfano/G

proj is birational. Let c(G) ⊂
G be the group of the multiples of the identity belonging to G. Since c(G) acts trivially 
on the curve Xfano, the map Xpv → Xfano factors over Xpv/c(G). The morphism 
Xpv/c(G) → Xfano is birational.

Proof. One has K = C(Xpv) ⊃ Kc(G) ⊃ C(Xfano). The group Gproj = G/c(G)
acts faithfully on Kc(G) = C(Xpv/c(G)) and (Kc(G))Gproj = C(z). Since C(Xfano) =
C(x2

x1
, · · · , xn

x1
), the group Gproj acts faithfully on C(Xfano). By assumption C(Xfano)G

proj

= C(z). Therefore Kc(G) = C(Xfano). �
3. Construction of a standard operator and pullbacks

Theorem 3.1. Let the following data be given:
(i) a C-vector space V with n := dimV ≥ 2,
(ii) an irreducible finite subgroup H ⊂ PSL(V ),
(iii) an irreducible H-invariant curve Z ⊂ P (V ) such that the normalisation of Z/H has 
genus 0 and
(iv) a variable z such that C(Z)H = C(z).

The data V, H, Z, z determine a differential operator

Lst = ( d

dz
)n + an−2(

d

dz
)n−2 + · · · + a0 ∈ C(z)[ d

dz
] such that

(a) The C-vector space W := {f ∈ C(z) | Lstf = 0} has dimension n (i.e., all solutions 
are algebraic).
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(b) Let G ⊂ SL(W ) denote the differential Galois group of Lst. There is a C-linear iso-
morphism φ : W → V such that the projective differential Galois group Gproj is mapped 
isomorphically to H and the Fano curve Xfano ⊂ P (W ) of Lst is mapped isomorphically 
to Z ⊂ P (V ).

Remarks 3.2. (0). It is a standard fact that in (b) one has G ⊂ SL(W ); see, e.g., [17, 
Exc. 1.35 5(b)-(c)].
(1). The operator Lst will be called the standard operator for the data V, H, Z, z. For 
n = 2, one has Z = P (V ). Further Z/H is identified with P 1

z and so C(Z/H) = C(z). 
One knows that the possibilities for H are Dn, A4, S4, A5. The variable z is chosen such 
that z = 0, 1, ∞ are the branch of Z → Z/H. Thus Lst depends essentially only on H.
(2). In the proof of Theorem 3.1 we will use a group H̃ ⊂ SL(V ) which maps surjectively 
to H and is minimal with respect to this property. The kernel of H̃ → H has the form 
{λ · 1| λm = 1} for a certain divisor m of n.
(3). In the construction of Lst only the data V, N, Z, z are used. It can be shown that 
the operator Lst is actually determined by the properties (a) and (b) in Theorem 3.1.
(4). The action of H on Z is faithful. Indeed, since H is irreducible and Z is H-invariant, 
Z is not contained in a proper projective subspace of P (V ). By induction on i, one 
finds for i = 1, . . . , n, elements z0, . . . , zi ∈ Z such that z0, . . . , zi is not contained in a 
projective subspace of dimension < i. Further, for each j, one can replace zj by infinitely 
many elements z̃j ∈ Z such that z0, . . . , zj−1, ̃zj , zj+1, . . . , zn has the same property.

Suppose that h ∈ H acts as identity on Z. Then h ∈ PGL(V ) has a diagonal matrix 
with respect to a basis of V corresponding to any sequence z0, . . . , zj−1, ̃zj , zj+1, . . . , zn. 
This implies that h = 1. �
Proof. We start the construction of Lst. The above data yield inclusions C(z) =
C(Z)H ⊂ C(Z) ⊂ C(z). The variable z is given in the data and the embedding 
C(Z) ⊂ C(z) is unique up to an automorphism of C(Z) over C(z), i.e., an element 
of H. We would like to identify V with the solution space in C(z) of the standard 
operator to be constructed. However, V does not lie in C(Z).

One chooses any � ∈ V, � 
= 0. For any v ∈ V one considers the restriction of the 
rational function v� on P (V ) to Z (this makes sense because Z is not contained in the 
hypersurface � = 0). Write V� for the functions on Z obtained in this way, so V� ⊂ C(Z). 
The C-vector space V� is not invariant under H, or what is the same, it is not invariant 
under π. The following lemma is the key ingredient of the construction.

Lemma 3.3. There exists an element f ∈ C(z)
∗

such that f V
� is invariant under π. The 

canonical map P (V ) → P (f V
� ), given by v �→ f · v

� is equivariant for the action of π.

Proof. The group H̃ is supposed to have the properties of Remarks 3.2. For each σ ∈ H, 
one denotes by σ̃ an element in H̃ with image σ. Now σ(V� ) = V

σ̃� = �
σ̃� ·

V
� . The term �

σ̃�

depends in general on the choice of σ̃. But ( � )m depends only on σ and σ �→ ( � )m is 
σ̃� σ̃�
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a 1-cocycle. By Hilbert 90, there is an element f ∈ C(Z) such that σff · ( �
σ̃� )

m = 1 for 
all σ ∈ H.

For the case m = 1 we conclude that f V
� ⊂ C(Z) is invariant under H (and thus 

also under π). For the case m > 1 we claim that the equation Tm − f is irreducible 
over C(Z). Assuming this claim, the field C(Z)(fm) with fm

m = f is a Galois extension 
of C(z) since for every σ ∈ H one has σf

f is an mth power in C(Z). We may embed 

C(Z)(fm) into C(z) and conclude that fmV
� is invariant under π.

Now we prove the claim. If the equation Tm − f is reducible over C(Z), then there 
exists a proper divisor d of m and an element g ∈ C(Z) with gd = f . The expression 
E(σ̃) := σg

g · ( �
σ̃� )

m/d has the property E(σ̃)d = 1. One can consider for each σ ∈ H the 

elements σ̃ ∈ H̃ such that E(σ̃) = 1. This defines a proper subgroup of H̃ which has 
image H. This contradicts the assumptions on H̃.

The last statement of the lemma follows from σ(f v
� ) =

σf
f · �

σ� · f
σv
� . �

The monic operator L of order n over C(z), defined by ker(L, C(z)) = W := f · V� has 
its coefficients in C(z), since W is invariant under π. This operator L is not yet unique 
since we have made choices for � and f .

The standard operator Lst is defined to be the operator of the form Lst = ( d
dz )n + 0 ·

( d
dz )n−1 + · · · , obtained from the above L by a shift d

dz �→ d
dz + a for suitable a = h′

h

with h ∈ C(z)
∗
.

We finish the proof of Theorem 3.1 by stating the following properties:
(1). Lst does not depend on the choices of � and f in Lemma 3.3.
(2). The solution space of Lst has the form g ·W for certain g ∈ C(z)

∗
.

(3). Let G ⊂ SL(g ·W ) denote the differential Galois group of Lst. From g ·W = g · f · V�
one obtains a natural identification of the projective spaces P (V ) and P (g ·W ) and after 
this identification one has Gproj = H and the Fano curve of Lst is Z.

Statement (1) follows easily from Lemma 3.4 and Observation 3.5, part (1). Statements 
(2) and (3) follow from the construction of Lst. �
Lemma 3.4. Let L1, L2 be monic differential operators over C(z) such that all their solu-
tions are algebraic. Let V1, V2 ⊂ C(z) denote the two solution spaces. The following are 
equivalent:
(a). L1 is obtained from L2 by a shift d

dz �→ d
dz + a for some element a ∈ C(z).

(b). There exists f ∈ C(z)
∗

such that V2 = fV1.

Proof. (a)⇒(b). Let L1 be obtained from L2 by the shift d
dz �→ d

dz +a. One writes a = f ′

f

with f in some differential field containing C(z). One finds V2 = fV1. Since V1, V2 ⊂ C(z)
one actually has f ∈ C(z)

∗
.

