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Abstract

Background: To fulfil good manufacturing requirements, analytical methods for the
analysis of pharmaceuticals for human and vetinary use must be validated. The
International Conference on Harmonization of Technical Requirements for Registration of
Pharmaceuticals for Human Use (ICH) has published guidance documents on the
requirements for such validation activities and these have been adopted by the European
Medicines Agency, The U.S. Food and Drug Administration (FDA) and other regulatory
bodies. These guidance documents do not, however, fully address all the specific tests
required for the analysis of radiopharmaceuticals. This guideline attempts to rectify this
shortcoming, by recommending approaches to validate such methods.

Results: Recommedations for the validation of analytical methods which are specific for
radiopharmaceutials are presented in this guideline, along with two practical examples.

Conclusions: In order to comply with good manufacturing practice, analytical methods
for radiopharmaceuticals for human use should be validated.

Keywords: Radiopharmaceuticals, Validation, Radioanalytical methods

Preamble
The European Association of Nuclear Medicine (EANM) is a professional non-profit

medical association that facilitates communication worldwide among individuals pur-

suing clinical and research excellence in nuclear medicine. The EANM was founded in

1985.

This guideline has been written by members of the EANM Radiopharmacy Commit-

tee and is intended to assist professionals involved in the preparation and quality con-

trol of radiopharmaceuticals to determine when and how analytical methods should be

validated.

Background
Radiopharmaceutical preparations or radiopharmaceuticals (RPs) are medicinal products

which, when ready for use, contain one or more radionuclides included for a medical pur-

pose. The radioactive compounds in RPs may contain simple salts (e.g. [131I]sodium
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iodide), metal complexes (e.g., [99mTc]technetium exametazime), small organic molecules

(e.g. [18F]fluorodeoxyglucose) or large molecules (e.g. 125I-labelled human serum albumin)

as the active pharmaceutical ingredient. The principal radioactive ingredient may be char-

acterised and quantified on the basis of the chemistry of the molecule and the physical

properties of the radionuclide. As for any other pharmaceutical, their quality needs to be

controlled before administration to patients, to ensure that their characteristics (i.e. iden-

tity, strength, and purity) are suitable for the intended purpose. However, for quality con-

trol of radiopharmaceuticals two specific aspects which differ from conventional

pharmaceuticals must be taken into account:

� The strength of a radiopharmaceutical is defined by its radioactivity content (in

MBq), or radioactivity concentration (MBq/ml), and it follows the decay law; thus,

the strength of a radiopharmaceutical decreases with time. Radionuclides used in

the field of molecular imaging and therapy may have half-lives in the range of sec-

onds to hundreds of days.

� Whilst analytical techniques used to determine the content of non-radioactive com-

ponents (e.g. precursors, cold ligands, non-radioactive impurities, residual solvents,

etc.) of radiopharmaceutical preparations are generally the same as those used for

conventional pharmaceuticals, radioactivity determination requires specific tech-

niques, which make use of dedicated instrumentation capable of specifically detect-

ing, discriminating and quantifying the radioactivity in the sample.

Before their use in routine quality control procedures, analytical methods must be

validated. Validation is intended to ensure that the methods are suitable for their

intended purpose. This involves testing a number of parameters as defined in the guid-

ance document released by the International Conference on Harmonization of Tech-

nical Requirements for Registration of Pharmaceuticals for Human Use (ICH), which

has been adopted by the European Medicines Agency (CPMP/ICH/381/95 2014) and is

thus applicable in the Member States of the European Union (EU). The requirements

for validation according to ICH can be seen in Table 1.

Discussion
The ICH guideline provides a definition for each of the mentioned validation character-

istics and methodology, with practical hints on how to investigate specificity, linearity,

etc.; thus, it represents a general and commonly accepted basis for the validation of

analytical methods. However, in the ICH guidelines it is also stated that “approaches

other than those set forth in this guideline may be applicable and acceptable. It is the

responsibility of the applicant to choose the validation procedure and protocol most suit-

able for their product”, thus recognizing that the suggested methodology may not be

fully applicable in special cases. Although they are not specifically mentioned in ICH

text, radiopharmaceuticals are certainly a special case. With the aim to provide guid-

ance on the validation of radioanalytical methods, Table 1 has been modified to address

the specific tests required for radiopharmaceuticals (Table 2). Besides the ICH guide-

lines, there are numerous other publications describing the validation of analytical

methods for conventional pharmaceuticals. Thus, this guidance document will focus
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mainly on the validation of radioanalytical methods, with conventional methods only

touched upon in special cases.

Before designing a protocol for validation of analytical methods, it is crucial to check

which quality references apply and if these need to be supplemented by further quality

requirements, as this may determine the extent of required validation. In the 38 mem-

ber states of the Council of Europe, including all members of the European Union (EU),

the European Pharmacopoeia (Ph. Eur.) is the single, official and legal point of refer-

ence for manufacturing and quality control standards for medicinal products, including

radiopharmaceuticals. The European Pharmacopoeia contains general monographs and

a very large number of individual monographs for substances for pharmaceutical use,

written by groups of experts, based upon specifications of authorised and frequently

used preparations in Ph. Eur. member states and adopted by the Ph. Eur. Commission.

The contents and indications of these monographs are mandatory in all 38 member

states. These texts apply to both industrial and academic/hospital-based manufacturers

and for “any medicinal product which is prepared in a pharmacy in accordance with

the prescriptions of a pharmacopoeia and is intended to be supplied directly to the pa-

tients served by the pharmacy in question (commonly known as the officinal formula)”.

