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Abstract

Objective: To determine the effect of exposure to remnants of a phagemid-containing E. coli, killed by treatment
with a propanol-based hand rub, on antimicrobial resistance in E. coli isolates.

Methods: An in vitro model was developed in which a clinical E. coli isolate (EUR1) was exposed to remnants of an
E. coli K-12 strain containing a phagemid (pBS-E12) strain treated with Sterillium®. A series of 200 experiments was
performed using this in vitro model. As a control, a series of 400 experiments was performed where the EURT was
exposed either to the remnants of an £. coli K-12 strain (not containing a phagemid) (E12) treated with Sterillium®
(n =200) or to dried Sterillium® only (n = 200). The number of experiments that showed growth of an amoxicillin-
resistant EURT isolate was evaluated in all three groups. An additional 48 experiments were performed in which a
different clinical E. coli isolate (EUR2) was exposed to remnants of the pBS-E12 treated with Sterillium®. Whole-
genome sequencing and phenotypic testing for AmpC beta-lactamase production was performed to investigate
the mechanism behind this resistance development.

Results: In 22 (11.0%) of 200 experiments in which the EUR1 isolate was exposed to remnants of a pBS-E12 an
amoxicillin-resistant mutant isolate was obtained, as opposed to only 2 (1.0%) of 200 experiments involving the
exposure of the EUR1 to Sterillium® only (risk difference: 10.0%; 95% CI 54-14.6%)) and 1 (0.5%) of 200 experiments
involving the exposure of the EUR1 isolate to the remnants of the phagemid-free E12 (risk difference: 10.5%; 95% Cl
6.1-14.9%). In 1 (2.1%) of the 48 experiments in which the EUR2 isolate was exposed to remnants of a pBS-E12 an
amoxicillin-resistant mutant isolate was obtained. The development of resistance in all experiments was due to
mutations in the promoter/attenuator region of the chromosomal AmpC beta-lactamase (cAmpC) gene leading to
cAmpC hyperproduction.
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facilities.

Conclusion: Exposure of an E. coli isolate to another phagemid-containing E. coli that was treated with propanol-
based hand rub increased the development of amoxicillin resistance. Although phagemids are cloning vectors that
are not present in clinical isolates, this finding may have implications for hand disinfection practices in healthcare

Keywords: Sterillium, AmpC, Antimicrobial resistance, Disinfection

Introduction

The last decades we have seen a dramatic worldwide
increase in antimicrobial resistance (AMR) among
Gram-negative bacteria. One of the most remarkable
phenomena is the rapid increase of plasmid-mediated
beta-lactam resistance in Escherichia coli [1-3]. Inter-
national infection control guidelines recommend several
measures to control the spread of AMR, among which
propanol-based disinfection of hands is vital [4, 5].
These disinfection methods rapidly and effectively de-
crease the number of viable bacteria on hands and
thereby limiting the spread of resistant bacteria and
healthcare-related infections [6—9]. However, intact bac-
terial DNA could potentially persist after propanol-based
bacterial cell lysis and mechanical cleaning and serve as
a source of resistance determinants for other bacteria
that reach the disinfected area [10, 11]. Uptake of plas-
mid and chromosomal bacterial DNA from the environ-
ment through natural transformation has already been
described as a method of resistance acquisition in
streptococci, Helicobacter spp. and various other bacteria
[12-16]. Recent studies have also shown that E. coli is
able to take up DNA in various environments [16-21].
However, it remains unclear to what extent the uptake
of resistance plasmids via natural transformation con-
tributes to the development of AMR in E. coli. More-
over, it is unknown whether exposure to environmental
DNA remainders (plasmids) could facilitate this form of
AMR acquisition. Therefore, we developed an in vitro
model in which a clinical E. coli isolate (EUR1) was ex-
posed to a pBleuscript KS(-) phagemid (encoding an
amoxicillin resistance gene)-containing E. coli K-12
strain which had been treated with alcohol (Sterillium®).
In this experiment, we did not observe plasmid transfer
(results on file), yet we did observe the development of
beta-lactam resistance in the EURI isolate. This observa-
tion led to the hypothesis that exposure to remnants of
phagemid-containing E. coli (killed by treatment with
Sterillium®) could lead to the development of AMR in E.
coli isolates that came in contact with the remnants of
the killed E. coli K12 strain, through increased chromo-
somal mutations. Although not previously reported for
E. coli, studies have already shown that in Salmonella
spp- and Pseudomonas spp. the presence of external
DNA could lead to an increase in the development of

AMR through mechanisms other than transformation
[22, 23]. In this exploratory study, we used an in vitro
model to compare the rate at which amoxicillin-resistant
mutants developed for an E. coli isolate exposed to
amoxicillin and remnants of a pBleuscript KS(-) phage-
mid containing E. coli K-12 strain treated with
Sterillium®, amoxicillin and remnants of a phagemid-free
K-12 strain treated with Sterillium® or amoxicillin and
dried Sterillium® only.