(b)⇒(a). If V2 = fV1, then clearly L1 = f−1 ◦ L2 ◦ f . Since f−1 ◦ d
dz ◦ f = d

dz + f ′

f , one 

has that L1 is obtained from L2 by the shift d
dz �→ d

dz + f ′

f . Note that f
′

f ∈ C(z) since 
L1 and L2 are both defined over C(z). �
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Observations 3.5. (1). For general monic differential operators L1, L2 of order n, prop-
erty (a) of Lemma 3.4 is called projective equivalence. If both L1 and L2 have the form 
dnz + 0 · dn−1

z + · · · , then projective equivalence implies equality.
(2). The implication (b)⇒(a) in Lemma 3.4 holds for general differential operators. How-
ever (a)⇒(b) is in general false since the equation f ′ = af with a ∈ C(z), need not have 
a solution on C(z)

∗
.

(3). For differential modules M1, M2 there is a somewhat different notion of projective 
equivalence defined by: there is a 1-dimensional module E such that M1 ⊗ E ∼= M2.
(4). Projective equivalence of subgroups G1, G2 ⊂ GL(V ) means that Gproj

1 = Gproj
2 ⊂

PGL(V ). Projective equivalence of operators implies projective equivalence of their dif-
ferential Galois groups but the converse is false. �
Definition 3.6. Consider a homomorphism φ : C(z)[ d

dz ] → C(x)[ d
dx ] of the form: z �→

φ(z) ∈ C(x) \ C and d
dz �→ 1

φ(z)′ (
d
dx + b) with b ∈ C(x). Let L ∈ C(z)[ d

dz ]. A weak 
pullback of L is an operator of the form a · φ(L) with a ∈ C(x)∗. The restriction of φ to 
C(z) → C(x) is called the pullback function.

Proposition 3.7. Let L ∈ C(s)[ d
ds ] be an operator of order n such that all solutions are 

algebraic and let M ⊂ C(s) denote its solution space. The differential Galois group G of 
L is a subgroup of GL(M).

Suppose that Gproj ⊂ PSL(M) is irreducible. According to §2, part (5) and (6), L
determines some Xfano ⊂ P (M) and C(Xfano)G

proj is a subfield of C(s). Choose z such 
that C(z) = C(Xfano)G

proj .
Then L is a weak pullback of the standard operator Lst determined by the data M , 

H = Gproj ⊂ PSL(M) and Z = Xfano ⊂ P (M) and the variable z.

Proof. By construction the standard operator Lst has solution space h · W for some 
h ∈ C(z)

∗
, where W = f M

m for suitable f ∈ C(z)
∗

and m ∈ M, m 
= 0. Further, the 
inclusion C(z) = C(Xfano/G

proj) ⊂ C(s) determines the pullback function. Using 3.4
and 3.6 one verifies that this pullback function applied to Lst produces L. �
Remark 3.8. A standard differential equation for given H ⊂ PSL(V ), Fano curve Z ⊂
P (V ) and variable z can be a proper pullback of another standard equation. This occurs 
essentially only when H is a proper subgroup of a finite automorphism group of (the 
desingularization of) Z.

Example 3.9. A calculation of the standard operator Lst, using the above construction, is 
possible. One has to compute the f in Lemma 3.3 and one has to compute the derivation 
on C(Z)[f ] in order to compute the monic differential operator L with solution space 
f V

� ⊂ C(Z)[f ]. Further a computation of a generator of C(Z)Gproj is needed. However 
for the case n = 2 the calculation is well known ([1,3]) and rather easy. We illustrate this 
for the case H = A4 ⊂ PSL2 and its preimage H̃ = ASL2

4 in SL2.
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For Z = P 1 we use homogeneous coordinates x, y and the function field is C(t) with 
t = y

x . According to [5], the invariants under the action of ASL2
4 are generated by:

Q3 = xy(x4 − y4), Q4 = (x4 +
√
−12x2y2 + y4) · (x4 −

√
−12x2y2 + y4), Q6 = (x4 +√

−12x2y2 + y4)3 + (x4 −
√
−12x2y2 + y4)3. There is one relation Q2

6 −Q4
3 − 4Q3

4 = 0. 
The field of the homogeneous invariants of degree zero is generated over C by Q6

Q2
3

and 
Q3

4
Q4

3
and there is one relation (Q6

Q2
3
)2 = 1 + 4Q3

4
Q4

3
. Hence we can take z = Q6

Q2
3

where x, y in 
this expression is replaced by x, tx. This expresses z as rational function in t of degree 
12. Thus dtdz is also known.

Now V = Cx + Cy, take � = x, then V
� = C1 + Ct. Then f ∈ C(t) should satisfy 

( x
σ̃x )2 = f

σf . An explicit choice for f turns out to be 1
t′ where t′ := dt

dz . Then the 

Picard–Vessiot field is C(t)[
√
t′]. The operator that we want to compute has solution 

space C 1√
t′

+C t√
t′

. This leads to the standard operator for case A4. The other standard 
operators for n = 2 can be computed in a similar way. This “classical” calculation fails 
for n > 2 and one needs the new method “evaluation of invariants and Procedure” (see 
§4,3). This new method will be applied in §5 for another computation of the standard 
operators for n = 2 and for cases with n > 2.

Observation 3.10. The singular points of the standard equations. Let L ∈ C(z)[ d
dz ] be an 

operator of order n such that its Picard–Vessiot field is a finite extension of C(z). The 
singular points of L, which are not apparent, are the branch points of Xpv → P 1

z . Indeed, 
suppose that z = 0 is not a branch point, then the solutions of L live at any point p
above z = 0. The fraction field of ÔXpv,p can be identified with C((z)) and contains n
independent solutions of L. It follows that the singularity is at most apparent.

In the special case Lst and G = Gproj = H, one can identify Xpv with the normal-
ization Z̃ of Z ⊂ P (V ) and the non apparent singular points are the branch points of 
Z̃ → P 1

z . In the general case, the cyclic extension Xpv → Z̃ can be responsible for more 
singularities of Lst.

4. Compoint’s theorem and evaluation of invariants

Notation and assumptions:
Suppose that the differential equation y′ = Ay over k = C(z) has a reductive dif-

ferential Galois group G ⊂ GLn(C). The differential algebra R := k[{Xi,j}, 1
D ] (with 

D = det(Xi,j) ) is defined by (X ′
i,j) = A · (Xi,j).

Let I be a maximal differential ideal in R and K the Picard–Vessiot field obtained as 
field of fractions of R/I.

GLn(C) acts on the C(z)-algebra R by sending the matrix of variables (Xi,j) to the 
matrix (Xi,j) · g for any g ∈ GLn(C). Then G is identified with the g ∈ GLn(C) such 
that gI = I.

The algebra of invariants C[{Xi,j}]G is generated over C by homogeneous elements 
f1, . . . , fN (since G is reductive). The natural map R → K induces a homomorphism 
eve : C[{Xi,j}]G → C(z) which is called the evaluation of the invariants.
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Theorem 4.1 (E. Compoint 1998). The ideal I ⊂ R generated by the elements {f1 −
eve(f1), . . . , fN − eve(fN )} is a maximal differential ideal.

The proof of Compoint’s theorem, [6], has been simplified in [3] and Theorem 4.1 is 
almost identical to the formulation in [3]. Note that although [3] formulates the result for 
C = C, the argument is completely algebraic hence the result holds for any C. We will 
apply Compoint’s theorem for the case of finite differential Galois groups. Moreover we 
will need a formulation in terms of differential operators (or scalar differential equations).

Notation and assumptions:
Let L = ( d

dz )n + an−1( d
dz )n−1 + · · · + a1

d
dz + a0 over C(z) have a finite differential 

Galois group G and Picard–Vessiot field K ⊂ C(z).
Consider the homomorphism φ : R0 = C(z)[X1, . . . , Xn] → K which sends X1, . . . , Xn

to a basis of the solution space of L in K. G acts C(z)-linear on R0 by a C-linear action 
on CX1 + · · ·+CXn which coincides with the action of G (or of π) on the solution space 
of L.

