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An extended model order reduction technique for linear delay systems*

S. Naderi Lordejani1, B. Besselink2 and N. van de Wouw1,3

Abstract— This paper presents a model reduction technique
for linear delay differential equations that, first, preserves the
infinite-dimensional nature of the system, and, second, enables
the preservation of additional properties such as physical inter-
connection structures or uncertainties. This structured/robust
reduction of delay systems is achieved by allowing additional
degrees of freedom in the characterization of (bounds on)
controllability and observability energy functionals, leading
to a so-called extended balancing procedure. In addition, the
proposed technique preserves stability properties and provides
an a priori error bound. The relevance of the method in
controller reduction is discussed and illustrative numerical
examples are presented.

I. INTRODUCTION

Engineering systems such as drilling and
electric/electronic systems [1], [2], and also phenomena
in economics and biology, can be described by models in
terms of delay differential equations [3]. However, such
models are often complex as those are described by a large
number of equations, which complicates or even prohibits
simulation, analysis, or controller synthesis. To address this
issue of complexity, we present a model order reduction
technique for such delay models in this paper.

For the model order reduction of linear delay-free systems,
many techniques, such as balanced truncation [4], have been
proposed over the past four decades (see [5] for an overview).
For time delay systems, some model reduction techniques
have also been proposed. Most of these aim at approximating
a time delay system by a low-order finite-dimensional model
[6], [7], [8]. This is because analysis and design based
on a finite-dimensional model enables the use of well-
developed classical systems and control theory. However,
today, powerful analysis and controller design techniques are
available for time delay system. Moreover, for a particular
order of the reduced model, a reduced model in terms of
delay differential equations has in general the potential to
be more accurate than a finite-dimensional approximation
of the same order [9]. Therefore, delay-structure preserving
methods, i.e., methods that preserve the infinite-dimensional
nature of the time delay system during model reduction,
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have gained much attention [9], [10], [11], [12], [13]. In
many cases, however, there is a need to preserve additional
properties during model reduction. Important examples are
physical interconnection structures (e.g., the interconnection
of a system and a controller) or the presence of uncertainties.
In this paper, we develop such structured/robust model
reduction techniques for linear time delay systems.

Specifically, the main contribution of this paper is the
introduction of a so-called extended balanced truncation pro-
cedure for time delay systems. Following [12], [13], bounds
on controllability and observability energy functionals are
computed and used as a basis for model reduction. However,
compared to the results in [13], the current paper introduces
additional degrees of freedom in the computation of (bounds
on) these functionals through the use of slack variables. This
procedure is motivated by the technique of extended balanced
truncation for finite-dimensional systems in [14], [15], which
is known to enable structured/robust model reduction [16].

We will show that extended balanced truncation for delay
differential equations enjoys similar properties. In particular,
we will show that the proposed technique is useful for the
structured model reduction of closed-loop time delay systems
and also for delay systems with polytopic uncertainties. We
will also prove that this technique preserves both asymptotic
stability and the infinite-dimensional nature of the time delay
system. Moreover, we show that it provides an a priori
computable and guaranteed delay-dependent error bound.
Outline. After introducing notation, a detailed problem state-
ment is given in Section II. Section III introduces and gives
a characterization of the observability and controllability en-
ergy functionals. Section IV is devoted to the description of
the proposed delay-dependent model order reduction proce-
dure and prospective applications of the proposed technique
are given in Section V. Numerical examples are provided in
Section VI and conclusions are presented in Section VII.
Notation. The notation R (R≥0) refers to the field of (non-
negative) real numbers. The Euclidean norm of a vector x ∈
Rn is denoted by |x| =

√
xTx. The space of all functions

x : [a, b] → Rn with bounded norm ‖x‖22 =
∫ b
a
|x(t)|2 dt is

denoted by L2([a, b],Rn); L∞([a, b],Rn) indicates the space
of all bounded piecewise continuous functions mapping [a, b]
into Rn. The notation Cn = C([−τ, 0],Rn) refers to the
Banach space of absolutely continuous functions that map the
interval [−τ, 0] into Rn. Moreover, Wn = W([−τ, 0],Rn)
refers to the space of functions ϕ ∈ Cn with square-integrable
derivative, i.e., ϕ̇ ∈ L2([−τ, 0],Rn) for ϕ ∈ Wn [17]. A
block-diagonal matrix with A1, . . ., Am on the diagonal is
represented as blkdiag{A1, · · · , Am}, and Im is the m×m
identity matrix. Superscripts T and H denote matrix trans-
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position and conjugate transposition, respectively, whereas a
star ∗ in a symmetric matrix represents a symmetric term.