In the General Notices of the Ph. Eur. it is stated that “The test methods given in

monographs and general chapters have been validated in accordance with accepted sci-

entific practice and current recommendations on analytical validation. Unless otherwise

stated in the monograph or general chapter, validation of the test methods by the ana-

lyst is not required”. Thus, if a Ph. Eur. monograph exists, the quality control of a (ra-

dio)pharmaceutical is described in the monograph, i.e. which controls have to be

performed, including the related method of analysis with experimental details (e.g. sta-

tionary phase, mobile phase, flow rate, wavelength in case of HPLC analysis with UV

detector, etc.) and acceptance criteria. If the monograph is followed, the analytical

methods described do not need to be validated but must be verified in each individual

Table 1 Characteristics to be validated following ICH Q2(R1)

Type of analytical procedure

Identification Testing for impurities Assay

Quantitative Limit Dissolution Measurement only
Content / potency

Characteristic

Accuracy – + – +

Precision

Repeatability – + – +

Intermediate Precision – +a – +a

Specificityb + + + +

Detection Limit – -c + –

Quantification Limit – + – –

Linearity – + – +

Range – + – +

– signifies that this characteristic is not normally evaluated
+ signifies that this characteristic is normally evaluated
ain cases where reproducibility has been tested, intermediate precision is not needed
black of specificity of one analytical procedure could be compensated by other supporting analytical procedure(s)
cmay be needed in some cases
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laboratory, to ensure that the method has been implemented properly (e.g. system suit-

ability test, detector linearity and limit of quantification). This is especially important

for radioanalytical methods, where precise radiodetection methods are not specified in

the individual monographs. It may also be relevant to verify that the chosen formula-

tion of the preparation does not interfere with the tests described in the monograph.

Currently, over 70 monographs for radiopharmaceuticals are available, which include

most of the more frequently used radiopharmaceuticals, such as technetium-99m prep-

arations (prepared from licensed kits) and fludeoxyglucose (18F) injection ([18F]FDG). If

a monograph for a radiopharmaceutical has not been published, or in case the

monograph exists but for any reasons it is preferred to use a different method, the

suitability of the individual analytical method(s) must be assessed and demon-

strated by validation.

Radioanalytical tests
Radioactivity content (assay)

The radioactivity content of a radiopharmaceutical is often determined using a dose

calibrator (ionisation chamber). Other methods such as the use of well counters (scin-

tillation detectors) may also be suitable. Further guidance can be found in the European

Pharmacopoeia (Ph. Eur. 2.2.66 2016). Validation for a given radionuclide will normally

be assured by calibration and qualification of the measurement system, and method

(product) specific validation is generally not a prerequisite.

Accuracy

Accuracy is assured by calibration using sources of radionuclides traceable to national

or international standards (e.g. cæsium-137). A daily constancy check is normally per-

formed as confirmation. Recalibration should be performed as and when necessary. In-

strument manufacturers normally provide specifications for accuracy.

Precision (repeatability)

Repeatability may be easily measured by six repeated measurements using a representa-

tive amount of radioactivity. The half-life of the radionuclide used, the quantification

limit and the linear range of the radiodetector should be taken into account when de-

termining how many repetitions it is feasible to perform. Decay correction may be re-

quired for short-lived radionuclides, thus the measured radioactivity needs to be

recalculated to t0 using the decay equation:

Ao ¼ A=e−λt

where:

A0 = activity at time 0

A = activity at time t

t = time delay in minutes

λ = decay constant (ln2/t1/2)
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Specificity

Specificity must be confirmed unless tests have ruled out the presence of relevant

quantities of impurities which may interfere with the measurement. Possible attenu-

ation due to matrix effects and geometry effects should be considered.

Linearity/range

Linearity measurements are generally part of the instrument qualification and should

be performed at least yearly for the radionuclides used and over the whole measure-

ment range. The useable measurement range should be based on the manufacturer’s

recommendations and the validation data.

Radionuclide identity

Radionuclide identity is established by assessing the physical characteristics of the ra-

dionuclide’s emissions. The energy of the radiation can be determined using a gamma-

ray or beta-particle spectrometer. Additionally, radionuclide identity can be confirmed

by approximate half-life measurements using a dose calibrator or spectrometer (gamma

or beta). As can be seen in Table 2, different validation parameters are required for

each test. Gamma-ray spectrometry is of limited usefulness for identification when the

sample may include different radionuclides emitting gamma-rays of the same energy.

This is indeed the case for positron emitters, that always emit gamma photons at 511

keV (and a sum peak at 1022 keV), due to the annihilation of positrons with the sur-

rounding electrons; here, an additional decay test may allow to discriminate between

two different positron emitting radionuclides, thus contributing to the identification of

the desired radionuclide. Half-life determinations may be performed using either a

gamma-ray spectrometer or dose calibrator, although the latter is easier and quicker to

use and usually available in any nuclear medicine department. Gamma-ray spectrom-

etry is often applied to determine the presence of long-lived radionuclide contaminants

after sufficient decay of the main radionuclide.

Half-life measurement

A preliminary knowledge of the potential contaminant radionuclides’ identities is very

important, as their half-lives and amounts affect the experimental results. For instance,

a longer-lived contaminant increases the overall sample decay time, and vice versa, and

the effect is proportional to the difference between the half-lives of the desired radio-

nuclide and contaminants. In case the latter are significantly shorter lived, compared

with the intended radioisotope, it may be useful to wait before analysing the sample, to

allow for sufficient decay of the impurity. The waiting time required for this should be

defined during method validation.