The restriction of φ to C[X1, . . . Xn]G → C(z) is also called the evaluation of the 
invariants and denoted by ev (see also §2). Write C[X1, . . . , Xn]G = C[φ1, . . . , φr] for 
certain homogeneous elements φk.

Corollary 4.2. The kernel of φ : C(z)[X1, . . . , Xn] → K is generated by the elements 
{φ1 − ev(φ1), . . . , φr − ev(φr)}.

Proof. Write again R0 = C(z)[X1, . . . , Xn] and R := C(z)[{Xj
i }

j=0,...,n−1
i=1,...,n ] where Xj

i

denotes formally the jth derivative of Xi (all i, j). The map φ : R0 → K has a unique 
extension φe : R → K defined by φe(Xj

i ) = φ(Xi)(j) (all i, j). The restriction of φ to 
RG

0 → C(z) is called ev and the restriction of φe to RG → C(z) is called eve.
By Compoint’s theorem, the ideal ker(φe) ⊂ R is generated by the set {F −

eve(F ) | F ∈ RG}. We want to prove that the ideal ker(φ) ⊂ R0 is generated by 
{F − ev(F ) | F ∈ RG

0 }. We will construct a C(z)-algebra homomorphism Ψ : R → R0
which has the following properties: Ψ(r) = r for r ∈ R0; Ψ(X0

i ) = Xi; φ ◦Ψ = φe and Ψ
is G-equivariant.

Consider an element ξ ∈ kerφ. Then also ξ ∈ kerφe and ξ is a finite sum ∑
c(F ) · (F − eve(F )) with F ∈ RG and c(F ) ∈ R. Applying Ψ to this expression 

yields ξ =
∑

Ψ(c(F )) · (Ψ(F ) − Ψ(eve(F )). Since Ψ is G-equivariant Ψ(F ) ∈ RG
0 . 

Moreover Ψ(eve(F )) = ev(Ψ(F )). This implies that ξ lies in the ideal generated by 
the {F − ev(F ) | F ∈ RG

0 } in the ring R0.

Construction of Ψ. Define a C-linear derivation E : R0 → R0 by E(z) = 1 and, for 
i = 1, . . . , n, E(Xi) ∈ R0 has the property that φE(Xi) = φ(Xi)′. We note that E exists 
since the map φ : R0 → K is surjective. Then D := 1

#G

∑
g∈G gEg−1 : R0 → R0 is a 

C-linear derivation with D(z) = 1, φ(D(Xi)) = φ(Xi)′ for all i and D is G-equivariant.
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Define the C(z)-algebra homomorphism Ψ : R → R0 by Ψ(Xj
i ) = Dj(Xi) for all i, j. 

The first two properties of Ψ are obvious. Further φ(Ψ(Xj
i )) = φ(Dj(Xi)) = φ(Xi)(j)

(for all i, j; the case j = 1 given earlier implies the general case) and so φ ◦ Ψ = φe. 
Finally Ψ is G-equivariant because D is G-equivariant and the actions of G on the vector 
spaces CXj

1 + · · · + CXj
n, for j = 0, . . . , n − 1, are identical. �

The explicit description of the kernel of φ given in Corollary 4.2 provides an important 
step in the computation of a standard operator, as will now be explained.

Procedure 4.3. Constructing the differential operator from an evaluation. Let an irre-
ducible finite group G ⊂ GL(Cn) be given. The group G acts on C[X1, . . . , Xn] by 
identifying Cn with 

∑
CXj . Suppose that C[X1, . . . , Xn]G = C[f1, . . . , fN ] with known 

homogeneous elements f1, . . . , fN .
Consider a C-algebra homomorphism h : C[X1, . . . , Xn]G → C(z) such that the image 

of h generates the field C(z) over C. We will call such h again an evaluation of the 
invariants. The aim is to compute a differential operator L = dnz + an−1d

n−1
z + · · · +

a1dz + a0 over C(z) that induces the group G and such that the evaluation ev defined 
above Corollary 4.2 is equal to h.

The C(z)-algebra R := C(z)[x1, . . . , xn] = C(z)[X1, . . . , Xn]/I, where I = (f1 −
h(f1), . . . , fN − h(fN )), has finite dimension over C(z) (by observing that C(z)[X1, . . . ,
Xn] is finite over C(z)[f1, . . . , fN ]).
(a). We assume that R is a field. We note that in the opposite case, R cannot be a Picard–
Vessiot field for a suitable operator over C(z). The action of G on Cx1 + . . . + Cxn is 
induced by the irreducible action of G on CX1+· · ·+CXn. Hence either Cx1+. . .+Cxn =
(0) or it is isomorphic to CX1+· · ·+CXn. The assumption that the image of h generates 
C(z) implies that Cx1 + · · · + Cxn 
= 0, hence it has dimension n.

The derivation d
dz has a unique extension to R which we call D̃. There is a unique 

operator L̃ := D̃n + an−1D̃
n−1 + · · · + a1D̃ + a0 (with all ai ∈ R) having kernel the 

n-dimensional vector space Cx1 +Cx2 + · · ·+Cxn. By uniqueness and the G-invariance 
of Cx1 + Cx2 + · · · + Cxn, the operator L̃ is G-invariant and therefore an−1, . . . , a0 ∈
RG = C(z). Then L̃ is the differential operator associated to the evaluation h of the 
invariants.

In order to find L̃ one needs to compute the D̃jxi. This is done as follows.
(b). By assumption R is a finite field extension of C(z) and I is a maximal ideal 
of C(z)[X1, . . . , Xn], which is the coordinate ring of the nonsingular variety An over 
C(z). The well known Jacobian criterion for smoothness implies that the unit ideal of 

C(z)[X1, . . . , Xn] is generated by I and the determinants det
(

∂(fj−h(fj))
∂Xi

)j∈J

i=1,...,n
where 

J ranges over the subsets of {1, . . . , N} with #J = n.
Since the elements h(fj) belong to C(z) we have ∂(fj−h(fj))

∂Xi
= ∂fj

∂Xi
. After renumbering 

we may suppose that DET = det
(

∂fj
∂Xi

)j=1,...,n

i=1,...,n
is non zero. Then df1 ∧ · · · ∧ dfn =

DET · dX1 ∧ · · · ∧ dXn. Thus for σ ∈ G ⊂ GL(Cn) one has σ(DET ) = det(σ)−1 ·DET . 
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Since G is finite, there exists an integer m ≥ 1 with DETm ∈ C[X1, . . . , Xn]G and 
h(DETm) ∈ C(z). Since R is a field, it follows that h(DETm) 
= 0.

The extension D̃ of d
dz on R lifts to a derivation D on C(z)[X1, . . . , Xn] with D(z) = 1

and such that D(I) ⊂ I. The lift D is not unique since one can add to each D(Xi) any 
element in the ideal I.

The condition D(I) ⊂ I with I = (f1 − h(f1), . . . , fN − h(fN )) can be rewritten as 
the following explicit formula

n∑
j=1

∂fi
∂Xj

·D(Xj) ≡ h(fi)′ mod I, for i = 1, . . . , N.

Since we have assumed that R is a field, h(DETm) 
= 0 and this suffices for the 
computation of the vector (DX1, . . . , DXn)t satisfying the equation

(
∂fi
∂Xj

)
(DX1, . . . , DXn)t = (h(f1)′, . . . , h(fn)′)t.