II. PROBLEM STATEMENT

Consider a time delay system Ω with a point-wise delay
in the state variables as

Ω :


ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t),

y(t) = Cx(t) + Cdx(t− τ) +Du(t),

x0 = ϕ,

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm denotes
the external input, y(t) ∈ Rp is the output, and τ denotes a
constant time delay. We assume that there exists a constant
τ̄ > 0 such that for each τ ∈ [0, τ̄ ], the system is asymptot-
ically stable for zero input. For t ∈ R, the function segment
xt : [−τ, 0]→ Rn denotes the state of Ω at the time instance
t with xt(θ) = x(t+θ) for θ ∈ [−τ, 0]. The initial condition
is given by ϕ, such that x(t) = ϕ(t), t ∈ [−τ, 0]. The
objective is to find a reduced-order model Ω̂ that has the same
stability properties and delay structure as Ω and that closely
approximates the input-output behaviour of Ω. Moreover,
the model reduction procedure itself should be applicable to
time delay systems with polytopic uncertainties and it should
facilitate structured model order reduction (i.e., model order
reduction with the preservation of physical interconnection
structures in a system) for time delay systems.

We should emphasize that due to the fact that the state
belongs to Cn, the system Ω has an infinite-dimensional
nature despite the, possibly large, finite number of dynamical
equations describing it. In this paper, model order reduction
is accomplished with respect to only the latter aspect, i.e.,
by reducing the number of dynamical equations of Ω.

III. OBSERVABILITY AND CONTROLLABILITY MATRIX
INEQUALITIES

In this section, we define observability and controllability
functionals for the time delay system Ω. These functionals
are, however, in general challenging to compute exactly.
Therefore, we then define computable Lyapunov-Krasovskii
functionals that upper/lower bound these energy functionals.
We also provide matrix inequalities that characterise these
bounds. The solution to these inequalities is later used as a
basis for an extended model order reduction procedure.

A. Observability functional

The observability energy functional of a system character-
izes the output energy of that system for a non-zero initial
condition and zero input. We give the following definition.

Definition 1 ([12]): The observability functional of the
system (1) is the functional Lo : Cn → R≥0 defined as

Lo(ϕ) =

∫ ∞
0

|y(t)|2dt, (2)

where y(·) is the output of the system (1) for the initial
condition x0 = ϕ and zero input.

We note that the existence of the observability functional
in (2) is guaranteed by the asymptotic stability of the system

Ω for u = 0. As mentioned before, it is in general difficult
to compute the observability functional (2). Therefore, in
the next lemma, we define a computable functional that can
upper-bound this observability functional.

Lemma 1: Consider the asymptotically stable system (1).
If there exist symmetric matrices Q > 0, Qd ≥ 0, Q̄ ≥ 0
and S > 0, and a scalar αo such that

Mo =


N11 Q̄+ SAd Q− S + αoA

TS CT

∗ −Qd − Q̄ αoA
T
d S CTd

∗ ∗ −2αoS + τ2Q̄ 0
∗ ∗ ∗ −Ip

 < 0, (3)

with N11 = SA+ATS +Qd − Q̄, then the functional Eo :
Wn × L2([−τ, 0],Rn)→ R≥0 defined as

Eo(ϕ, ϕ̇) = ϕT (0)Qϕ(0) +

∫ 0

−τ
ϕT (s)Qdϕ(s) ds

+ τ

∫ 0

−τ

∫ 0

θ

ϕ̇T (s)Q̄ϕ̇(s) dsdθ,

(4)

satisfies
Eo(ϕ, ϕ̇) ≥ Lo(ϕ), (5)

for all ϕ ∈ Wn and with Lo as in Definition 1.
Proof: For the time derivative of Eo(xt, ẋt) along the

solutions of (1) for zero input, we obtain

Ėo(xt, ẋt) ≤ 2ẋT (t)Qx(t) + xT (t)Qdx(t)

− xT (t− τ)Qdx(t− τ) + τ2ẋT (t)Q̄ẋ(t)

