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Preserving Topological Structures

Abolfazl Taghribi1, Kerstin Bunte1, Michele Mastropietro3,
Sven De Rijcke3, and Peter Tino2

1- University of Groningen, Faculty of Science and Engineering, The Netherlands
2- University of Birmingham, School of Computer Science, UK

3- Ghent University, Department of Physics & Astronomy, Belgium

Abstract. Topological data analysis tools enjoy increasing popularity
in a wide range of applications. However, due to computational complex-
ity, processing large number of samples of higher dimensionality quickly
becomes infeasible. We propose a novel sub-sampling strategy inspired
by Coulomb’s law to decrease the number of data points in d-dimensional
point clouds while preserving its Homology. The method is not only ca-
pable of reducing the memory and computation time needed for the con-
struction of different types of simplicial complexes but also preserves the
size of the voids in d-dimensions, which is crucial e.g. for astronomical ap-
plications. We demonstrate and compare the strategy in several synthetic
scenarios and an astronomical particle simulation of a dwarf galaxy for the
detection of superbubbles (supernova signatures).

1 Introduction
Topological data analysis (TDA) provides exploration tools for increasingly di-
verse applications in various domains, ranging from biology, networking, natural
images, geometry and material science [1]. Persistent homology (PH) is a TDA
technique for computing the properties of shapes of a finite metric space (also
called point-cloud data set) and can capture these features in an extended range
of scales. Nonetheless, as the number of points or the dimensions of a dataset
increases, the computation of the PH soon becomes impractical. Numerous
methods and toolboxes provide novel approaches to tackle the problem of com-
putational costs. Sparse Rips filtration [2], which builds an ε-net on top of the
point set then associates weights to each node, is a provably good approxima-
tion of the full data Rips filtration. In [3] two new atomic operations for efficient
computation of PH are suggested and SimBa [4] combines these two strategies
to reach a higher sparsity increasing the efficiency for computation of Rips fil-
tration. The toolbox Ripser [5] decreases the computational costs by avoiding
to build the complete coboundary matrix, building and storing only the parts
needed, which improves the memory consumption leading to a decline in com-
putational time. These methods are limited to Rips and are not extendible to
other types of filtration. A general concept for scaling down the computation
was reported in [6] proposing to sub-sample the data randomly repeatedly and
construct an average landscape for the point cloud. Although their approach can
be applied for constructing all types of filtration, it is sensitive to the distribution
of the data on the structures as a consequence of random sampling.
Physical particle simulations are one way of investigating astronomical phenom-
ena such as galaxies and supernovas. Radiation and winds from massive stars
at the end of their life can greatly affect the dynamics of gas in the interstellar
medium (ISM) and in turn, change the structure of the galaxy and its ability to
create new stars. Dwarf galaxies are very sensitive to the physical processes de-
termining their evolution due to their low mass and are therefore used as probes
to characterize, study and isolate them in simulations. Similar to real dwarfs
simulated irregular galaxies have a very clumpy ISM and holes due to super-
novae as visible in the gas density distribution [7, 8]. The characterization of
the distribution of supernova shells in the ISM (so-called superbubbles), and the
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energies of the expanding shells [9, 10], can shed light on the feedback physical
processes. Superbubbles are of great astronomical interest but typically mea-
sured by eye in available catalogues and automatic quantitative tools are highly
desirable. In this contribution we propose ASAP1, a sub-sampling approach
for preserving topological structure, that reduces the computational cost suit-
able for different types of PH filtration, general d-dimensional point clouds and
large number of samples. In the following the strategy is explained in detail,
furthermore compared in several controlled experiments and finally used to in-
vestigate a snapshot of a particle simulation by computing the number and size
of superbubbles within a jellyfish-like dwarf galaxy.