Method

Isolate selection

An E. coli -K12 (JM83, ATCC® 35607™) harbouring a II-
pBleuscript KS (-) phagemid (ATCC® 87047™) (copy
number: 300-500) containing an amoxicillin-resistance
gene (blatenm.116) (pPBS-E12), was chosen to be exposed
to the propanol-based hand rub and two E. coli isolates
(EUR1 and EUR2) obtained from routine clinical
cultures (EURIL: peritoneal fluid culture, EUR2: urine
culture) of epidemiologically unrelated patients were se-
lected to be exposed to remnants of the pBS-E12,
Sterillium® and amoxicillin (for mutant selection). Strain
characteristics of the used strains are depicted in Supple-
mentary table S1. Features of the high copy number
pBleuscript phagemid are depicted in Supplementary
table S2. The selection of the EUR1 and EUR2 was based
on antimicrobial susceptibility pattern, i.e. susceptible to
amoxicillin and resistant to trimethoprim based on
EUCAST clinical breakpoints version 9.0 [24]. The pBS-
E12 has a trimethoprim MIC below the clinical break-
point. Antimicrobial susceptibility testing was performed
using the VITEK 2° system (bioMérieux, Marcy I’Etoile,
France). The minimal inhibitory concentration (MIC)
for amoxicillin was additionally tested with ETEST®
(bioMérieux, Marcy I'Etoile, France). The MICs of the
EUR1, EUR2, and pBS-E12 for the various tested anti-
microbial agents are shown in Table 1.

Exposure to propanol-based hand rub (Sterillium®) and
resistance induction

Sterile glass surfaces (25mmx18mm) were inoculated
with 10 uL of a 0.5 McFarland suspension of the pBS-
E12 isolate (1.5x10° colony forming units (CFU)) in
brain-heart infusion broth (BHI). The inoculation of the
glasses was performed in a Kojair biosafety cabinet class
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Table 1 Minimal inhibitory concentration for various antibiotics
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Isolate MIC (mg/L) D68C AmpC & ESBL
E-test® Vitek® Detection set conclusion
amox amcl pita cfrx cfxt cftz cftx AmpC hyperproduction¥