− (x(t)− x(t− τ))
T
Q̄ (x(t)− x(t− τ)) ,

(6)

where Jensen’s inequality [18] and the Newton-Leibniz
formula have been used. Next, we incorporate the slack
variables S and αo. To this end, we consider the term
2(xT (t) + αoẋ

T (t))S(Ax(t) +Adx(t− τ)− ẋ(t)). Given
(1), this term is always zero for u = 0 and t ≥ 0. Therefore,
adding it to the right-hand side of (6), we obtain

Ėo(xt, ẋt) ≤ 2ẋT (t)Qx(t) + xT (t)Qdx(t)

− xT (t− τ)Qdx(t− τ) + τ2ẋT (t)Q̄ẋ(t)

− (x(t)− x(t− τ))
T
Q̄ (x(t)− x(t− τ))

+ 2(x(t) + αoẋ(t))
T
S(Ax(t)+Adx(t− τ)− ẋ(t)) .

(7)

Next, by adding and subtracting the term |y(t)|2, with y(t)
from (1) for u = 0, to the right hand-side of (7) and
writing the resulting inequality in a compact form, we obtain
Ėo(xt, ẋt) ≤ ξTo (t)M̄oξo(t) − |y(t)|2, where M̄o results
in Mo as in (3) after applying a Schur complement with
respect to the output matrices C and Cd, and ξTo (t) :=
[xT (t), xT (t−τ), ẋT (t)]. This result implies that if M̄o < 0,
and equivalently Mo < 0 due to the Schur complement, then
Ėo(xt, ẋt) ≤ −|y(t)|2; integration of both sides of which on
the interval [0, T ] yields

Eo(xT , ẋT )− Eo(x0, ẋ0) ≤ −
∫ T

0

|y(t)|2dt. (8)

Now, given the facts that Eo(xT , ẋT ) → 0 for T → ∞,
due to the asymptotic stability of the system for zero input,
and that x0 = ϕ, (8) implies that Eo(ϕ, ϕ̇) ≥ Lo(ϕ), which
follows from Definition 1. This completes the proof.
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B. Controllability functional

A controllability functional characterizes the minimum
input energy required by a system of the form (1) to reach
from the zero-state to a final state ϕ. In what follows, we
provide a precise definition for this functional [12].

Definition 2: The controllability functional of the system
(1) is the functional Lc : Dn → R≥0 defined as

Lc(ϕ)=inf

{∫ 0

−∞
|u(t)|2dt

∣∣∣∣∣u∈ L2∩L∞
(

(−∞, 0] ,Rm
)
,

lim
T→∞

x−T = 0, x0 = ϕ

}
,

(9)

where xt is the solution of (1) for u that satisfies the above
and Dn ⊂ Cn is the domain of Lc, that is the space of
function segments ϕ for which Lc(ϕ) is well-defined.

The following lemma provides a characterization of a com-
putable lower-bound on the controllability energy functional.

Lemma 2: Consider the system in (1). If there exists
symmetric matrices P > 0, Pd ≥ 0, P̄ ≥ 0 and R > 0,
and a scalar αc such that

Mc =


M11 P̄ +AdR P −R+ αcRA

T B
∗ −Pd − P̄ αcRA

T
d 0

∗ ∗ −2αcR+ τ2P̄ αcB
∗ ∗ ∗ −Im

< 0, (10)

with M11 = AR + RAT + Pd − P̄ , then the functional
Ec :Wn × L2([−τ, 0],Rn)→ R≥0 defined as

Ec(ϕ, ϕ̇) = ϕT (0)Uϕ(0) +

∫ 0

−τ
ϕT (s)Udϕ(s) ds

+ τ

∫ 0

−τ

∫ 0

θ

ϕ̇T (s)Ū ϕ̇(s) dsdθ,

(11)

with U = R−1PR−1, Ud = R−1PdR
−1, Ū = R−1P̄R−1,

satisfies

Ec(ϕ, ϕ̇) ≤ Lc(ϕ), (12)

for all ϕ ∈ Dn ∩Wn and Lc as in Definition 2.
Proof: The proof is similar to that of Lemma 1.

Remark 1: The variables S, αo in (2), and R, αc in
(10) are referred to as the slack variables. On the contrary,
the variables Q,Qd, Q̄ and U,Ud, Ū (also P, Pd, P̄ ) that
characterise the energy functionals (4) and (11) are called
the main decision variables in this context.