Then D(fi − h(fi)) ∈ I for all i = 1, . . . , N and D(I) ⊂ I. One then computes formulas 
for Di, i = 0, . . . , n. From this one deduces a linear combination L := dnz + an−1d

n−1
z +

· · ·+a1dz+a0 such that L(xi) = 0 for all i. This relation is unique since we have assumed 
that R is a field and we know that x1, . . . , xn are C-linearly independent. It follows that 
L is G-invariant and all aj ∈ RG = C(z). We conclude:
L is the differential operator associated to the evaluation h. �
Remarks 4.4. (1). We briefly explain why 4.3 is called “Procedure” rather than “Algo-
rithm”. A successful application of the Procedure depends on properties of the evaluation 
h of the invariants. If the R in 4.3 is known to be a field, then L exists. If h is known to 
be the evaluation of an operator L, then the Procedure computes L up to (projective) 
equivalence. For some choices of h the operator L does not exist. It can happen, in the 
case that R is not a field, that L exists but has a differential Galois group which is a 
proper subgroup of G (see 4.5).
(2). Suppose that the evaluation of the invariants h produces the operator L. For the 
change of h into hλ, given by hλ(fi) = λdeg fih(fi) for all i and fixed λ such that a 
power λm ∈ C(z)∗ for some integer m ≥ 1, Procedure computes a new operator, namely 
λLλ−1. Thus if L = dnz + an−1d

n−1
z + · · ·+ a1dz + a0, then the new operator is obtained 

from L by the shift dz �→ dz − λ′

λ (note that λ
′

λ ∈ C(z)). The evaluations h and hλ are 
called essentially the same.

Examples 4.5. In some cases, the ideal I of Procedure 4.3 is not a maximal ideal of 
C(z)[X1, . . . , Xn] and therefore R is not be field. We consider, as in Example 3.9, G =
ASL2

4 and C[x, y]G = C[Q3, Q4, Q6] with the relation Q2
6 − Q4

3 − 4Q3
4 = 0. For the 

evaluations h1 : (Q3, Q4, Q6) �→ (z, 0, z2) and h2 : (Q3, Q4, Q6) �→ (0, z2, 2z3) the above 
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ideal I is not maximal. In both cases, R is a product of a number of copies of the field 
C(z).

Procedure 4.3 applied to the evaluation h1 leads to the first order differential operator 
dz− 1

6z instead of a second order operator. This is in accordance with the observation that 
for suitable x0, y0 ∈ C∗, x0 
= y0 one has Q3(x0z

1/6, y0z
1/6) = z, Q4(x0z

1/6, y0z
1/6) =

0, Q6(x0z
1/6, y0z

1/6) = z2. Moreover the differential Galois group is C6, the cyclic group 
of order 6, which can be seen as a subgroup of ASL2

4 .
The Procedure does not produce an operator for h2. Indeed, Q3 is a product of six 

linear forms in the two C-linearly independent solutions x, y and h2(Q3) = 0 contradicts 
this linear independence. �

For the existence and construction of an evaluation from a G-invariant curve Z with 
C(Z)G = C(z) we will use the following lemma and its proof.

Lemma 4.6. Let A be a finitely generated graded C-algebra. Assume that A is a domain. 
Let A((0)) denote the subfield of the field of fractions A(0) of A consisting of the homo-
geneous elements of degree 0.

Assume that A((0)) = C(z). Then there exists a C-algebra homomorphism h : A →
C[z] such that h induces the identification A((0)) = C(z).

Proof. Write A = C[f1, . . . , fr] where the f1, . . . , fr are homogeneous elements of degrees 
d1, . . . , dr ∈ Z>0. Let v(i) = (v(i)1, . . . , v(i)r) for i = 1, . . . , r−1 denote free generators of 
{(n1, . . . , nr) ∈ Zr | 

∑
nidi = 0}. We may and will suppose that the matrix {v(i)j}r−1

i,j=1
is invertible. Let m ∈ Z �=0 be its determinant.

The elements {fv(i)1
1 · · · fv(i)r

r | i = 1, . . . , r − 1} generate the field A((0)) = C(z)
over C and thus we can identify fv(i)1

1 · · · fv(i)r
r with some αi ∈ C(z). First we 

define h̃ : A → C(z) by h̃(fr) = 1 and the h̃(f1), . . . , ̃h(fr−1) are such that 
h̃(f1)v(i)1 · · · h̃(fr−1)v(i)r−1 = αi for i = 1, . . . , r − 1. One observes that the h̃(fi)
are Laurent polynomials in α1/m

1 , . . . , α1/m
r−1 . Thus the expressions h̃(fi) have the form 

R(z) · (z − a1)n1/m · · · (z − as)ns/m with R ∈ C(z), certain distinct a1, . . . , as ∈ C and 
certain integers ni ∈ {0, . . . , m − 1}.

The algebraic relations between the f1, . . . , fr are generated by homogeneous relations. 
Hence for any expression λ ∈ C(z)

∗
we can consider the C-algebra homomorphism h

given as h(fi) = λdi h̃(fi) for i = 1, . . . , r. Using the shape of the h̃(fi) one observes 
that for suitable λ all λdi h̃(fi) ∈ C[z]. Thus the required h exists and can be seen to be 
unique (up to constants) under the condition that 

∑r
i=1 deg h(fi) is minimal.

We recall that h and h̃ are “essentially the same” according to 4.4. �
Corollary 4.7. Let be given an irreducible finite group G ⊂ SL(V ) and an irreducible 
G-invariant curve Z ⊂ P (V ) such that the function field of Z/G is C(z). Lemma 4.6 
produces an evaluation of the invariants h : C[V ]G → C[z] which induces the identifica-
tion of the function field of Z/G with C(z).
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This evaluation h is essentially the same as the evaluation of the invariants induced 
by the standard operator Lst for the data G and Z (see §3).

Proof. Let M ⊂ C[V ] be the homogeneous prime ideal of Z ⊂ P (V ). Then M ∩ C[V ]G
defines the curve Z/G and the homogeneous algebra of Z/G is A := C[V ]G/(M∩C[V ]G). 
Now one applies Lemma 4.6 to A. The last statement follows from the unicity of h up 
to a change h(fi) �→ λdeg fih(fi) for i = 1, . . . , r. �
5. Computations with Procedure 4.3

In Sections 5.1-5.3 we present in concrete cases the differential operator obtained from 
Procedure 4.3. The evaluations used are computed as in the proof of Lemma 4.6.

5.1. Finite subgroups of SL2

For finite subgroups of SL2 and their invariants we use the notations and equations 
from [5]. The standard equations for the subgroups Dn, A4, S4, A5 of PSL2 are classical 
and well known, see for instance [1,2].
(1). The group DSL2

n of order 4n is generated by 
(

ζ 0
0 ζ−1

)
, 
(0 −1

1 0
)

with ζ = e2πi/2n. The 
semi-invariants are generated by f3 = xy, f12 = x2n + y2n, and f13 = x2n − y2n. The 
invariants have generators

F1 = f3f13, F2 = f12, F3 = f2
3 and relation F 2

1 − F 2
2F3 + 4Fn+1

3 = 0.

This leads to the following evaluations.
If n is odd, A((0)) is generated by F1

F
(n+1)/2
3

, F2
Fn

3
with relation ( F1

F
(n+1)/2
3

)2 = F2
Fn

3
− 4. 

Define z by F1

F
(n+1)/2
3

= 2iz. This gives h̃ : (F1, F2, F3) �→ (2iz, 2i(z2 − 1)1/2, 1) and 

h : (F1, F2, F3) �→ (2iz(z2 − 1)(n+1)/2, 2i(z2 − 1)(n+1)/2, (z2 − 1)).
For 2|n, generators of A((0)) are F 2

1
Fn+1

3
, F2

F
n/2
3

satisfying F 2
1

Fn+1
3

= ( F2

F
n/2
3

)2 − 4. Corre-

sponding evaluations are h̃ : (F1, F2, F3) �→ (2(z2 − 1)1/2, 2z, 1) and h : (F1, F2, F3) �→
(2(z2 − 1)1+n/2, 2z(z2 − 1)n/2, (z2 − 1)).

For all n the differential operator is L = d2
z + z

z2−1dz −
1

4n2(z2−1) . This becomes, after 
the transformation z �→ 2z − 1, the standard equation

( d

dz
)2 + 3

16z2 + 3
16(z − 1)2 − n2 + 2

8n2z(z − 1) for Dn.