pBS-E12 > =256 >=32 >=128 8 <=4 <=1 <=1 No

EUR1 6 <=2 <=4 4 <=4 <=1 <=1 Yes

EURTM1 >=256 >=32 8 32 > =064 4 <=1 Yes

EURTM2 >=256 >=32 16 32 > =064 4 <=1 Yes

EURTM3 >=256 >=32 <=4 16 16 <=1 <=1 Yes

EURTM4 >=256 >=32 8 32 32 <=1 <=1 Yes

EURTMS5 >=256 >=32 8 > =064 > =64 4 2 Yes

EURTM6E 256 >=32 <=4 16 > =64 <=1 <=1 Yes

EURTM7 >=256 >=32 8 32 > =064 4 <=1 Yes

EURTM8 > =256 >=32 <=4 16 16 <=1 <=1 Yes

EURTM9 256 >=32 <=4 16 16 <=1 <=1 Yes

EURTM10 128 >=32 <=4 16 32 <=1 <=1 Yes

EURTM11 128 >=32 <=4 32 16 <=0.25 <=0.25 Yes

EURTM12 >=256 >=32 16 32 16 2 1 Yes

EURTM13 >=256 >=32 16 32 32 2 1 Yes

EURTM14 >=256 >=32 16 32 16 1 <=0.25 Yes

EURTM15 196 >=32 <= 16 16 0.5 <=0.25 Yes

EURTM16 196 >=32 <=4 16 16 05 <=0.25 Yes

EURTM17 256 >=32 <=4 32 32 2 0.5 Yes

EURTM18 >=256 >=32 16 32 16 2 1 Yes

EURTM19 >=256 >=32 8 32 16 2 <=0.25 Yes

EURTM20 64 16 <=4 4 <=4 0.5 <=0.25 Yes

EURTM21 >=256 >=32 16 32 16 4 1 Yes

EURTM22 256 >=32 16 32 16 4 1 Yes

EUR1S1 > =256 >=32 <=4 16 32 <=1 <=1 Yes

EUR1S2 >=256 >=32 8 32 > =64 2 <=1 Yes

EURTET >=256 >=32 <=4 16 32 <=1 <=1 Yes

EUR2 1 <=2 <=4 2 <=4 <=1 <=1 No

EUR2M1 >=256 >=32 8 8 <=4 <=1 <=1 Yes

MICs were measured with ETEST® (bioMérieux, Marcy I'Etoile, France) (amoxicillin) or the VITEK 2° system (bioMérieux, Marcy I'Etoile, France). ¥Interpretation of
D68C AmpC & ESBL Detection set according to manufacturers instruction. Zone diameters as measured in the D68C AmpC & ESBL Detection set are depicted in
Supplementary table S3. amox: amoxicillin; amcl: amoxicillin-clavulanic acid; pita: piperacillin-tazobactam; cfrx: cefuroxime; cfxt: cefoxitin; cftz: ceftazidime; cftx:
cefotaxime; mero: meropenem; imip: imipenem;M: amoxicillin-resistant mutant after exposure to remnants of the pBS-E12 and Sterillium®S: amoxicillin-resistant
mutant after exposure to Sterillium® onlyE: amoxicillin-resistant mutant after exposure to E12 and Sterillium®

IT Silver Line. The inoculated glasses were left to dry at
ambient air temperature for 10 +/— 1 min. Subsequently,
the glasses were inoculated with 30 pL of Sterillium®,
which was spread across the entire glass surface using
sterile plastic sticks. The Sterillium® used contained per
100 g of solution: Propan-2-ol 45.0 g, propan-1-ol 30.0g
and mecetronium etilsulfate 0.2 g. The ratio of the volume
of inoculated Sterillium® to glass surface area (3 x 10 ~° Lt
0.00045 m?) was chosen to reflect the ratio of the volume
of Sterillium® used in hand disinfection to the average
hand surface area (3x107° L: 0.045m” [25, 26]. The

PBS-E12 and Sterillium®-containing glasses were left to
dry at ambient room temperature for 10 +/-1min.
Subsequently, the glasses were inoculated with 10 uL of an
0.5 McFarland suspension of the EUR1 isolate (1.5 x 10°
CFU) in BHI, which was spread across the entire glass
surface using sterile plastic sticks. The re-inoculated
glasses were left to dry at ambient air temperature for 10
+/— 1 min. Subsequently, the glasses were placed in a con-
tainer with 4 mL of BHI, containing 1 mg/L amoxicillin,
vortexed for 30s at 2800 rotations per minute and incu-
bated at 35 to 37C°. The duration the isolates were
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subjected to a subinhibitory amoxicillin concentration is
meant to represent the duration of subinhibitory amoxicil-
lin plasma-concentrations in patients starting amoxicillin
treatment [27]. After 1 h of incubation, an additional 1 mL
of BHI broth containing 320 mg/L amoxicillin was added
to the glasses carrying containers, resulting in 5mL of
BHI broth containing 64.8 mg/L amoxicillin in the glasses
carrying containers. The containers were then incubated
at 35 to 37C° for 72 h and visually inspected for bacterial
growth at 8, 24, 48 and 72 h. At visible growth or after 72
h of incubation in absence of visible growth, 1 pL of the
suspension was plated on a Muller Hinton agar containing
8 mg/L trimethoprim and 64 mg/L amoxicillin (MH-TA).
The inoculated MH-TA plates were incubated for 18 to
24h at 35 to 37C°. Colonies growing on the MH-TA
underwent species identification performed with VITEK
MS (bioMérieux, Marcy I'Etoile, France), using the VITEK
MS Knowledge Base v.2.0, and antimicrobial susceptibility
testing performed with the VITEK 2° system (bioMérieux,
Marcy [Etoile, France), using EUCAST susceptibility
breakpoints version 9.1 [24]. The MIC of all isolates to
amoxicillin was additionally tested using ETEST® (bioMér-
ieux, Marcy I'Etoile, France). Grown E. coli colonies with a
MIC of >8mg/L for trimethoprim, measured in the
VITEK 2° system (bioMérieux, Marcy |’Etoile, France),
and with a MIC of > 64 mg/L for amoxicillin, measured
with ETEST® (bioMérieux, Marcy I'Etoile, France), were
considered mutants. A series of 200 experiments were
performed using the EUR1 isolate. Additionally, a series of
48 experiments were performed using the EUR2 isolate.