Remark 2: The introduction of the slack variables into
the matrix inequalities (3) and (2) follows an idea in [3,
Chapter 3], where a free term with slack variables is added
to the derivative of an energy functional to alleviate the
conservatism of stability criteria of time delay systems.
Inspired by extended model reduction for delay-free systems
[14], we use the idea of slack variables here to enhance
a model reduction procedure for time delay systems such
that the quality of model approximation is improved and
structured/robust reduction of these systems is facilitated.
In particular, we can freely set S = Q, αo = τ2ᾱo, and
R = P and αc = τ2ᾱc, with ᾱo and ᾱc some positive

scalar variables. Substituting these into (3) and (10), while
imposing the constraints Q̄ = ᾱoQ and P̄ = ᾱcP , one can
recover the matrix inequalities introduced in [13] for τ 6= 0.
The structured/robust reduction is yet to be discussed.

IV. MODEL ORDER REDUCTION BY TRUNCATION

Next, we explain how a general model of the form (1)
can be reduced through a truncation procedure. To this end,
consider a partitioned form of x(t) and xt (and ϕ) as

x(t) =

[
x1(t)
x2(t)

]
, xt =

[
x1,t
x2,t

]
, ϕ =

[
ϕ1

ϕ2

]
, (13)

where x1(t) ∈ Rk and ϕ1 ∈ Wk, with 1 ≤ k < n. The
corresponding partitioning of the system matrices is

A =

[
A11 A12

A21 A22

]
, Ad =

[
Ad,11 Ad,12
Ad,21 Ad,22

]
, B =

[
B1

B2

]
,

C =
[
C1 C2

]
, Cd =

[
Cd,1 Cd,2

]
.

(14)

Using this partitioning, a reduced-order approximation of (1),
denoted by Ω̂, is obtained by truncation of the dynamics
corresponding to x2. Such an approximate model reads

Ω̂ :


ζ̇(t) = A11ζ(t) +Ad,11ζ(t− τ) +B1u(t),

ŷ(t) = C1ζ(t) + Cd,1ζ(t− τ) +Du(t),

ζ0 = ϕ̂,

(15)

where ζ(t) ∈ Rk and ŷ(t) ∈ Rp is an approximate of y(t),
and ϕ̂ ∈ Wk is the initial condition of the reduced model.

The system Ω̂ approximates x1 in the partitioned co-
ordinate. As can be clearly seen from (15), this model
approximation preserves the delay structure. Moreover, as
shown in the sequel, it guarantees the preservation of stability
properties and also a computable a priori error bound, under
certain conditions. To present these central properties, we
first show that the observability and controllability energy
functionals of the reduced-order system can be characterized
in terms of those of the original system Ω.

Lemma 3: Let (3) hold for a scalar αo and symmetric
matrices Q > 0, Qd ≥, Q̄ ≥ 0 and S > 0 of the form

S = blkdiag{S1, S2}, S1 ∈ Rk×k, (16)

Then, the observability functional L̂o : Wk → R≥0 of the
reduced-order system (15) exists, and the functional Êo :
Wk × L2([−τ, 0],Rk)→ R≥0 given as

Êo(ϕ̂, ˙̂ϕ) = ϕ̂T (0)Q11ϕ̂(0) +

∫ 0

−τ
ϕ̂T (s)Qd,11ϕ̂(s) ds

+ τ

∫ 0

−τ

∫ 0

θ

˙̂ϕ
T

(s)Q̄11
˙̂ϕ(s) dsdθ,

(17)

with Q11, Qd,11 and Q̄11 respectively the upper left k × k
subblocks of Q, Qd and Q̄, satisfies Êo(ϕ̂, ˙̂ϕ) ≥ L̂o(ϕ̂) for
all ϕ̂ ∈ Wk.

Proof: The proof uses a similar reasoning as the proof
of [13, Lemma 4].