Precision (repeatability) Repeatability is normally determined during instrument

qualification for a given radionuclide as described for radioactivity content.

Specificity Half-life measurement should be specific for pure radionuclides. A suitable

measurement time should be established during the validation procedure, depending
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on the half-life of the specific radionuclide. A minimum of three measurments should

be used to determine the half-life.

Linearity/range Linearity is determined within a specified range during instrument

qualification for a given radionuclide as described for radioactivity content.

Spectrometry

Accuracy As a gamma-ray spectrometry detector provides a response in terms of emis-

sion energies, it is of paramount importance that the detector itself is suitably cali-

brated for energy using traceable standards. This is performed during instrument

qualification and is not specific to any radiopharmaceutical method.

Specificity Ideally, specificity should be evaluated using a reference standard contain-

ing the intended radionuclide in combination with one or more of the expected con-

taminant radionuclides. However, this is often unpractical, due to unsuitable half-lives

of the selected radionuclides or simply because they are not easily available from com-

mercial sources. A useful alternative may be a calibrated, multi-nuclide or single-

nuclide with multigamma-ray emission source, that may provide useful peaks in the

intended working range (usually 0–2000 keV). As resolution is an indirect measure of

specificity, results are strongly affected by the detector used, high purity germanium de-

tectors having a much higher energy resolution than sodium iodide scintillation detec-

tors (< 1% vs. > 10%). This factor should be accounted for in the conclusions related to

the validation of the method. In practice, a series of measurements with the calibrated

source(s) is performed, and the resolution factor (Rs) is calculated considering the peak

energies detected using the following equation:

Rs ¼ 1:18� Erb−Erað Þ
FWHMa þ FWHMb

Where:

Erb = Energy of the peak for radionuclide « b »

Era = Energy of the peak for radionuclide « a »

FWHMb = full width at half maximum peak height for radionuclide « b »

FWHMa = full width at half maximum peak height for radionuclide « a »

Acceptance criteria might be set to Rs > 1. In the case of sodium iodide detectors, Erb
and Era will be the centroid energies.

Radiochemical identity

Identification takes advantage of the physical characteristics of the radionuclide and

physicochemical characteristics of the radiopharmaceutical. As radiopharmaceuticals

are present in tracer amounts, there is a large excess of the non-radioactive substance

which is often detectable using standard physicochemical techniques such as measure-

ment of UV absorbance. Chromatographic analyses such as HPLC, TLC or GC are gen-

erally required. The chromatographic comparison of the radioactive product peak (i.e.

retention time or retardation factor) with its non-radioactive counterpart (reference
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standard) may be used as an identification test. In some cases, it may be appropriate to

use two independent chromatographic methods to verify the identity of the radiophar-

maceutical product. The ability of the method to determine the chemical identity of

the radioactively labelled substance must be demonstrated. The retention time or re-

tardation factor of the main radioactive product peak must correspond with the reten-

tion time of the non-radioactive reference standard. When using gas or liquid

chromatography, the delay time between the in-line physicochemical (e.g. UV) and

radioactivity detectors must be accounted for. Generally, retention times should correl-

ate within ±5%. The reference standard can be analysed prior to the radioactive prod-

ucts and the two retention times compared. If retention times or retardation factors

fluctuate, then the radioactive sample can be spiked with reference standard for a com-

parison in the same analysis.

Specificity

Method validation must demonstrate that the radioactive product is resolved from any

potentially interfering radioactive impurities. Baseline separation is preferable (Rs > 1.5;

when two peaks of equal size, and Gaussian-shaped; i.e. “perfect” peaks have less than

1% overlap).

Radionuclidic purity

This is often divided into two tests:

� i) A limit test to determine the presence of short-lived radionuclides

This test is aimed at detecting impurities with half-lives comparable with that of the

main radionuclide. For impurities with shorter half-lives, it is expected that their

amount becomes negligible at the time the radiopharmaceutical is used. The test is

often performed using a sodium iodide scintillation detector and additionally acts as a

radionuclide identity test, where for example the characteristic 511 and 1022 keV peaks

from positron emitters will be seen. Normally the main peak will hamper any attempts

to detect small radionuclidic impurities and tests following decay of the main radio-

nuclide are required (see below).

Accuracy

Accuracy relies on the energy calibration and is generally assured by instrument qualifi-

cation as mentioned earlier.

Specificity

It should at least be verified that any potential impurities which may be present can be

detected at the predefined limit. Measurement times and applied radioactivity should

be established during the validation.

Detection limit

For known short-lived radionuclidic impurities, the measurement system and method

should be optimised, and the detection limit should be determined. An estimation
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based on a signal to noise ratio of 3:1 as described in the European Pharmacopoeia (Ph.

Eur. 2.2.46 2016) is appropriate.

� ii) A quantitative test (after decay) to determine the presence of longer-lived radio-

nuclidic impurities.

The absence of long-lived radionuclides in radiopharmaceutical preparations must be

ensured. For example, cyclotron produced zirconium-89 may contain yttrium-88 (t½ =

106 days) and fluorine-18 may contain tritium (t½ = 12.3 years) and various long-lived

metal radionuclides leached from cyclotron target foils (e.g. manganese-52 and 54 and

cobalt-56, 57 and 58). Radionuclides often have gamma emissions which are character-

istic and unique, and by using suitable methods such as gamma-ray spectrometry,

which is capable of detecting gamma-rays and their emission energies, it is possible to

quantify any radionuclidic impurities. In the case of tritium, a beta detection system is

essential as there are no gamma-ray emissions.