Page 4 of 10

Experiments with the EUR1 and EUR2 isolates were
performed on separate days. For each experiment colonies
were picked of the EUR1 and EUR2 isolate and the pBS-
E12 strain in stationary growth phase after incubation at
35 to 37C° for 18 to 24h on Muller Hinton agar. The
pBS-E12 strain was inoculated on Muller Hinton agar
plates containing an amoxicillin 10 pug disk. Only colonies
of the pBS-E12 growing in the direct surrounding of the
amoxicillin disk were used in the experiments. The experi-
mental setup is illustrated in Fig. 1.

Control experiments

A series of 200 control experiments were performed in
which the glasses were only inoculated with Sterillium®
and the EURI and a series of 200 experiments were
performed in which the glasses were inoculated with the
E. coli K-12 strain (JM109, ATCC® 53323™) not contain-
ing the pBleuscript KS (-) high copy number phagemid
(E12) (Supplementary Table S1), Sterillium® and the
EURL1 isolate. Experiments were performed on separate
days. For each experiment colonies were picked of the
EUR1 isolate and E12 strain after incubation at 35 to
37C° for 18 to 24 h on Muller Hinton agar. The setup of
the control experiments is illustrated in Fig. 2.

Disinfection experiments

To determine if the pBS-E12 was still culturable after
exposure to Sterillium’, we performed a series of 100
experiments in which the glasses were inoculated with
the pBS-E12 followed by Sterillium® only. The inoculated

Spread using
sterile stirring
sticks

10 uL 30 uL

Yes.

MH-TA agar
plate

SmL of BHI
ontaining 64.8mg/|
amoxicillin

Spread using sterile
stirring sticks
A
|

10 min

10 uL

Mlo mm’ Mlo mm"

1mL of BHI
containing
320mg/L
amoxicillin

4mL of BHI
containing 1mg/L
amoxicillin

Fig. 1 An illustration of the experiments in which the EURT or EUR2 isolates were exposed to amoxicillin and the pBS-E12 treated with Sterillium®

Legend:

pBS-E12: E. coli-K12 containing a pBleuscript KS (-) phagemid
encoding for an amoxicillin resistance gene (blaTEm-116).
EURT1: clinical E. coliisolate 1.

EUR2: clinical E. coli isolate 2.

BHI: brain-heart infusion broth.

MH-TA agar: Muller Hinton agar containing 8 mg/L trimethoprim
and 64 mg/L amoxicillin

4mL of BHI
containing 1mg/L
amoxicillin
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Spread using
sterile stirring
sticks

Spread using sterile

stirring sticks

E12 or
nothing

10 L 30 UL

10 min

containing
320mg/L.
amoxicillin

1mL of BHI
Q‘ihs
MH-TA agar
plate
max.72 hours—|  SmLof BHI
containing 64.8mg/I
amoxicillin

rNO_

amoxicillin and Sterillium®

4mL of BHI
containing 1mg/L
amoxicillin

Fig. 2 An illustration of the experiments in which the EURT isolate was exposed to amoxicillin and the E12 treated with Sterillium®, or to

Legend:

E12: E. coli-K12 not containing a pBleuscript KS (-) phagemid.
EUR1.: clinical E. coli isolate 1.

BHI: brain-heart infusion broth.

MH-TA agar: Muller Hinton agar containing 8 mg/L trimethoprim
and 64 mg/L amoxicillin

4mL of BHI
containing 1mg/L
amoxicillin

glasses were placed in a container with 5mL of BHI,
vortexed for 30 s at 2800 rotations per minute and incu-
bated for 72 h at 35 to 37C", visually inspecting growth
at 24, 48 and 72 h. In case there was no visible growth
after 72h of incubation, 1 puL of broth was plated on
Muller Hinton agar.