The next lemma gives a similar characterization for the
controllability functional of the reduced-order model.
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Lemma 4: Let (10) hold for a scalar αc and symmetric
matrices U > 0, Ud ≥ 0, Ū ≥ 0 and R > 0 of the form

R = blkdiag{R1, R2}, R1 ∈ Rk×k. (18)

Moreover, let L̂c : Dk → R≥0 be the controllability func-
tional of the reduced-order system (15). Then, the functional
Êc :Wk × L2([−τ, 0],Rk)→ R≥0 given as

Êc(ϕ̂, ˙̂ϕ) = ϕ̂T (0)U11ϕ̂(0) +

∫ 0

−τ
ϕ̂T (s)Ud,11ϕ̂(s) ds

+ τ

∫ 0

−τ

∫ 0

θ

˙̂ϕ
T

(s)Ū11
˙̂ϕ(s) dsdθ,

(19)

with U11, Ud,11 and Ū11 respectively the upper-left k × k
subblocks of U,Ud and Ū , satisfies Êc(ϕ̂, ˙̂ϕ) ≤ L̂c(ϕ̂) for
all ϕ̂ ∈ Dk ∩Wk.

Proof: The proof is similar to that of Lemma 3.
Given R as in (18) and the satisfaction of (10), it can be

shown that an inequality of the same form and in terms of
P11, Pd,11, P̄11 and R1 holds for the reduced-order model
Ω̂ in (15). Likewise, there is also an equality of the form (3)
holding for the reduced-order model. As a result, Lemmas
3 and 4 imply that the observability and controllability
functionals of the reduced-order system can be obtained by
relevant parts of the energy functionals of the original system
(1) when S in (3) and R in (10) are block-diagonal as in (16)
and (18), respectively. We stress that there is no structure
required in the energy functionals themselves, but only in
the slack variables. These structures on the slack variables
are crucial as without those the properties of the reduced-
order system (15) cannot be guaranteed.

Next, we define an extended-balanced realization of Ω.
Definition 3: A realization as in (1) is said to be extended

balanced if there exists symmetric matrices S > 0, Q > 0,
Qd ≥ 0, Q̄ ≥ 0, and a scalar αo satisfying (3), symmetric
matrices R > 0, P > 0, Pd ≥ 0, P̄ ≥ 0, and a scalar αc
satisfying (10), and, additionally, S and R are such that

S = R = Σ = blkdiag{σ1Im1 , σ2Im2 , · · · , σqImq}. (20)

Here, the constants σi > 0, satisfying σi > σi+1, i ∈
{1, ..., q−1}, are extended singular values and Σqi=1mi = n.

As S and R are symmetric positive definite matrices, there
exists a coordinate transformation T which transforms (1)
into an extended balanced form, as stated in the next lemma,
the proof of which follows from standard results in, e.g., [19].

Lemma 5: Let there exists symmetric matrices S > 0,
Q > 0, Qd ≥ 0 and Q̄ ≥ 0, and a scalar αo satisfying
(3), and symmetric matrices R > 0, P > 0, Pd ≥ 0 and
P̄ ≥ 0, and a scalar αc satisfying (10). Then, there exists
a coordinate transformation x(t) = Tz(t), with T ∈ Rn×n,
such that the realization in the new coordinates is extended
balanced, i.e., the nonsingular matrix T can be chosen such
that TTST = T−1RT−T = Σ, with Σ, as in (20), being the
solution (for S and R simultaneously) of (3) and (10).

Remark 3: In the literature on finite-dimensional systems,
a realization is said to be balanced if 1) the states that are
easy to observe are those which are also easy to control,

and vice versa, and, 2) the state components are ordered
in terms of their contribution to the input-output behaviour
of the system [20]. However, the transformed system due
to Lemma 5 does not fully possess these properties. This
is because the balancing procedure is based on the slack
variables S and R, which do not explicitly contribute to
the energy functionals (4) and (11). Moreover, the balancing
procedure is performed in a finite-dimensional Euclidean
space with respect to x(t), while the state of a time delay
system is a function segment.

The next theorem states that the described extended model
order reduction technique preserves stability properties.

Theorem 1: Let the system (1), which is asymptotically
stable for zero input, be in an extended-balanced realization
and consider the reduced-order system (15) obtained by
truncation for k such that k = Σri=1mi for some r > 0
and mi as in Definition 3. Then, the reduced-order system
Ω̂ is asymptotically stable for zero input.

Proof: The satisfaction of (3) and (10) guarantees for
the reduced system the satisfaction of inequalities of the same
form which are sufficient for asymptotic stability.
As stated in the following theorem, an interesting property
of the proposed model reduction technique is the availability
of an a priori bound on the H∞-norm of error system Ω−Ω̂.