(2). For the group ASL2
4 , we continue the discussion from Example 3.9. Generators 

for the invariants are the homogeneous polynomials Q3, Q4, Q6 of degrees 6, 8, 12 with 
relation Q2

6 = Q4
3 + 4Q3

4. Here A((0)) = C(Q6
Q2

3
, Q

3
4

Q4
3
) = C(z) with z = Q6

Q2
3
. This 

leads to the evaluations h̃ : (Q3, Q4, Q6) �→ (1, ( z
2−1
4 )1/3, z) and h : (Q3, Q4, Q6) �→

(( z
2−1 )2, ( z

2−1 )3, ( z
2−1 )4z).
4 4 4
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The differential operator is d2
z + 27z2+101

144(z2−1)2 . This becomes after z �→ 2z − 1 the standard 
equation

( d

dz
)2 + 3

16z2 + 2
9(z − 1)2 − 3

16z(z − 1) for A4.

(3). The group SSL2
4 has ring of invariants A := C[F1, F2, F3] with generators Fj of 

degrees 12, 8, 18, respectively. One finds A((0)) = C(F
3
2

F 2
1
, F

2
3

F 3
1
) with relation F

3
2

F 2
1

= F 2
3

F 3
1

+108. 
Put h̃ : (F1, F2, F3) �→ (1, 3 · 22/3z, 2 · 33/2(z3 − 1)1/2) and h : (F1, F2, F3) �→ (2233(z3 −
1)3, 2233z(z3 − 1)2, 2436(z3 − 1)5).
The differential operator is d2

z + (7z3+101)z
64(z2+z+1)2(z−1)2 . The equation has 4 singular points 

and is a pullback of the standard equation. Note that our choice of evaluation is not 
‘minimal’, i.e., the map induced by h̃ and h from A((0)) to C(z) has image C(z3). The 
operator is a pullback of the standard operator

( d

dz
)2 + 3

16z2 + 2
9(z − 1)2 − 101

576z(z − 1) for S4.

(4). The group ASL2
5 has ring of invariants A := C[f9, f10, f11], generators of degree 

30, 20, 12, respectively, with relation f2
9 + f3

10 − 1728f5
11 = 0. In the present case A((0)) =

C( f2
9

f5
11
, f

3
10

f5
11

) with f2
9

f5
11

= − f3
10

f5
11

+ 1728. This leads to the evaluations h̃ : (f9, f10, f11) �→
(−123/2(z − 1)1/2, 12 · z1/3, 1) and

h : (f9, f10, f11) �→ (129z10(z − 1)8,−126z7(z − 1)5,−123z4(z − 1)3).

The differential operator is d2
z+ 864z2−989z+800

3600z2(z−1)2 . After z �→ 1 −z, this becomes the standard 
operator

( d

dz
)2 + 3

16z2 + 2
9(z − 1)2 − 611

3600z(z − 1) for A5.

5.2. G = G168 ⊂ SL3

5.2.1. Computation of the differential equation related to Klein’s quartic
For the unique simple group G ⊂ SL(3, C) of order 168 we use notations and formulas 

of [2, p. 50]. Here C[X1, X2, X3]G = C[F4, F6, F14, F21]/(rel), where F4, F6, F14, F21 are 
of degrees 4, 6, 14, 21. The Klein quartic Z ⊂ P 2 is given by F4 = 0 with F4 := 2(X1X

3
2 +

X2X
3
3 + X3X

3
1 ).

Unlike the case of finite irreducible subgroups of SL2 (compare Example 3.9), a direct 
computation of the standard operator for these data with the methods of Section 3
meets difficulties. How to compute f ∈ C(Z)∗ such that σ(f)

f = σX1
X1

for all σ ∈ G? 

How to compute the derivatives w.r.t. dt = d
dt of a basis of the solution space W =<

f, fX2/X1, fX3/X1 >?
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We now use the methods of Section 4. The graded algebra of Z/G is

{C[X1, X2, X3]/(F4)}G = C[F6, F14, F21]/(F 2
21 − 4F 3

14 − 54F 7
6 );

the field A((0)) = C(Z/G) equals C( F 6
21

F 21
6
, F

3
14

F 7
6

) with relation F 6
21

F 21
6

= (4F 3
14

F 7
6

+ 54)3. Hence 

A((0)) = C(t) with t = F 3
14

F 7
6

. A resulting evaluation is

h : (F4, F6, F14, F21) �→ (0, t2(4t + 54)3, t5(4t + 54)7, t7(4t + 54)11).

Now Procedure 4.3 leads to an operator S0 with singularities t = 0, −27
2 , ∞. Its local 

exponents are 1, 2/3, 1/3||1, 1/2, 3/2|| − 3/7, −5/7, −6/7.
The change t = −27

2 z (hence dt = − 2
27dz) moves the singularities to 0, 1, ∞, with the 

same local exponents. The corresponding operator is

S1 := d3
z + 1

z
d2
z + 72z2 + 61z + 56

252z2(z − 1)2 dz −
6480z3 + 3945z2 + 13585z − 5488

24696z3(z − 1)3 .

The conjugate S2 := z−1(z − 1)−1S1z(z − 1) has the “classical” local exponents and 
coincides with the formulas in the literature [12,23,18]:

S2 = d3
z + 7z − 4

z(z − 1)d
2
z + 2592z2 − 2963z + 560

252z2(z − 1)2 dz +
72·11
73 z − 40805

24696
z2(z − 1)2 .

5.2.2. The Hessian of the Klein quartic
The Hessian is the G-invariant curve Z ⊂ P 2 with equation F6 = 0. The graded 

algebra of Z/G is C[F4, F14, F21]/(F 2
21−4F 3

14+8F14F
7
4 ) and C(Z)G = C(t) with t = F 2

14
F 7

4
. 

A resulting evaluation is

h : (F4, F6, F14, F21) �→ (t3(t− 2)2, 0, t11(t− 2)7, 2t16(t− 2)11).

Procedure 4.3 then yields (after a change of variables) the operator

d3
z + 3(3z − 2)

2z(z − 1)d
2
z + 3(116z − 35)

112z2(z − 1)dz + 195
2744z2(z − 1) .

5.2.3. More third order operators with group G = G168
The third order operators over C(z), or more precisely, the differential modules of 

dimension 3, with singular points 0, 1, ∞ and differential Galois group G are classified 
in [18], using the “transcendental” Riemann–Hilbert correspondence. Each case is given 
by a branch type [e0, e1, e∞] and a choice of one of the two irreducible characters χ2, χ3
of dimension 3. The LIST is:
[2, 3, 7], 1 case, g = 3; [2, 4, 7], 1 case, g = 10; [2, 7, 7], 1 case, g = 19;
[3, 3, 4]∗, 2 cases, g = 8; [3, 3, 7], 1 case, g = 17; [3, 4, 4]∗, 1 case, g = 15;
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[3, 4, 7]∗, 2 cases, g = 24; [3, 7, 7], 2 cases, g = 33; [4, 4, 4]∗, 2 cases, g = 22;
[4, 4, 7], 1 case, g = 31; [4, 7, 7]∗, 2 cases, g = 40; [7, 7, 7], 1 case, g = 49.
For many cases in LIST these data lead to a computation of the third order operator. 
The cases where this fails are indicated by a ∗.

In general the Fano curve corresponding to an element in LIST is not explicitly known. 
If one can identify for an item in LIST the G-invariant (Fano) curve Z ⊂ P 2, this results 
in an evaluation and via Procedure 4.3 in a computation of the desired differential 
operator. [2, 3, 7], [2, 4, 7] in LIST correspond to F4 = 0 and F6 = 0. [2] considered 
smooth G-invariant Z ⊂ P 2 with quotient of genus 0 and did not find new examples.

We extend his search and consider the (singular) curves aF 3
4 + F 2

6 = 0.
If such a curve Z = Za leads to an evaluation h̃ with h̃(F4) = 1 and h̃(F6) = λ (so 
λ2 = −a) and h̃(F14) = t, then

h(F21)2 = 4t3 − 44λt2 + (126λ4 + 68λ2 − 8)t + 54λ7 − 938λ5 + 172λ3 − 8λ.