2 Method
Computing the persistent homology for the analysis of the evolution of shapes
across different resolutions is often prohibitive due to the combinatorial nature of
existing algorithms complexity, in both time and space. Therefore, we propose a
two-stage strategy based on subsampling and Coulomb’s law[11]. As described
before, we first subsample points from the point-cloud data set P (finite metric
space) to reduce the amount of computation time and memory. The subset
Nr ⊂ P aims to contain fewer points s ∈ Nr for which the persistent diagram
D(Nr) approximates the persistent diagram of the full data D(P ). Therefore
the set Nr has to satisfy the following two conditions [2] checked in every step:

(1) covering d(p, s) ≤ r ∀p ∈ P,∃s ∈ Nr and

(2) packing d(si, sj) > r ∀si, sj ∈ Nr with i 6= j.

We satisfy (1) by selecting a random point si, insert it to Nr and remove all
points {pj} from P belonging to an open ball centered around si with radius r:

B(si, r) = {pj ∈ P : d(si,pj) ≤ r} ⇒ P = P \{{pj}, si} and Nr = Nr∩si. (1)

This process is repeated until the point set P is depleted implicating that all
points are covered by at least one open ball of a sample point in Nr. Due to
the removal of points in every step also the packing condition is fulfilled for all
remaining points in P . Their distance must be larger than r from si.
The sub-sampling strategy fulfils both necessary conditions, but the result is
not completely uniform and the pairwise distance of any sample point pair is
between r and 2r. However, it is more desirable to have sample points equidis-
tant from each other forming a uniform grid. As a result, we expect when all
points on its boundary connect to each other it coincides with the birth time of
the void. Moreover, in astronomical applications it is crucial to measure the size
of the cycles, cavities and streams as accurately as possible, for which Nr needs
to contain the borders of the data. Therefore we propose an extension to the
sampling inspired by the movement of identical electrical particles, such as elec-
trons, on the surface of a conductive sphere. The electrons will repel each other
based on Coulomb’s law and form a uniform distribution. To take advantage of
this physical repulsion force each sample is repelled by neighbouring samples by

mi = disp(si) =
∑

sj∈Ni

sj − si
‖sj − si‖

· γ

‖sj − si‖2
, (2)

where the set Ni consists of sample points in 2r radius of si and γ denotes the
learning rate. If neighbouring points are far from si the force will be low, and
the learning rate controls the strength of the movement. The appropriate range
for the displacement is between (0.1r, r), since the effect of smaller movements is
negligible and larger movements result in si intruding positions already covered

1The code and the synthetic datasets are available in https://github.com/abst0603/ASAP
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Algorithm 1: ASAP a sub-sampling approach preserving topological structures

Input : data P , radius r, learning rate constant τ Output: Nr
1 Initialize: Ptmp = P , Nr = ∅, γ = 1, and t = 1
2 while (Ptmp 6= ∅)
3 Select a random point si from Ptmp

4 Nr = Nr ∩ si and remove points from Ptmp following Eq. (1)

5 while (γ > 0.1r3) /* repulsion forces */6

7 Calculate γ based on Eq. (3)
8 forall (si ∈ Nr)
9 Compute mi Eq. (2) and ŝi using Eq. (4)

10 if (d(ŝi, sj) > r∀sj ∈ Nr AND sj 6= si)
11 si = ŝi

12 Ptmp = P
13 forall (si ∈ Nr) /* fulfil covering condition */14

15 Remove all points which belongs to B(si, r) from Ptmp

16 while (Ptmp 6= ∅)
17 Select a random point si from Ptmp

18 Nr = Nr ∩ si and remove points from Ptmp following Eq. (1)

19 t+ +

by other samples. The learning rate is gradually reduced in every step t following

γ = r3 exp(−t/τ) (3)
such that the samples converge to the new positions. τ is a constant which
determines the decay rate of the learning rate. Instead of moving the samples
itself we take the closest point in the original set ŝi ∈ P to the displacement
position as substitute for si