Theorem 2: Let the asymptotically stable system Ω as in
(1) be in an extended balanced realization, as defined in
Definition 3, and consider the reduced-order system Ω̂, as
in (15), obtained by truncation for k = Σri=1mi for some
r > 0. Moreover, let αo = αc = α. Then, for any common
input function u ∈ L2∩L∞([0, T ],Rm) and initial conditions
ϕ = 0 and ϕ̂ = 0 for (1) and (15), respectively,∫ T

0

|y(t)− ŷ(t)|2 dt ≤ ε2
∫ T

0

|u(t)|2 dt,

for all T ≥ 0 and where the error bound ε is given as ε =
2
∑q
i=r+1 σi, with σi as in (20).
Proof: This theorem is proved by extending the proof

of [12, Theorem 7] and involving the slack variables.
Remark 4: Given Remark 2, the proposed extended model

reduction technique in this paper recovers the model reduc-
tion technique proposed in [13] as a special case. Thus, the
technique of this paper can outperform that of [13] in terms
of error bound, at the cost of additional complexity in the
characterization of the bounds on the energy functions.

V. PROSPECTIVE APPLICATIONS

An extended model reduction is particularly suited for
applications such as structured and robust model reduction.
Structured model order reduction: If the states of a
system have a particular physical interpretation that should
be preserved in the reduced model, a structured reduction
technique should be used (see [21] for a detailed discussion).
An example is given by the reduction of a plant and/or
controller in a closed-loop setting. One approach for this
problem in the case of delay-free systems is to impose
a proper block-diagonal structure to the gramians in con-
ventional techniques. This approach, however, compromises
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Ωp

Ωc
w(t− τ)v(t)

v(t− τ) w(t)

u(t) y(t)

delay
τ

delay
τ

Ω̂p

Ω̂c
ŵ(t− τ)v̂(t)

v̂(t− τ) ŵ(t)

u(t) ŷ(t)

delay
τ

delay
τ

Fig. 1. A closed-loop system with measurement and actuation delays:
(right) original system, (left) after structured model order reduction.

the flexibility and feasibility of equations involved and can,
moreover, deteriorate the accuracy of the approximation.
Alternatively, in extended structured model reduction, these
structures are imposed to the slack variables [14] to avoid
enforced structures on the main decision variables. With
the proposed technique in this paper, we can take one step
further and speak of extended structured reduction for time
delay systems. The structured model reduction of closed-
loop systems with measurement and actuation delays, as
in the left-side of Fig. 1, is one of the applications of
this technique. More precisely, assume that the plant Ωp is
described by

Ωp :


ẋp(t) = Apx(t) +Bpuu(t) +Bpvv(t),

y(t) = Cpyx(t),

w(t) = Cpwx(t),

(21)

with xp(t) ∈ Rnp , and the controller Ωc is described by

Ωc :

{
ẋc(t) = Acxc(t) +Bcw(t),

v(t) = Ccxc(t),
(22)

with xc(t) ∈ Rnc . Then, the closed-loop system in the
presence of delays in the feedback channel can be described
by a model of the form (1) with xT (t) = [xTp (t), xTc (t)] and

A =

[
Ap 0
0 Ac

]
, Ad =

[
0 BpwCc

BcCpw 0

]
,

BT = [BTpu, 0], C = [Cpy, 0], Cd = 0, D = 0.

(23)

The objective is to perform model reduction that preserves
the feedback structure of the closed-loop system, i.e., the
state vector of the reduced system ζT (t) = [ζTp (t), ζTc (t)] is
such that ζi(t) ∈ Rki , 1 ≤ ki < ni, in (15) is only a function
of xi(t), i ∈ {p, c}. For this desirable structure to be pre-
served during model reduction, the balancing transformation
T should have a proper block-diagonal form, obtained by
enforcing a block-diagonal structure on S and R as follows:

S = blkdiag{Sp, Sc}, R = blkdiag{Rp, Rc}. (24)

where Sp, Rp ∈ Rnp×np . Summarizing, we propose the
following corollary.