Accuracy

Accuracy may be evaluated using traceable single or multinuclide calibrated sources. It

is important that the half-life of the calibration nuclide(s) is long enough to allow meas-

urement with minimum effects due to decay. After a suitable number of acquisitions,

accuracy is then determined by comparison of calculated activity of the calibration ra-

dionuclides with the activity quantified by the instrument.

The relative content of longer-lived radionuclide contaminants increases with

time. Thus, it is important to quantify contaminants whose half-life is similar or

longer compared with that of the main radionuclide. Samples should be allowed to

decay for a suitable time, and decay time should be clearly defined. For instance,

Ph. Eur. monographs for fluorine-18 labelled radiopharmaceuticals suggest retaining

the sample at least 24 h to allow fluorine-18 to decay to a level that permits detec-

tion and quantification of the impurities. Most Ph. Eur. monographs specify a

radionuclidic purity of > 99.9%. This should be demonstrated throughout the shelf-

life of the radiopharmaceutical, which can be particularly challenging for short-

lived radionuclides. For example, [18F]FDG often has a 12 h shelf-life. Thus, the

radioactivity due to fluorine-18 decays by a factor of ca. 100 during this shelf-life

and 0.1% of radionuclidic impurities must be quantifiable relative to the radioactiv-

ity of the product at the end of its shelf-life.

Precision (repeatability)

Measurement times and detector settings should be standardised to obtain a sufficient

precision. Repeatability can be validated by six consecutive measurements of the same

sample.

Intermediate precision

If considered appropriate, testing of the same sample on different days should be used

to demonstrate intermediate precision.
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Specificity

It should be verified that any potential impurities which may be present can be detected

at the predefined limit using the measurement system. Measurement times should be

established during the validation.

Detection limit

Using gamma-ray spectrometry, the limit of quantification may be suitably replaced by

MDA (minimum detectable activity) values, which are determined by qualified software

in the instrument every time a sample is measured. MDA is a parameter depending on

several factors such as geometry, activity, background activity, counting time, etc. All

these factors should be defined during validation, in order to obtain consistent results.

Linearity

Linearity will normally be demonstrated during instrument qualification.

Range

A suitable range should be defined, based on establishing measurement times, in order

to ensure detection of potential radionuclidic impurities above the specified limit with

defined sample radioactivities.

Radiochemical purity

Radio-HPLC

Radiochemical purity (RCP) measurements establish the content of impurities labelled

with the same radionuclide used to prepare a radiopharmaceutical, but with a different

chemical form. Strictly speaking, determination of radiochemical purity is not truly

quantitative, as it is typically calculated as the ratio between the peak area of the de-

sired radiopharmaceutical and the overall area of all the detected peaks in the radio-

chromatogram (corrected for decay). The instrument used to determine radiochemical

purity with HPLC (radio-HPLC) is the radiometric detector (radiodetector), which is

normally an in-line detector connected in series with a UV or other physicochemical

detector. The radiometric detector can be a Geiger-Müller probe, a scintillation de-

tector or a PIN diode. The validation of the method relies on the fact that all the ap-

plied sample (radioactivity) is eluted from the HPLC column. This is known as

recovery and, before any other validation parameters are considered, it is necessary to

measure this.

Recovery Certain radiochemical impurities commonly found in radiopharmaceuticals

(e.g. [18F]fluoride, [68Ga]gallium ions, 99mTc-pertechnetate) may be retained in the in-

jection system, pre-column filters, tubing or the column material itself. There are sev-

eral methods suitable for estimation of these effects, which must be considered when

validating the method. For example:

� Comparison of the injected radioactivity with the eluted radioactivity – this can be

achieved by collecting the eluent in fractions and measuring them (compared with

the calculated or measured injected radioactivity).
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� Performing a second analysis in which the sample bypasses the HPLC column and

flows directly through the radiodetector (using switching valves) and comparing the

peak areas from the two radiochromatograms, after appropriate correction for

radioactive decay. This method will not account for retention of radioactivity in the

injection system or tubing.

� By performing spike recovery experiments with samples spiked with known

amounts of a radioactive impurity (e.g. [18F]fluoride). This method requires very

careful sample preparation to be certain that the “true” radiochemical purities are

accurate.

Accuracy In some circumstances, it may be appropriate to determine accuracy of a

method using non-radioactive reference materials. This relies on the availability and de-

tectability of compounds which are detected as radioactive impurities. It can, however,

be challenging to identify such impurities due to the low masses involved (may require

highly sensitive MS detectors). In this situation accuracy may be determined during the

validation of the method for the determination of the “cold” drug substance and chem-

ical impurities. However, in this case, any characteristics specific to the radiodetector

used will not be accounted for.

If the identity of radioactive impurities is known, and if they are available, then these

can be utilised to determine accuracy, by preparing samples spiked with various

amounts of impurities and comparing the expected RCP with the measured RCP. The

results can be expressed as recovery in percentage terms. An example of the import-

ance of this concept is the determination of radiochemical purity of fluorine-18 labelled

RP’s. It is well known that free [18F]fluoride adheres to some extent to many HPLC col-

umns and considerable tailing of the peak is often observed. This is dependent on the

pH of the eluent and the column material (Ory et al. 2015). Thus, in order to validate a

radiochemical purity method where [18F]fluoride is a specified impurity, a spike recov-

ery analysis may be justified. If radio-HPLC alone is relied on for a radiochemical purity

test, a radio-TLC method may also be useful to verify the accuracy of the method.