ŝi = arg minpj
(d(pj , si + mi)) ∀pj ∈ P (4)

if it is not contained in an open ball of any other sample point. Algorithm 1
details the complete procedure of the extended sampling strategy and Fig. 1
shows the result on a simple two-dimensional example. Panel (a) depicts the
point cloud P consisting of a line and a square with a circular hole in the centre
and the open ball cover after the random sampling in panel (b). The balls of
Nr after the update using the repulsion force is illustrated in (c) resulting in a
more uniform grid that covers all boundaries as desired.
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Fig. 1: Panel (a) points P distributed on a line and a square with a hole in the
centre, (b) ball cover after random sub-sampling and (c) after repulsive selection.

3 Experiments
In this section, we address the comparison between ASAP as a preprocessing step
for several types of point cloud filtration and state-of-the-art TDA methods. To
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Fig. 2: 2 circles: (a) point set, (b) samples after applying ASAP, (c) persistence
barcode of the point set and (d) the sub-sample.
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Fig. 3: The variation of the radius of smaller circle of the 2 circles data set when
reducing the number of samples for Alpha (left) and Rips filtration (right).

compute the PH of point sets we mainly use GUDHI [12], which is faster and
more memory efficient due to the structure of the simplex tree than many other
toolboxes [1]. In order to obtain the Rips filtration on datasets with larger
number of points, we build the simplicial complex using Ripser [5]. We first
discuss controlled experiments with known ground truth, followed by the results
of ASAP on real-world data from an astronomical galaxy particle simulation.
Synthetic data with ground truth. We first experiment on a simple two-
dimensional dataset which was introduced in [6]. 500 points are distributed
uniformly on two circles with radius 1 and 4. Fig. 2 shows the barcodes of the
complete point cloud and samples which are selected based on ASAP, respec-
tively. Each bar illustrates the birth-death interval of a topological feature of
the point cloud. The barcodes for features of homology groups H0, H1, and H2
are presented in red, green, and blue, respectively. Barcodes were denoised by
removing bars with minimum persistence smaller than threshold 0.5. The pro-
posed method reduces the original point set to only 27 points, which not only
depict a similar persistence barcode and preserves the death-times for all bars,
but the death time of the bars for betti number 1 shows the correct value for the
radii of both circles. We also compared both sub-sampling methods reducing the
number of points consecutively while observing the resulting radius estimate of
the small circle (see Fig. 3). Note that the circle with radius 4 is robust for both
sub-sampling method. We repeat the random sub-sampling 10 times as sug-
gested in [6], and the number of points in each sub-sample of ASAP corresponds
to hyperparameter r ranging from [0.1, 1]. For both alpha filtration (panel (a))
and Rips filtration (panel (b)) ASAP preserves the radius of the smaller circle
with fewer number of samples.
To compare the methods in higher dimensions we spread points nonuniformly
and unevenly on two hyper-spheres in R5 with radius 1 and 2 (referred to as
2Spheres dataset). Even though the data consists only of 1200 points the com-
putation of Rips filtration is very memory consuming for this dataset. Note that
the code of Simba [4] provided by the authors only returns the betti numbers up
to 3 dimensions. We sub-sample the point cloud based on ASAP and [6] respec-
tively and construct the alpha complex on both resulting sub-sets. As proposed
in [6] we iterate the sampling procedure for 10 times. We show the mean value
in the barcode plot and results of both methods in Fig. 4. Since the data is not
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Fig. 4: Persistence barcode of 2Spheres data: panel (a) spheres in R5, (b) samples
extracted by ASAP and (c) samples extracted by [6].
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Fig. 5: Synthetic dwarf galaxy(a). Barcode for: Alpha filtration of the point
set(b) and 558 sub-samples(c); Rips filtration 558 sub-samples(d); and SimBa(e).