Whole-genome shotgun sequencing (WGS) and de novo
assembly

The wildtype isolates (EUR1, EUR2), the pBS-E12 and
E12 strains, and a selection of the mutant isolates were
sequenced on an Illumina MiSeq (Illumina, San Diego,
United States) and assembled with CLC Genomics
Workbench v.11 or v.12 (Qiagen, Hilden, Germany). Se-
lection criteria were: in the first thirteen experiments in
which growth of a mutant isolate was detected, an iso-
late was sent for sequencing. The following quality con-
trol criteria were used: coverage >20; number of
scaffolds <1000; N50 > 15.000 bases and maximum scaf-
fold length = 50.000 bases.

Mechanism of resistance

The presence of genomic resistance determinants
conferring amoxicillin and trimethoprim resistance in
the assembled genomes of the mutated E. coli was iden-
tified with the online bioinformatic tools ResFinder v3.1
and PointFinder v3.1 (Center for Genomic Epidemi-
ology, Technical University of Denmark, Lingby,
Denmark) [28, 29]. Genomes were screened for known
and unknown chromosomal resistance mutations.

Acquired resistance genes were called when at least 60%
of the length of the best matching gene in the ResFinder
database was covered with a sequence identity of at least
90%. If an unknown or known chromosomal mutation
was detected in genomic regions implicated in beta-
lactam resistance using PointFinder, the region was
extracted from the assembled genome using Biopython
v.1.73. Subsequently, the extracted genomic regions were
aligned using Vector NTI Advance 11 software (Ther-
moFisher Scientific, Waltham, USA) to the correspond-
ing region of either the EUR1 or EUR2 isolate and the
corresponding region of the E. coli K-12 strain MG1655
(GenBank database accession number NC000913.3), the
pBS-E12 strain, and the E12 strain. Moreover, to verify
that the observed amoxicillin resistance was not the
result of the acquisition of the amoxicillin resistance
gene from the pBleuscript(-) phagemid, all assembled
genomes were screened for the presence of this gene
using ABRicate v.0.8.13 with the same coverage and
identity thresholds as those used in ResFinder. Addition-
ally, all mutated strains and the pBS-E12, EUR1, EUR2
isolates were phenotypically screened for AmpC produc-
tion using the D68C AmpC & ESBL Detection set
(Mastdiscs, Mastgroup Ltd., Bootle United Kingdom)
and interpreted according to manufacturer’s instruction.

Whole-genome multilocus sequence typing

Whole-genome multilocus sequence typing (wgMLST)
(core and accessory genome) was performed of both
wildtype isolates and all sequenced mutant isolates using
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Ridom SeqSphere+, version 5.1.0. (Ridom, Miinster,
Germany). Species-specific typing schemes were used as
described by Kluytmans-Van den Bergh et al. [30]. All-
to-all pairwise genetic difference was calculated between
the isolates by counting the total number of allele differ-
ences in the wgMLST typing scheme and by dividing the
total number of allele differences in the wgMLST typing
scheme by the total number of shared alleles in the
wgMLST typing scheme, ignoring pairwise missing
values.

Statistics

Risk differences were estimated using a generalised lin-
ear model with binomial distribution, an identity link
and robust error estimation (SPSS version 25).

Accession numbers

All generated raw reads were submitted to the European
Nucleotide Archive (ENA) of the European Bioinformat-
ics Institute (EBI) under the study accession number:
PRJEB34354.

Results

Resistance induction experiment

In 22 (11.0%) of 200 experiments in which the EUR1
strain was exposed to the remnants of the pBS-E12 and
Sterillium® an amoxicillin- and trimethoprim-resistant E.
coli isolate (EUR1IM1 - EUR1M22) was obtained, as
opposed to only 2 (1.0%) (EUR1S1, EUR1S2) of 200
experiments involving the exposure of the EUR1 strain
to Sterillium® only (risk difference 10.0%; 95% CI 5.4—
14.6%), and 1 (0.5%) (EUR1E1l) of 200 experiments
involving the exposure of the EURI strain to the rem-
nants of the E12 and Sterillium® (risk difference 10.5%;
95% CI 6.1-14.9%). In the experiments performed using
the EUR2, 1 mutant isolate (EUR2M1) was grown in 48
experiments. Amoxicillin-resistant strains did not only
show increased MICs for amoxicillin but also for
amoxicillin-clavulanic acid, piperacillin-tazobactam or
cephalosporins (Table 1). No increases in the MIC were
observed for carbapenems and non-beta-lactam antibi-
otics tested. One out of 100 disinfection experiments
showed growth of the pBS-E12, indicating that in only a
minimal number of experiments the amoxicillin concen-
tration during the experiments was influenced by viable
beta-lactamase-producing pBS-E12.