Precision (repeatability) The repeatability of RCP determination should be deter-

mined by sequential analysis of at least 6 homogeneous samples of the radiopharma-

ceutical preparation with a radioactivity concentration close to that expected for

routine analysis. However, the half-life of the radionuclide, the limit of quantification

and the linear range of the radiodetector should be taken into account when determin-

ing how many repetitions it is feasible to perform. Peak areas obtained after integration

need to be recalculated to T0 using the decay equation:

Ao ¼ A=e−λt

Where:

A0 = corrected peak area

A =measured peak area

t = time interval in minutes between the considered injection and the first one

t1/2 = half-life in minutes

λ = decay constant = ln2/t1/2
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Peak areas, normalized for decay, may then be used to calculate the radiochemical

purity and perform a statistical analysis. A specification for precision in absolute per-

centage terms should be defined for this test, e.g. RCP ± 0.5%. In cases where the radio-

pharmaceutical is of very high radiochemical purity, it may be necessary to spike

samples with a known radioactive impurity in order to determine repeatability.

Intermediate precision Since HPLC systems are generally automated, the results

should be independent of the analyst and thus omission of this test may be justified un-

less manual injections are performed. The intermediate precision may however be

assessed by having different analysts evaluate the chromatograms obtained during the

repeatability tests. Manual integration of peaks can be subjective and may therefore

affect the precision of the method.

Specificity If the radiochemical species have non-radioactive (“cold”) counterparts

available, the assessment performed during the validation of the method for the deter-

mination of the drug substance may be applicable to the method for radiochemical pur-

ity, as it may be assumed that retention times are comparable. However, any

differences in peak width between “cold” and radioactive peaks should be considered.

Where “cold” reference samples of radiochemical impurities are unavailable, retention

times and the ability of the method to clearly separate them from the desired radio-

pharmaceutical should be assessed. A second HPLC method (different column or dif-

ferent mobile phase) may be considered to confirm that there are no radioactive

impurities coeluting with the main peak. Radiopharmaceutical product samples should

be spiked with radioactive reference standards, if available, to determine the resolution

factor. Baseline resolution of all peaks is preferable (Rs > 1.5). As mentioned above, cer-

tain radioactive impurities such as [18F]fluoride may be challenging and a secondary

complementary method may be necessary.

Quantification limit Determination of the limit of quantification (LOQ) is important,

as the expected activities of the radiolabelled impurities are usually low or very low,

and experimental tests or calculations are aimed to determine the lowest activity at

which they may be reliably quantified. In practice, considering that both the desired

product and the impurities are labelled with the same radionuclide, LOQ may be ex-

perimentally determined using samples labelled with the desired radionuclide (for in-

stance, the radiopharmaceutical itself), allowing them to decay, and performing the

HPLC analysis. Whilst a determination of LOQ is achievable, this is always related to a

specific substance (peak) and will not necessarily be appropriate for a given radioactive

impurity. Thus, validation of LOQ should determine the amount of radioactivity (radio-

activity concentration and injection volume) which must be applied in order to assure

the quantification of small amounts of radioactive impurities. LOQ is determined in

terms of absolute radioactivity or radioactivity concentration. These values must be re-

lated to the determination of RCP (in percentage terms) such that its uncertainty can

be quantified. For example, it may be defined that the RCP of a radiopharmaceutical

should be quantifiable to with 0.5%. In this case, the LOQ should be sufficient such that

a 0.5% radioactive impurity can be reliably determined.
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Linearity/range For the determination of linearity, the same samples and results used

for repeatability assessment may be used (depending on the half-life). Alternatively, se-

quential dilutions may be used. The calculated amount of radioactivity is plotted

against the measured amounts and the linear fit should comply with R ≥ 0.99. As stated

earlier, the linearity of radioactivity measurement systems is an integral part of an Op-

erational Qualification (OQ) or Performance Qualification (PQ) and, if appropriate,

these results may be sufficient. The method should be linear from LOQ to the highest

expected radioactivity concentration for a sample.

For stability studies of short-lived radiopharmaceuticals, further validation may be re-

quired in order to assure accuracy of the results at the end of shelf-life.

Robustness Robustness is normally assessed during the validation of the “cold” physi-

cochemical HPLC validation (e.g. small changes in eluent composition and pH). For

evaluation of radiochromatograms, there should be strict rules regarding peak integra-

tion and setting baselines. It may be appropriate to test the robustness of this by com-

parison of the integration of chromatograms by several different analysts (see

intermediate precision).

Radio-TLC

Radio-TLC is a relatively simple technique but can be very useful if validated correctly.

As compared with radio-HPLC it has the big advantage that all applied radioactivity is

detected and there are no concerns with recovery. Consideration should however be

given to the potential for volatile radioactive species based on knowledge of the syn-

thetic pathway and degradation products. On the other hand, TLC is a less efficient

chromatographic technique and resolution of similar compounds is often non-trivial if

at all possible.

Validation of radio-TLC methods involves the same parameters as for radio-HPLC:

Accuracy If known radioactive impurities are available, then accuracy can be verified

by spiking real samples with known amounts of these impurities. Acceptance criteria

similar to those proposed for radio-HPLC may be used.