uniform, random sub-sampling as proposed by [6] cannot preserve its homology.
If we reduce the number of samples to less than 1000 points the PH changes
significantly in several iterations. ASAP preserves not only the homology of the
data in R5 with only 655 sub-sampled points, but also the death to birth times
of the barcodes for betti number 4, corresponding to the radii of the spheres.
Lastly, we create a more realistic synthetic example representative for our astro-
nomical application. Namely 9656 non-uniformly distributed points in R3 form-
ing a synthetic dwarf galaxy containing 2 cavities, 3 cycles in a half spherical
head, a connected and a separated stream (see panel (a) in Fig. 5). Unfortu-
nately, GUDHI and Ripser for the computation of the Rips filtration fail due
to high memory usage. The persistence barcode for alpha filtration is shown in
panel (b). SimBa can compute the Rips filtration, as depicted in panel (e) Fig. 5,
but looses one bar related to betti number 0 and the death times do not conform
with the true size of the cycles and cavities within the head. We also evaluate [6]
sub-sampling a random selection of half of the points repeated 10 times. Since
the data is not uniformly distributed on the structure this strategy alters the
homology. Sub-sampling with ASAP r = 0.15, on the other hand, leaves only
558 points (5.7% of the original set) while preserving the homology and the radii
of cycles and cavities almost perfectly as illustrated in the corresponding persis-
tence barcode using Alpha filtration (Fig. 5(c)). Ripser can compute the Rips
filtration on the smaller subsets acquired by ASAP r ≥ 0.1 (panel (d)).
Table 1 presents the total number of simplices arising in every filtration on all
synthetic datasets investigated. SimBa can only compute the Rips filtration and
although Ripser compute the Rips filtration on the synthetic dwarf dataset it
does not provide any information about the size of the simplicial complex in-
side the structure indicated by ’-’ in the respective columns. We indicate with
’∞’ whenever the computation of the Rips filtration fails due to the memory
complexity. For our proposed method and random subsampling by [6] (abbrevi-
ated by RSM), we report the results for the number of samples preserving the
homology of the data after denoising.
Jellyfish-like dwarf galaxy particle simulation data. Fig. 6 panel (a)
shows the point set corresponding to the position of 33500 gas particles at a
specific point in time acquired from a real astronomical particle simulation of a
dwarf galaxy. The distribution of points in this point cloud varies significantly
and the points are dispersed on multiple separated parts. Hence we expect to
see several bars linked with betti number 0 for this dataset. We sub-sample the
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Table 1: Comparison of the number of simplices constructed by several methods.

ASAP RSM[6] SimBa GUDHI
dataset (n, d) Alpha RIPS Alpha RIPS RIPS Alpha RIPS
2circles (500,2) 81 1 640 309 37 876 1 031 2 345 13 752 927
2Spheres (1 200,5) 349 541 ∞ 584 657 ∞ - 718 531 ∞
s.dwarf (9 659,3) 13 801 - 250 991 - 63 004 250 991 ∞

point set using ASAP with r = 0.7 reducing the set to ≈ 10% of the total. Then
the alpha simplicial complex was constructed on subset. Fig. 6 panel (b) shows
the persistence barcode for the reduced set, denoised using a threshold of 0.6 for
the minimum length of each bar. The data consists of 8 distinguished parts (red
bars) and 4 cavities (blue bars) inside, which denote the size of each superbubble
(5.7,3.98,1.66,1.48) inside the simulated jellyfish-like dwarf galaxy.
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Fig. 6: Dwarf galaxy (a) point set and (b) Alpha filtration of ASAP subset.

4 Conclusion
We introduce the novel method ASAP for sub-sampling a point cloud that pre-
serves the topological properties and reduces the memory consumption and
computational cost for TDA analysis. The formulation is expandable for d-
dimensions, is not limited to a specific type of filtration and its performance is
shown for a variety of data sets. Since the approach preserves the size of topo-
logical features it is useful for domains where the accuracy of such information
is indispensable, such as astronomy where it informs about physical processes.
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