Mechanisms of amoxicillin resistance

A selection of the isolates was sequenced, i.e. 10 mutant
E. coli isolates from the experiment in which EUR1 was
exposed to the remnants of the pBS-E12, 2 mutants
from the control experiments, 1 mutant from the experi-
ments with the EUR2 isolate, the wildtype isolates EUR1
and EUR2, and the pBS-E12 and E12 strains. Table 2

(2020) 9:48
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shows the various mutations at given positions of the
promoter/attenuator region of the cAmpC gene for
every sequenced isolate in this study. Known and un-
known mutations in the promoter/attenuator region of
the chromosomal AmpC beta-lactamase (cAmpC) gene
were detected in the genomes of all mutant E. coli
isolates that were sequenced (EURIMI1-EURIMIO,
EUR1S1-EUR1S2, EUR2M1), but not in the EURI
isolate. Two unknown mutations were detected in the
promoter/attenuator region of the EUR2 isolate (Table
2). Alignment against the corresponding region of an E.
coli K-12 strain revealed that one of these mutations was
in the alternate —10 box promoter box (Table 2).
However, these mutations did not increase the MIC for
amoxicillin in the EUR2 isolate. In every mutant
(EURIM1-EURIM10, EURISI-EUR1S2, EUR2M1)
alignment of the cAmpC promoter/attenuator region
revealed mutations, when compared to the same
genomic region of the corresponding wildtype isolates,
in regions implicated in cAmpC hyperproduction as
described by Tracz et al. (Table 2) [31]. Moreover, the
different promoter/attenuator regions present in the mu-
tant EURI isolates (Table 2) suggests de novo mutation
rather than the selection of a previously present mutated
subpopulation. No mutations in other regions implicated
in beta-lactam resistance were detected, nor were ac-
quired beta-lactam resistance genes detected in any of
the mutated (EURIMI1-EURIM10, EURIS1-EUR1S2,
EUR2M1) or wildtype isolates (EUR1, EUR2). The
amoxicillin-resistance gene of the pBleuscript KS(-) pha-
gemid was not detected in any of the sequenced isolates
except the pBS-E12. In the pBS-E12 and E12 strain
alignment of the cAmpC promotor/attenuator did not
reveal mutations, when compared to the same genomic
region of the E. coli K-12 strain MG1655. A dfrAl gene
conferring trimethoprim resistance was detected in the
EUR1, EUR2 and all sequenced mutant isolates but not
in the pBS-E12 and E12 strains.

Phenotypic tests for AmpC beta-lactamase production
were negative for the two wildtype isolates and the pBS-
E12 isolate. However, for all mutants, phenotypic testing
showed AmpC beta-lactamase production (Table 1;
Supplementary Table S3).

Whole-genome multilocus sequence typing

The number of allele differences between the mutated
EURIM1-EURIMI1O0 isolates and wildtype EUR1 isolate
ranged from 21 (0.59%) to 69 (1.96%) (median: 44.5
(1.27%)). In all but one (EUR1IM9) of the mutant EUR1
isolates, the difference between the mutant and corre-
sponding control exceeded the threshold for genetic dis-
tance between related and unrelated isolates as defined
by Klutymans-van den Bergh et al. (Fig. 3) [30]. Both
mutated isolates from the control experiment (EUR1S1
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Table 2 Mutations in cAmpC promoter/attenuator region of the wildtype and mutant isolates

E.coli K-12 Base in wildtype cAmpC promoter/attenuator region
(wildtype) -32 - 231 -211 -19 -18 -16.1 —11 +58 +81

T - - T G - C C G
Isolate Position of mutation in cAmpC promoter/attenuator region® Date