Corollary 1: Consider a closed-loop system as in Fig. 1
with stable Ωp and Ωc described, respectively, by (21) and
(22) and a measurement and actuation time delay τ . Let us
write this system in the form (1) with the realization (23).
Moreover, let the inequalities (3) and (10) admit solutions
of the form (24). Then, there exists an extended balancing

1 2 3 4 5 6
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Fig. 2. Singular values of Example 1.

transformation of the form T = blkdiag{Tp, Tc} that results
in Σs = blkdiag{Σp,Σc}, with Tp,Σp and Tc,Σc corre-
sponding to the plant and controller, respectively, where both
Σp and Σc individually have the properties of Σ in (20).
Moreover, T preserves the feedback structure of original
system and the system obtained by the truncation of any k <
np + nc state components of the extended-balanced system
is asymptotically stable and the corresponding error bound is
twice the summation of all distinct truncated singular values.
Robust model order reduction: A second application of our
extended balanced truncation procedure is in robust model
reduction. Namely, a large class of uncertain (time delay)
systems can be written in the form of (time delay) systems
with polytopic uncertainties. Although the methods in [13]
and [12] can be used for the reduction of this type of systems,
those can result in low quality model approximations and
conservative error bounds, if not infeasible. Conversely, the
extended model reduction in this paper improves both the
feasibility and the accuracy of model approximation for
this type of systems. This is due to the fact that in an
extended model reduction method we can assign a polytopic
structure to the main decision variables and, thereby, increase
the degrees of freedom in the model reduction procedure.
However, due to page limitations, we do not present the
details of this adaptation, but care to mention that it is similar
to the case of finite-dimensional systems [16].

VI. ILLUSTRATIVE EXAMPLES

This section presents numerical examples. The involved
matrix inequalities are solved using the software CVX [22].
Example 1: Here, we use the proposed technique for the
reduction of the model in Example 1 in [13]. In this example,
the original model with τ = 1.6 s is of order n = 6 and
it is approximated by a model of order k = 2. As can
be seen in Fig. 2, the extended singular values obtained
from the proposed technique are generally smaller than the
singular values in [13]. As a result, the error bound obtained
with the the proposed technique ε = 11.06 is significantly
smaller than the error bound ε = 15.26 obtained in [13]. A
comparison between the frequency response functions of the
original model G(jω) and the reduced-order model Ĝ(jω)
is provided in Fig. 3. We observe, however, that in terms of
the H∞-norm of the error system E(jω) = G(jω)−Ĝ(jω),
the technique of [13] outperforms the proposed one.
Example 2: we consider the structured model reduction of
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Fig. 4. Frequency response functions and error bound in Example 2.

the feedback system (23) with τ = 0.45 s,

Ap =

[
0 1

−0.1 −3

]
, Ac=

[
0 1
−1 −20

]
, Bpu=

[
0.05

1

]
,

Bc=

[
0
1

]
, Bpv =

[
0

1.2

]
, CTpw=

[
1
10

]
, CTc =−

[
2

0.1

]
,

(25)

and Cpy = Cpw. The objective is to perform a structured
model order reduction that preserves the feedback structure
of the system using the technique proposed in Section V, as
it is not feasible by using the method in [13]. The structured
singular values obtained from the proposed method are Σp =
diag{19.12, 18.61} and Σc = diag{17.97, 0.31}. It is clear
from Σp that truncation of any of the plant states results in
a large error bound and it can cause a poor model approx-
imation. Conversely, there is a large difference between the
singular values of the controller. Therefore, we do not reduce
the plant, but only truncate the state of the transformed
controller that corresponds to the smallest singular value
in Σc. In this way, we can still expect a good closed-
loop model approximation. To have a comparison between
the reduced-order and the original closed-loop systems, the
frequency response function (from input u to output y) of
the original closed-loop system G(jω) is compared to that
of the reduced-order system, indicated by Ĝ(jω), in Fig. 4.
Clearly, the approximation is highly accurate in terms of the
H∞-norm of the error system E(jω) = G(jω)− Ĝ(jω).

VII. CONCLUSIONS

In this paper, by introducing slack variables in the compu-
tation of bounds on the energy functionals, we have obtained
an extended model reduction technique for linear delay

systems. This technique exhibits more flexibility compared
to existing counterparts, making it interesting for purposes
such as robust and structured model reduction. Moreover,
the proposed technique preserves stability properties and also
provides a computable error bound. The performance of this
method has been illustrated through numerical examples.
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