Precision (repeatability) As for radio-HPLC, repeated measurements of the same

homogeneous sample should be performed. For radio-TLC, it is recommended to per-

form a minimum of 6 measurements. Sample application and the elution of TLC sheets

can be somewhat variable and thus requirements for repeatability should reflect this.

For short-lived or unstable radiopharmaceuticals, an assessment of repeatability may

not be possible, and the qualification of the TLC scanner must be relied upon.

Intermediate precision For radio-TLC, there can be differences in sample application

and TLC plate development techniques. Therefore, measurement of a homogeneous

sample analysed by different operators is a good way to assess this.
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Specificity As with radio-HPLC, specificity is reflected by the resolution of the product

from known impurities. The specification is normally set to baseline separation, how-

ever, lower resolution may be justified in certain cases.

Quantification limit The same considerations as for radio-HPLC should be applied.

Linearity/range The same considerations as for radio-HPLC should be applied.

Robustness This is an important parameter to be considered for radio-TLC. The treat-

ment of TLC plates/sheets can strongly influence their performance. For example,

using glass fiber sheets (iTLC sheets) it is important that they are properly stored, i.e.

in a dry environment. The effects of deliberate small changes in methods should be

evaluated. These might include, but not limited to, application volume, spot drying

time, mobile phase composition, plate development time/distance etc.

Other test methods for radiopharmaceuticals
Other general analytical methods may be of concern in the characterization of radio-

pharmaceuticals. The most important of these tests are considered below.

Determination of organic solvents

Radiopharmaceuticals often contain small amounts of organic solvents as impurities.

Furthermore, ethanol is often present in radiopharmaceutical formulations as a stabil-

iser. Gas chromatography is normally applied for these analyses, and these methods

should be validated according to the general ICH guidelines. When present as an ex-

cipient, assessment of ethanol content should be considered an assay test. When

present as a residual solvent its quantification is validated as a limit test as for other or-

ganic solvent impurities (e.g. acetonitrile, acetone, DMSO etc.).

Determination of pH using a pH-meter

As the instrument and the analysis operating procedures are very simple and

straightforward, analytical method validation tests may be used also for the qualifi-

cation of the instrument itself (and vice versa). Precision and linearity may be eas-

ily determined using calibrated standard solutions, that embrace the intended pH

working range (e.g. three standard solutions of pH 4, 7 and 10). Other ICH param-

eters do not apply. Determinations of the pH of radiopharmacuticals containing

ethanol should be considered approximate. If pH strips are used, the accuracy of

these for each radiopharmaceutical product should be validated using a calibrated

pH-meter.

Colour spot tests for Kryptofix® or tetrabutylammonium ions

Kryptofix® 222 in specific radiopharmaceutical preparations may be analysed as de-

scribed in their Ph. Eur. monographs, e.g. fludeoxyglucose (18F) injection (Ph. Eur.

monograph no. 1325 2014) by means of a spot test or using other methods, such

as GC (Ferrieri et al. 1993) analysis. In the former situation, validation may not be

required, provided that Ph. Eur. methods are followed, whilst if a non-
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pharmacopoeial method is used, validation is required. For GC methods, the stand-

ard validation requirements for impurities should followed. A validated HPLC

method is described in several Ph. Eur. monographs for analysis of tetrabutylam-

monium ions. There are also colour spot test methods published for the analysis

of tetrabutylammonium ions (e.g. Kuntzsch et al. 2014), which should be validated

before use.

Revalidation
An analytical method should be re-validated in case of:

i) changes in the RP preparation process that may result in different impurities that

have not been accounted for (e.g. when a purification method is changed, or a

different precursor is used);

ii) changes in the composition of the finished product, for example higher

radioactivity or change of excipients;

iii) significant modifications in analytical procedure; for example, the replacement of

an existing HPLC column with a new one with a different stationary phase or

significant changes to the eluent.

An objective method to evaluate the validation “status” of an analytical method is

provided by system suitability tests (SST), which are usually performed prior to the ex-

perimental analyses. Should SST results suggest that the method is no longer suitable

for the intended purpose, then a verification of maintenance, calibration and qualifica-

tion status of instruments should be performed.

Practical validation examples
Below are two real examples of validation of radioanalytical methods. It should be

noted that the acceptance criteria for the various tests, which can be found in the valid-

ation results summary tables, are based on generally accepted values and are not

intended to be hard and fast recommendations. These values may vary depending on

the type of instrument and analysis.

Validation of the determination of [18F]fluoride in [18F]fluoroethyl-L-tyrosine using radio-

TLC

Aim

To demonstrate that the applied radio-TLC method is suitable for the intended pur-

pose and complies with generally acceptable analytical method validation criteria and is

thus fit for purpose.

During the course of any method validation, a certain amount of optimisation may be

necessary in order to meet acceptance criteria.

References

ICH Topic Q2 (R1) Validation of Analytical Procedures: Text and Methodology

(CPMP/ICH/381/95)

European Pharmacopoeia 9.5, fluoroethyl-L-tyrosine (18F) injection (07/2015:2466)
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European Pharmacopoeia 9.5, 2.2.46 Chromatographic separation techniques (07/

2016:20246)

Validation characteristics

For validation purposes, this analysis is considered as a test for radiochemical purity

and the characteristics which should be considered for validation are listed in the table

below.