-32 —231 211 -19 -18 -16.1 11 +58 +81 Sxeﬁ)grir”;sgﬁs
pBS-E12¥
E12
EURT (wildtype) A
EURTM1 A A 10th May
EURTM2 G C A A 10th May
EURTM3 G C A A 11th May
EURTM4 G C A A 12th May
EURTMS5 G C A A 12th May
EURTM6E T A 13th May
EURTM7 G C A A 25th May
EURTM8 A 26th May
EURTM9 G A Tst June
EURTM10 T A Tst June
EUR1S1 T A 23th May
EUR1S2 A A 17th August
EUR2 (wildtype) A T
EUR2M1 A A T 12th May

#Position numbering of the cAmpC promoter/attenuator region as defined by Mulvey et al. [31]. In position number n.x: decimal number x refers to an insertion at
position n. Positions —32 and — 11 are part of the wild-type promoter boxes. Position — 19 is part of the alternate promoter box. Positions —21.1 and — 23.1 are
part of the spacer region of both the wild-type and alternate promoter. Position — 16.1 is part of the spacer region of the wild-type promoter. ¥ strain used in
experiments on 1st of June. = all experiments were performed in 2016
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Fig. 3 A Neighbour-joining tree representing the percentage of wgMLST allele differences between all sequenced isolates (Green: EURT wildtype/
mutant isolates; Red: EUR2 wildtype/mutant isolates)
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and EUR1S2) also showed a high number of allele differ-
ences when compared to the EUR1 wildtype (EUR1SI:
n =34 (0.96%), EUR1S2: n =36 (1.02%)). The high num-
ber of allele differences between the various mutated
EURI isolates suggests de novo mutation acquisition ra-
ther than the selection of a previously present mutated
subpopulation (Fig. 3). In the EUR2M1, when compared
to its wildtype, no allele differences were observed. The
number of allele differences between the EUR1 and
EUR? isolate was 3184 (97.73%)(Fig. 3).

Discussion

An in vitro model was developed to simulate propanol-
based hand disinfection as is common practice in health-
care facilities nowadays. Bacteria are effectively killed,
but their remnants remain present after disinfection.
Subsequently susceptible bacteria are exposed to the
remaining debris, including DNA. Experiments per-
formed using this model showed a significant increase in
the development of amoxicillin resistance in E. coli iso-
lates after exposure to the remnants of the pBS-E12
treated with a propanol-based hand rub as compared to
exposure to remnants of the E-12 treated with a
propanol-based hand rub and as compared to exposure
to only a propanol-based hand rub. AmpC beta-
lactamase hyperproduction, due to mutations in the
AmpC promoter/attenuator region, was responsible for
the development of the observed AMR. The number of
resistant mutants that developed in the isolates exposed
to the remnants of the pBS-E12 also exceeded the num-
ber of pBS-E12 growing in the disinfection experiments,
which indicates that amoxicillin degradation by the pBS-
E12 beta-lactamase was not responsible for the observed
increase in AMR. All mutated EUR1 isolates showed a
high number of allele differences when compared to the
wildtype isolate, suggesting genome-wide mutations.
Interestingly this genome-wide mutational pattern was
not detected in the EUR2 isolate. Indicating that the
genome-wide mutational pattern might not only be
(control) experiment but also isolate related.

The exact underlying mechanism leading to the AMR
conferring mutations in the promoter/attenuator region
of the cAmpC remains unknown. Since the amoxicillin
resistance gene of the pBluescript phagemid was not de-
tected in the EUR1 and EUR2 mutant isolates, it seems
more likely that the remnants of the pBS-E12 increased
the mutation rate in the EUR1 and EUR2 isolate
facilitating AMR development through cAmpC hyper-
production. Previous studies have implicated several
mechanisms that may increase the mutation rate and re-
sult in AMR, such as the general stress response and an
increased constitutive mutation frequency [32—35]. Fur-
ther studies are needed to evaluate the role of these
mechanisms in our experiments. Moreover, mutagenic
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assays with other antibiotics (e.g. streptomycin and nali-
dixic acid) need to be performed, to further assess the
mutagenic potential of the remnants of the pBS-E12 and
Sterillium® in the EUR1 isolate. However, the remnants
of the pBS-E12 could also facilitate the development of
AMR by enabling the EUR1 and EUR?2 isolates to survive
longer under high amoxicillin concentrations, possibly
through providing nutrients or through efflux pump ac-
tivation, thereby increasing the chance of the occurrence
of a mutation leading to cAmpC hyperproduction. A
small degree of heterogeneity in the cAmpC promotor
region of the pBS-E12 population that lead to cAmpC
hyperproduction cannot be completely ruled out. There-
fore, it still remains possible that the cAmpC promotor
region of this heterogeneous subpopulation was horizon-
tally transferred to the wildtype EUR1 and EUR2
isolates.