The discriminant of this polynomial in t equals −64(27λ2 − 2)3(λ2 +2)4, so λ = (−2)1/2
and λ = (2/27)1/2, or a = 2, a = −2/27 are special. Note that if the discriminant is 
nonzero then the quotient map from Za would have at least 5 branch points. Both special 
cases lead to quotient maps with exactly 3 branch points. In fact Z−2/27 is birational to 
the Klein quartic (of genus 3), and Z2 is birational to the curve given by F6 = 0.

For λ = (−2)1/2 one finds h̃(F21) = 2(−t +9
√
−2)(t +7

√
−2)1/2 and for λ = (2/27)1/2

we have h̃(F21) = −2
√

3
243 (27t +

√
6)(−27t + 35

√
6)1/2. Using 4.3 the corresponding opera-

tors are found. The operators have three singular points and the solutions are generalized 
hypergeometric functions. We remark that the above “Fricke pencil” Za was also studied 
by M. Kato (see [13, Prop. 2.3]), using Schwarz maps. In a rather different way than 
our’s he found the two special cases as well as the corresponding third order differential 
operators.

5.2.4. Computing the evaluation for differential operators in LIST
An element in LIST is given by a topological covering of P 1 \ {0, 1, ∞} with group 

G = G168, produced by a triple g0, g1, g∞ ∈ G satisfying g0g1g∞ = 1 and generating G. 
One may hope that from a given triple one can read off a part of an evaluation h of the 
operator, namely the orders of the functions h(F4), h(F6), h(F14), h(F21) at the points 
0, 1, ∞.

In a number of cases knowledge of these orders together with the relation between the 
four invariants suffices to compute a suitable h.

We illustrate this for the item [2, 4, 7] in LIST :
Let x, y, z denote a basis of solutions for the differential equation we try to compute. 
As F4, F6, F14, F21 are explicit expressions in x, y, z, and one has (by [18, §5.2]) lower 
bounds −1

2 , −
3
4 , 

8
7 for the local exponents at t = 0, 1, ∞, one deduces

(h(F4), h(F6), h(F14), h(F21)) =
(

f4
2 3 ,

f6
3 4 ,

f14 + g14t
7 10 ,

f21(t + 2400)
10 15

)

t (t− 1) t (t− 1) t (t− 1) t (t− 1)
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for constants f4, f6, f14, g14, f21 (unique up to an appropriate scaling). The relation be-
tween the Fj ’s yields (f4, f6, f14, g14, f21) = (−7

4 , −3
4 , −149

8 , 14 , 
1
8 ).

Evaluations for several items in LIST. The same idea used for [2, 4, 7] above, results 
in evaluations for various other items in LIST. The next table presents the results. The 

first row gives the branch type and the rational functions h(F4), h(F6), h(F14), h(F21). 
The second row lists the local exponents at 0, 1, ∞ and the accessory parameter μ (see 

[18, § 5.1]). The operator is uniquely determined by these data.

• [2, 3, 7] 0, −33

t3(t− 1)4 , 2238

t7(t− 1)9 , 23312

t10(t− 1)14

−1
2 , 0, 

1
2 || − 1

3 , −
1
3 , 0 || 87 , 

9
7 , 

11
7 || 12293

24696 .

• [2, 4, 7] −7
4t2(t− 1)3 , − 3

4t3(t− 1)4 , − (−149 + 2t)
8t7(t− 1)10 , (t + 2400)

8t10(t− 1)14

−1
2 , 0, 

1
2 || − 3

4 , −
1
4 , 0 || 87 , 

9
7 , 

11
7 || 5273

10976 .

• [2, 7, 7] 14
t2(t− 1)3 , 3

t2(t− 1)5 , 4(−294 + 294t + t2)
t6(t− 1)12 , 8(t− 2)(t2 − 9604t + 9604)

t9(t− 1)18

−1
2 , 1, 

1
2 || − 6

7 , −
5
7 , −

3
7 || 87 , 

9
7 , 

11
7 || 1045

686 .

• [3, 3, 7] 0, − 2433

t4(t− 1)4 , 21238

t9(t− 1)9 , 2
17312(1 − 2t)
t14(t− 1)14

−2
3 , −

1
3 , 0 || − 2

3 , −
1
3 , 0 || 97 , 

11
7 , 

15
7 || 0.

• [3, 7, 7] 0, 33

t4(t− 1)5 , 38(9t− 8)
t9(t− 1)12 , 3

12(27t2 − 36t + 8)
t14(t− 1)18

−2
3 , −

1
3 , 0 || − 6

7 , −
5
7 , −

3
7 || 10

7 , 
13
7 , 

19
7 || 830

1029 .

• [4, 4, 7] −14
t3(t− 1)3 , −12

t4(t− 1)4 , 2
5(8t2 − 8t− 147)
t10(t− 1)10 , 2

9(2t− 1)(4t2 − 4t + 2401)
t15(t− 1)15

−3
4 , −

1
4 , 0 || − 3

4 , −
3
4 , 0 || 97 , 

11
7 , 

15
7 || 0.

• [7, 7, 7] 16
t3(t− 1)3 , 512t2 − 512t + 5

16t5(t− 1)5 , P6(t)
28t12(t− 1)12 , (2t− 1)P8(t)

212t18(t− 1)18

−6
7 , −

5
7 , −

3
7 || − 6

7 , −
5
7 , −

3
7 || 97 , 

11
7 , 

29
7 || 0

where P6(t) = 220t5(t − 3) + 215t3(385t − 610) + 27t(74441t − 457) + 1 and
P8(t) = 229t7(t −4) −223t5(8869t −27503) −215t3(7074623t −2338174) +28t(1963429t −
5413) − 1.

Remarks 5.1. (1). For the remaining items in LIST the approach above does not deter-
mine h (up to equivalence).
(2). For the case [3, 4, 4] a choice of h leads to a proper subgroup of G (compare [18, 
§8.2.1 part (6)]).
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(3). The items [3, 3, 7] and [3, 7, 7] correspond to weak pullbacks of the “standard” case 

[2, 3, 7], with pullback functions φ(t) = 4t(t + 1) + 1 and φ(t) = − (27t2−36t+8)2
t−1 , respec-

tively.
(4). The Fano curve for [2, 4, 7] is given by the equation − 7

54F
3
6 − 1

8F4F14+F 3
4F6 = 0 and 

it has genus 10. [2, 7, 7] and [4, 4, 7] are weak pullbacks of the “standard” case [2, 4, 7], 
with pullback functions φ(t) = −(t−1)2

4(t−1) and φ(t) = (2t − 1)2, respectively. The Fano 
curves for these two cases can be obtained from the above one by the same pullbacks.

5.3. H = HSL3
72 ⊂ SL3

The group H = HSL3
72 ⊂ SL3 has order 216 and together with its invariants it is 

described in [5, p. 59] and in [19, Thm. 4]. We use the latter and write

P = xyz, Q = x3y3 + x3z3 + y3z3, S = x3 + y3 + z3,

F1 = S2 − 12Q,F2 = (x3 − y3)(x3 − z3)(y3 − z3), F3 = S4 + 216P 3S,

F4 = (S2 − 18P 2 − 6PS)2.

The algebra of invariants is C[x, y, z]H = C[F1, F2, F3, F4] with relation (432F 2
2 +3F1F3−

F 3
1 )2 − 4(F 3

4 − 3F 2
4F3 + 3F4F

2
3 ) = 0.