Methods and results
Analytical method

A radio-TLC method for [18F]fluoroethyl-L-tyrosine (fluoroethyl-L-tyrosine (18F) in-

jection, [18F]FET) is described in the European Pharmacopoiea (Ph. Eur.). This

method is intended to quantify the content of the specified impurity, [18F]fluoride.

The method validated here is very similar to the Ph. Eur. method with only minor

modifications.

� TLC Plate: TLC Silica gel 60 on aluminium backing plate (Merck)

� Mobile phase: 70/30 (acetonitrile/25 mM sodium acetate buffer, pH 3.8)

� Application: 2 μl (10 mm from bottom of plate)

� Development: 80 mm from bottom of plate

� Drying: 1 min air drying at RT

� Detection: ScanRam TLC scanner with Laura 4TM software (Lablogic) with a plastic

scintillation detector, scan speed 0.2 mm/second, scan distance 100 mm.

� Retardation factors (RF): [
18F]fluoride = 0; [18F]fluoroethyl-L-tyrosine = 0.7–0.8.

Raw data is automatically corrected for radioactive decay during the course of the

TLC scan. Peaks are integrated and peak areas are derived using the software. An ex-

ample of a chromatogram where a sample of [18F]FET has been spiked with 5%

[18F]fluoride is shown below. As can be seen, the baseline is not completely flat. This is

due to some slight streaking of the sample on the TLC plate and also some slight spill-

over of radioactivity. It is therefore important to define the integration procedures for

both peaks (i.e. peak start and end distance).

Type of analytical procedure Radiochemical purity (HPLC/TLC/PC)

Characteristics

Accuracy +

Precision (Repeatability) (+)

Intermediate Precision (+)

Specificity +

Detection Limit –

Quantification Limit +

Linearity +

Range +

+ normally evaluated
(+) - not always possible
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Accuracy
Three samples of [18F]fluoroethyl-L-tyrosine were spiked with known amounts of

[18F]fluoride and the exact [18F]fluoride content was calculated. Standard radio-

TLC analysis was performed on each sample. Each sample was analysed twice and

the measured [18F]fluoride content was averaged. The results and the expected

(calculated or true) values were used to determine percentage recovery according

to the equation:

Recovery %ð Þ ¼ Measured RCP
Calculated RCP

:100

Accuracy

Sample Measured [18F]fluoride content (%) True
[18F]fluoride
content (%)

Recovery
(%)1 2 Average

1 1.10 1.00 1.05 1.00 105.0

2 2.97 3.14 3.06 2.92 104.6

3 4.90 5.10 5.00 4.72 105.9

Careful preparation of samples is essential in order to ensure their accuracy.

Adequate volumes of each component should be used to ensure accurate

pipetting.

Precision (repeatability)

A sample of [18F]FET spiked with [18F]fluoride (ca. 5%) was applied to six TLC plates

which were developed and scanned. Standard deviation and variation coefficient (CV%)

of the radiochemical purity were calculated.
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Repeatability

Measurement no. Measured [18F]fluoride (%)

1 5.2

2 5.3

3 5.3

4 5.1

5 5.4

6 5.3

Average (%) 5.27

Standard deviation 0.10

CV% 1.96

Intermediate precision

The same sample of [18F]FET spiked with [18F]fluoride (ca. 5%) as used for the

repeatability test was analysed by 2 different operators (samples applied, developed,

scanned and evaluated) and the results compared.

Intermediate Precision

Analyst Measured [18F]fluoride (%)

1 5.1

2 5.4

3 5.3

Average (%) 5.27

Standard deviation 0.15

CV% 2.90

Specificity

For [18F]fluoroethyl-L-tyrosine, there are no known radioactive impurities

besides [18F]fluoride, which may be present due to either inefficient

purification or radiolysis of the product. Specificity is represented by the

resolution of these 2 components and is calculated using the equation below

(Ph. Eur. 2.2.46):

Rs ¼ 1:18α RF2−RF1ð Þ
Wh1 þWh2

wh1, wh2 = peak widths at half-height;

α = migration distance of the solvent front.

Results from the repeatability measurement were used to calculate the resolution
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Specificity

Resolution of [18F]fluoride and [18F]FET Rs = 5.7

Limit of quantification

The quantification limit (LOQ) was measured by dilution of a sample and

measurement until a signal to noise ratio (S/N) of ca. 10:1 was received. LOQ was

determined for the specified impurity, [18F]fluoride only.

Limit of Quantification

LOQ 24 kBq/ml (S/N = 16: 1)

Linearity

Five samples of [18F]fluoride were prepared by dilution to yield a suitable range of

radioactivity concentrations. Samples were applied to TLC plates and these were

scanned without development. All results were decay corrected to the start of the first

measurement and a linear regression was applied to the results.

Linearity

Sample Radioactivity concentration (MBq/ml) Peak area (decay-corrected) Correlation coefficient (R)

1 12.3 27,987 0.995

2 61.6 124,164

3 123.2 209,463

4 616.2 979,290

5 1232.5 2,407,382

Range

The applicable radioactivity range for the samples to be analysed was calculated

based on the product specifications. [18F]FET is produced in radioactivities up to

25 GBq in 23 ml. This equates to a radioactivity concentration of 1086 MBq/ml.

The upper range of the linearity test was 1232 MBq/ml. The lower range limit

can be derived from the LOQ based on a minimum detectable [18F]fluoride

content of 0.5%. In order to meet this requirement, the applied radioactivity

concentration should be 200 times higher than the LOQ, i.e. 24 × 200 = 4.8 MBq/

ml. This equates to 110 MBq in 23 ml, which is below the minimum radioactivity

specified for the product of 400 MBq. Thus, the validated analysis range is 4.8 -

1232 MBq/ml, which complies with the radioactivity specification for the

product.