Several studies have shown that environmental
stressors other than antibiotics can influence the
development of AMR [35-38]. However, the association
between exposure to remnants of phagemid-carrying E.
coli isolates and increased development of AMR has not
been investigated to date. Interestingly, this increase in
the development of AMR was only related to exposure
to remnants of phagemid-containing E. coli isolates.
Other studies have already shown that extracellular
DNA can lead to the development of AMR in other
bacteria [22, 23]. However, this is the first study relat-
ing exposure to external DNA to the development of
beta-lactam resistance through chromosomal muta-
tions in E. coli.

Despite the increased development of AMR was only
related to exposure to remnants of the pBS-E12, it re-
mains unknown if and what specific compounds of
Sterillium® contribute to the observed increased develop-
ment of AMR. Contrary to other alcohol-based hand
rubs, Sterillium® contains mecetronium etilsulfate which
potentially has a lasting antimicrobial effect [39, 40].
Further studies are needed to evaluate if this increased
development of AMR also occurs with other alcohol-
based hand rubs not containing such compounds.
Furthermore, the current study only simulates hand
disinfection procedures so it remains unknown to what
extent this phenomenon also could apply to environ-
mental disinfection.

Although cAmpC hyperproduction has been impli-
cated in beta-lactam resistance in E. coli isolates follow-
ing exposure to stepwise increasing concentrations of
amoxicillin over several days [41, 42]. cAmpC hyperpro-
duction in this study occurred after only a short time of
exposure to amoxicillin concentrations lower than the
MIC of the exposed E. coli isolate. Even in our control
experiments, in which the E. coli isolates were only ex-
posed to Sterillium®, cAmpC hyperproduction developed
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after only short sub-inhibitory amoxicillin concentra-
tions. Moreover, in the isolates EURIM2-EURIM5 and
EURIM7-9 three mutations were detected in the
cAmpC promotor region. Each of these mutations
individually could increase cAmpC production in E. coli
[31, 43]. Perhaps, consecutive mutations, not a single
mutational event during the short time of sub-inhibitory
amoxicillin concentration, lead to a step-wise increase in
amoxicillin MIC in these mutant isolates. In the study
by Kohanski et al. [44] exposure to sub-lethal levels of
amoxicillin also resulted in MIC increases to antimicro-
bials other than from the beta-lactam group. We did not
observe MIC increases or known mutations in
resistance-associated genes of antibiotics other than the
beta-lactams.

Contrary to other studies investigating the develop-
ment of AMR in E. coli [41, 44], we used two clinical E.
coli isolates for amoxicillin resistance induction. More-
over, our in vitro model simulates propanol-based hand
disinfection procedures which are very common in
clinical practice [4, 5, 45]. Also, the duration of exposure
to sub-inhibitory amoxicillin concentrations closely re-
flects the duration of sub-inhibitory amoxicillin plasma
concentrations in patients at the start of amoxicillin
treatment [27].

This study has some limitations. The pBluescript-KS
(-) phagemid is a cloning vector not present in clinical
isolates. Whether remnants of E. coli isolates containing
wildtype phagemids also increase the development of
AMR needs further investigation. Moreover, since the
pBluescript KS(-) phagemid contains both a bacterio-
phage origin of replication and a plasmid origin of
replication future studies are required to assess whether
the observed effect is bacteriophage or plasmid related.
Also, only a limited number of isolates were used in this
study. The extent to which this AMR induction is
possible in other E. coli isolates or other species remains
unknown. Moreover, it remains unknown whether and
to what extent this in vitro phenomenon plays a role in
the development of AMR in vivo.

To the best of our knowledge, this is the first study
showing development of amoxicillin resistance in an E.
coli isolate after exposure to a phagemid-containing E.
coli treated with a propanol-based hand rub.

Conclusion

This exploratory study showed the development of
amoxicillin resistance in an E. coli isolate after exposure
to an unrelated phagemid-containing E. coli treated with
a propanol-based hand rub. Although phagemids are
cloning vectors that are not present in clinical isolates,
this finding may have implications for hand disinfection
practices in healthcare facilities.
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