Let Z ⊂ P 2 be given by F1 = 0. The graded algebra of Z/H is A = C[F2, F3, F4]/
(2162F 4

2 − F 3
4 + 3F 2

4F3 − 3F4F
2
3 )). Then A((0)) = C(Z)H equals C(F

4
2

F 3
3
, F4
F3

) and 

2162 F 4
2

F 3
3

= (F4
F3

)3 − 3(F4
F3

)2 + 3F4
F3

, so A((0)) = C(F4
F3

). This yields the evaluation 

(F1, F2, F3, F4) �→ (0, 4
√

t3−3t2+3t
66 , 1, t) which by scaling simplifies to (F1, F2, F3, F4) �→

(0, t3 − 3t2 + 3t, 36t(t2 − 3t + 3), 36t2(t2 − 3t + 3)). From this, Procedure 4.3 yields the 
differential operator

d3
t + 5t3 − 15t2 + 15t− 6

(t3 − 3t2 + 3t)(t− 1)d
2
t + (160t3 − 480t2 + 480t− 117)(t− 1)

48(t3 − 3t2 + 3t)2 dt

− (160t3 − 480t2 + 480t− 189)(t− 1)3

432(t3 − 3t2 + 3t)3 .

One observes that t = 1 is an apparent singularity and that ∞ and the three zeros of 
t3 − 3t2 + 3t are the singular points.

At present no differential equation over C(t) with three singularities and Galois group 
H seems to be known. Another differential equation of order 3 with Galois group H was 
found by M. van Hoeij, see [10, § 2].
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6. Differential equations for A5 ⊂ SL3

Consider A5 ⊂ SL3(Q(ζ5)) ⊂ SL3(C) (with ζ5 = e2πi/5) the group with generators

⎛
⎜⎝ 1 0 0

0 ζ5 0
0 0 ζ−1

5

⎞
⎟⎠ ,

1√
5

⎛
⎜⎝ 1 2 2

1 ζ2
5 + ζ−2

5 ζ5 + ζ−1
5

1 ζ5 + ζ−1
5 ζ2

5 + ζ−2
5

⎞
⎟⎠ .

This inclusion corresponds to the irreducible character χ2 of dimension 3 for A5. The 
other irreducible character χ3 of dimension 3 is obtained via the automorphism ζ5 �→ ζ2

5
of Q(ζ5)/Q. Denote by ASL2

5 ⊂ SL2(C) the preimage of A5 under the “symmetric square 
map” SL2 → SL3 : A �→ sym2A. The group ASL2

5 (called the ‘icosahedral group’, of order 
120) has two irreducible characters of dimension 2 and their second symmetric powers 
are the above 3-dimensional characters χ2, χ3 of A5. The following proposition may be 
known, but we found no proof in the literature. The argument presented here relates 
to [16, Theorem 2.1]. We also offer a second proof using the solution of an embedding 
problem.

Proposition 6.1. (Comparing differential modules for A5 and ASL2
5 ).

(1). Suppose that the 3-dimensional differential module M over C(z) has differential 
Galois group A5. Then there is a 2-dimensional differential module N with differential 
Galois group ASL2

5 such that sym2N is isomorphic to M .
(2). The module N is unique up to tensoring with a 1-dimensional module D such that 
D⊗2 is the trivial differential module 1.

First proof of (1). The action of A5 on the solution space W of M induces an action 
on sym2W . It has an invariant line (which can be interpreted as an invariant quadratic 
form on W ); this corresponds to a 1-dimensional submodule T of sym2(M). In terms of 
a basis of M , a nonzero element of T is a nondegenerate quadratic form. This form has 
a nontrivial zero over C(z) since the latter is a C1-field. Hence there is a basis x1, x2, x3
of M such that T is generated by x1x3 − x2

2. Moreover T is the trivial module since A5
is simple. For some q ∈ C(z)∗ one has ∂(q(x1x3 − x2

2)) = 0.
The equation 1

q∂(q(x1x3 − x2
2)) = 0 implies that the matrix A of ∂ w.r.t. the basis 

x1, x2, x3 of M has the form 

⎛
⎜⎝

a1 b1 0
2b3 −q′

2q 2b1
0 b3 −a1 − q′

q

⎞
⎟⎠. Since A5 is simple, detM = 1. 

This implies that the equation y′ = tr(A)y has a solution in C(z). Therefore q−3/2 ∈ C(z)
and thus q is a square.

After changing the basis of M one has q = 1. Now ∂(x1x3 − x2
2) = 0 implies that 

the matrix of ∂ with respect to the basis {x1, x2, x3} has the form 

⎛
⎜⎝ 2a b 0

2c 0 2b
0 c −2a

⎞
⎟⎠ for 
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certain a, b, c. Consider the 2-dimensional module N and a basis y1, y2 such that the 
matrix of ∂ is 

(
a b
c −a

)
. Then sym2(N) has on basis x1 = y2

1 , x2 = y1y2, x3 = y2
2 the 

above matrix. Thus sym2N ∼= M . The differential Galois group G ⊂ SL2 of N has the 
property that its image sym2(G) in SL3 equals A5. Hence the action of G on P 1 is that 
of A5 and so G = ASL2

5 .

Second proof of (1). The equivalence of Tannaka categories Diffk/k → Reprπ, with 

k = C(z), π = Gal(k/k), translates 6.1(1) into solvability of the embedding problem for 
1 → {±1} → ASL2

5 → A5 → 1 , namely:

Any continuous surjective homomorphism π → A5 lifts to a continuous surjective 
homomorphism π → ASL2

5 .

According to [15, Thm. 1.10(a)], this holds for k = C(z).

Proof of (2). Let the 1-dimensional module D satisfy D⊗2 = 1. Then sym2(D ⊗ N) ∼=
D⊗2 ⊗ sym2(N) = M . This proves one implication for part (2) of 6.1. Using the equiva-
lence of Tannaka categories, part (2) translates into:
Given (for i = 1, 2) surjective continuous homomorphisms ρi : π → ASL2

5 with 
sym2(ρ1) ∼= sym2(ρ2). Then a continuous homomorphism χ : π → {±1} ⊂ ASL2

5 ex-
ists such that ρ1 ∼= ρ2 ⊗ χ.

Let can : SL2 → PSL2 be the canonical map. The assumption on ρ1, ρ2 is equivalent 
to can ◦ ρ1 ∼= can ◦ ρ2. Since A5 ⊂ PSL2 is unique up to conjugation, we may suppose 
can ◦ ρ1(g) = can ◦ ρ2(g) for every g ∈ π. Hence ρ1(g) = χ(g)ρ2(g) for some continuous 
homomorphism χ : π → {±1}. �

Let L
st,A

SL2
5

denote the standard second order operator for ASL2
5 with local exponents 

1/4, 3/4||1/3, 2/3|| − 2/5, −3/5 (see §5.1 (4)). Define the standard operator Lst,A5 to be 
the second symmetric power of L

st,A
SL2
5

.

Proposition 6.2. Every third order operator L over C(z) with differential Galois group 
A5 is equivalent to a weak pullback of Lst,A5.

Proof. This follows from Proposition 6.1 and Klein’s theorem for second order equations 
with group ASL2

5 . Indeed, the given L equals sym2(L2) for a second order operator L2
with differential Galois group ASL2

5 . According to Klein’s theorem L2 is a weak pullback 
of the standard operator L

st,A
SL2
5

. Taking symmetric squares the result follows. �
Remarks 6.3. Differential operators for A5, ASL2

5 and the data of [18]. (1). [18] lists 
all third order differential operators (up to equivalence) with differential Galois group 
A5 and singular points 0, 1, ∞. The branch types are [2, 3, 5], [2, 5, 5], [3, 3, 5], [3, 5, 5](1),
[3, 5, 5](2), [5, 5, 5]. For each type there are two differential modules; one for each of the 
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3-dimensional irreducible characters χ2, χ3. The genera for the Picard–Vessiot fields are 
0, 4, 5, 9, 9, 13.

One discovers, by comparing the genera, that each A5 case is the second symmetric 
power of two, three or four second order equations with group ASL2

5 and singularities 
0, 1, ∞ (also given as a list in [18]). This is explained by Proposition 6.1 and the obser-
vation that there are three 1-dimensional modules D with D⊗2 = 1 and singular points 
0, 1, ∞. Namely D = C(z)e with ∂e = ae and a ∈ { 1

2z , 
1

2(z−1) , 
1

2z(z−1)}.
(2). Comparing the local exponents for ASL2

5 and A5 in both lists of [18] one further 
discovers that only for the two cases of [3,3,5] the operator L3 is a second symmetric 
power. In all other cases the module M is a sym2(N) but this does not hold for the 
operators.

Examples 6.4. Invariants, evaluations and differential operators for A5.
(1). Generators for the ring C[x, y, z]A5 are, according to [5],

F2 = x2 + yz, F6 = 8x4yz−2x2y2z2 −x(y5 + z5)+ y3z3;F10 = 320x6y2z2 −160x4y3z3+

20x2y4z4 + 6y5z5 − 4x(y5 + z5)(32x4 − 20x2yz + 5y2z2) + y10 + z10;F15.

There is one relation (which determines F15 up to sign)

F 2
15 + 1728F 5

6 − F 3
10 − 720F2F

3
6F10 + 80F 2

2F6F
2
10 − 64F 3

2 (−F10F2 + 5F 2
6 )2 = 0.

(2). The evaluation for the A5-invariant curve Z ⊂ P 2 given by F2 = 0.
The graded algebra for Z/A5 is A = C[F6, F10, F15]/(F 2

15 + 1728F 5
6 − F 3

10), hence 

A((0)) = C(Z)A5 equals C(F
2
15

F 5
6
, F

3
10

F 5
6

) with F 2
15

F 5
6

+ 1728 − F 3
10

F 5
6

= 0. This leads to the 

evaluations h̃ : (F2, F6, F10, F15) �→ (0, 1, t1/3, (t − 1728)1/2) and h : (F2, F6, F10, F15) �→
(0, t4(t − 1728)3, t7(t − 1728)5, t10(t − 1728)8).

The third order differential operator deduced from this has three singular points 
0, 1728, ∞. Scaling moves the singular points to 0, 1, ∞ and then conjugation with the 
function (t − 1)−1/2t−1/3 results in an operator Lc with the required local exponents: 
Lc = Lst,A5 = sym2(L

st,A
SL2
5

).
The operator Lc has to be equivalent to one of the two operators for A5 with 

branch type [2, 3, 5] in [18]. Explicitly, Lc is equivalent to Lu, the one with local data 
−1, −1/2, 1/2|| − 2/3, −1/3, 0||6/5, 9/5, 2||μ = 43/225. Below are formulas for Lc, for L̃u

obtained from Lu by t �→ 1 − t, and for operators L, L′ satisfying L̃uL = L′Lc (implying 
L̃u and Lc define the same differential module, hence Lc and Lu are equivalent).

Lc = d3
t + 3(2t− 1)

t(t− 1) d2
t + 6264t2 − 6389t + 800

900t2(t− 1)2 dt + 1728t− 989
1800t2(t− 1)2 ,

L̃u = d3
t + 8t− 4

d2
t + 12744t2 − 13169t + 2000

2 2 dt + 7776t2 − 12683t + 4457
2 3 ,
t(t− 1) 900t (t− 1) 1800t (t− 1)
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L = (t2 − t)d2
t + (14t

5 − 4
3)dt + 48t− 49

60(t− 1) ,

L′ = (t2 − t)d2
t + (54t

5 − 16
3 )dt + 1440t2 − 1453t + 280

60t(t− 1) .

(3). Comparing evaluations for ASL2
5 and A5.

Consider a second order operator L2 with differential Galois group ASL2
5 and Picard–

Vessiot field K+. The third order operator L3 := sym2(L2) has differential Galois group 
A5 and Picard–Vessiot field K = (K+)Z , where Z is the center of ASL2

5 . The evaluation 
for L2 is deduced from a homomorphism h1 : C(z)[X, Y ] → K+ which sends X, Y
to a basis of solutions of L2. The evaluation for L3 is deduced from a homomorphism 
h2 : C(z)[X1, X2, X3] → K which sends X1, X2, X3 to a basis of solutions for L3. We 
may suppose that X1, X2, X3 are mapped to h1(X)2, h1(XY ), −h1(Y 2). It follows that 
F2 = X1X3 +X2

2 lies in the kernel of the evaluation h2 : C[X1, X2, X3] → K. Hence the 
evaluation for L3 is induced by an evaluation for L2. �
Examples 6.5. Operators for other evaluations for A5 ⊂ SL3. An evaluation with nonzero 
image of F2 to 0 is, after scaling, given by (F2, F6, F10, F15) �→ (1, a, b, w) with a, b ∈
C(z) not both constant. The assumption w = 0 leads to a contradiction. The relation 
between the invariants therefore implies w2 ∈ C(z)∗. This leads to h : (F2, F6, F10, F15) �→
(w2, w6a, w10b, w16). The evaluation induces an A5-invariant curve Z ⊂ P 2 such that the 
normalisation of Z/A5 has genus 0. We discuss a family of such curves Z.

Consider the A5-invariant curve Z given by −λF 3
2 + F6 = 0. Then an evaluation as 

above with a = λ ∈ C, b = z requires w2 ∈ C[z] to be a polynomial of degree 3. The 
singular points of the third order operator are included in the union of {0, ∞} and the 
zeros of w2. To have at most 3, the discriminant −4096λ5(λ −1)2(27λ −32)3 of w2 needs 
to vanish. This results in the cases:
(1). λ = 1. The curve given by −F 3

2 + F6 = 0 is reducible; the defining polynomial has 
factors x and x + y + z and a third one defining an irreducible rational curve of degree 
4. The associated operator

L = d3
t + 3(7t2 − 147t + 676)

2(t− 4)(3t− 37)(t− 8)d
2
t + 3(149t2 − 3367t + 13584)

100(3t− 37)(t− 8)(t− 4)2 dt

− 3(t− 29)
200(3t− 37)(t− 8)(t− 4)2)

factors. The two right hand factors are L2 = d2
t + t−6

t2−12t+32dt −
1

100(t2−12t+32) and 

L1 = dt + 1
2(t−4) . A basis of solutions for L2 is (t − 6 ±

√
t2 − 12t + 32)1/10, hence the 

Galois group of L2 is the dihedral group D10 (of order 20). One checks that the solution √
t− 4 of L1 is in the Picard–Vessiot field of L2. Hence the Galois group of L is the 

subgroup D10 of A5.
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(2). λ = 0. The curve given by F6 = 0 has genus 4 and is a Galois covering of P 1
z with 

group A5 ramified over the points 0, −64, ∞. The corresponding order three differential 
operator, with indeed Galois group A5, is

d3
t + 7t + 256

2t(t + 64)d
2
t + 149t + 1024

100t2(t + 64)dt −
1

200t2(t + 64) .

(3). λ = 32
27 . We give some details for this interesting example.

The curve −32
27F

3
2 + F6 = 0 has genus 0 and has 10 singular points (all over the 

cyclotomic field Q(ζ5)). The curve is parametrized by [−5s3 : s6 + 3s : 3s5 − 1] and has 
function field C(s). One has C(s)A5 = C(z) where z equals

(s60 + 2388s55 + 326394s50 − 8825700s45 + 117672975s40 + 83075976s35 + 380773868s30

−83075976s25 + 117672975s20 + 8825700s15 + 326394s10 − 2388s5 + 1)

/288s5(s2 + s− 1)5(s4 + 2s3 + 4s2 + 3s + 1)5(s4 − 3s3 + 4s2 − 2s + 1)5.

The evaluation obtained from this leads, using Procedure 4.3, the operator

L = d3
z + 81(567z − 4864)

2(81z − 1024)(81z − 448)d
2
z + 19683(4023z − 46592)

100(81z − 448)(81z − 1024)2 dz

− 531441
200(81z − 448)(81z − 1024)2

with Picard–Vessiot field C(s) and basis of solutions {−5s3, s6 + 3s, 3s5 − 1}. The 
operator L is equivalent to the standard one, but is not itself a symmetric square. Indeed, 
considering the degrees in s, no quadratic relation over C between the three solutions 
exists. The branch points of C(s) ⊃ C(z) are z = 448

81 , 102481 , ∞, and the ramification type 
is [2, 3, 5].
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