Summary of results
Summary of the validation results can be seen below.
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Validation result summary

Test Parameter Acceptance Criteria Result

Accuracy Recovery 90–110% ([18F]FET spiked
with [18F]fluoride)

[18F]fluoride concentration Recovery

1% 105.0%

3% 104.6%

5% 105.9%

Repeatability 6 repetitions
(5% [18F]fluoride)

RSD ≤5% RSD = 1.96%

Intermediate
Precision

RSD ≤5% (3 analysts) RSD = 2.90%

Specificity Resolution of > 2 between peaks Resolution of[18F]fluoride
and [18F]FET

Rs = 5.7

Limit of
Quantification

S/N ratio≥ 10 24 kBq/ml

Linearity 12–1232 kBq/ml (5 concentrations
in triplicate)

R > 0.99 R = 0.995

Range Reported value 4.8–1232 MBq/ml

Conclusions
The validation results have demonstrated that the method is acceptable with

respect to the various test parameters and thus fit for purpose. It should be noted

that the validated radioactivity concentration range should be taken into account

when performing stability studies. For the [18F]FET product used in this validation

example, a shelf life of 8 h is specified. Based on the analysis range derived from

the validation, a minimum concentration of 4.8 MBq/ml should be available at the

end of the shelf life. This equates to a concentration of 100MBq/ml at the end of

synthesis. Thus, for stability studies a minimum batch of 2.3 GBq in 23 ml should

be available.

Validation of a method for the determination of the radionuclidic purity after decay of

[18F]fluorodeoxythymidine using gamma-ray spectrometry

Aim

To verify that the method used for determination of the radionuclidic purity after a

minimum of 24 h decay of [18F]fluorodeoxythymidine ([18F]FLT) complies with the

generally accepted validation criteria and is thus fit for purpose. A Ph. Eur. monograph

exists for this product (Alovudine (18F) injection), where it is stated that the total

radioactivity due to radionuclidic impurities, measured after a decay period of at least

24 h, should be not more that 0.1%.

References

– ICH Topic Q2 (R1) Validation of Analytical Procedures: Text and Methodology

(CPMP/ICH/381/95)

– European Pharmacopoeia 9.5, alovudine (18F) injection (01/2014:2460)

– European Pharmacopoeia 9.5, 2.2.66 Detection and measurement of

radioactivity

Gillings et al. EJNMMI Radiopharmacy and Chemistry             (2020) 5:7 Page 20 of 29



Validation characteristics

The characteristics to be considered during the validation of radionuclidic purity “after

decay” are depicted in the following table:

Type of analytical procedure Radionuclidic purity (spectrometry after decay)

Characteristics

Accuracy +

Precision (Repeatability) (+)

Intermediate Precision (+)

Specificity +

Detection Limit –

Quantification Limit +

Linearity +

Range +

+ normally evaluated
(+) - not always possible

Methods and results
Description of the analytical method

[18F]FLT (alovudine (18F) injection) is a radiopharmaceutical preparation labelled with

the radionuclide F-18 (t1/2 = 109.77min), obtained by the irradiation with 18MeV pro-

tons of an enriched 18O-water target (O-18 > 95%) via the nuclear reaction 18O(p,n)18F.

The radiopharmaceutical preparation may potentially contain contaminant radionu-

clides, formed by nuclear reactions between the incident proton beam and other iso-

topes contained in the target solution, as well as in the target holder material and

window foil materials.

Radionuclidic purity, which is the ratio between activity of the desired

radionuclide F-18, and total amount of radioactivity, may be determined using

gamma-ray spectrometry, which is capable of identifying radionuclides

exploiting their emitted energies, and whose response intensity (peak) is pro-

portional to the amount of detected activity. Specification limits for radionu-

clidic purity of this preparation are defined in the European Pharmacopoeia

monograph.

Measurement system

NaI Ortec, mod. Digibase 905–4, 3″ × 3″ crystal

Sample volume: 1 ml

Measurement time: 48 h after EOS

Measurement duration: 67 min

Calibration/validation sources (standards): multinuclide source with

Eppendorf vial geometry, volume of 1.0 ml, containing the following

radionuclides: Am-241, Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Sr-85, Cs-137,

Y-88 and Co-60.

The samples to be analysed were placed close to the detector surface. As the

detector response is sensitive to various factors, such as geometry of the sample,

volume, distance of the sample from the detector surface, etc., it is of paramount
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importance that all measurements are performed keeping all these parameters

constant.

Potential impurities

The only potential radionuclidic impurity arising from the target materials itself

(18O-water) is nitrogen-13. Due to its very short half-life, this will have fully

decayed before the start of measurement. The target holder material is niobium,

which is quite inert both from chemical and “nuclear” point of views, as there are

no nuclear reactions with niobium capable of producing significant amounts of ra-

dionuclides at the applied proton energy. Thus, the major source of potential con-

taminants are the havar foils (target holder windows). Havar is an alloy made of

seven different metals, and the most significant potential impurities are listed in

the following table.

Product T1/2 Nuclear reaction Threshold (MeV)

Co-55 17.5 h 58Ni(p,α)55Co 1.36

Co-56 77 d 56Fe(p,n)56Co 5.44

Co-57 272 d 57Fe(p,n)57Co 1.65
60Ni(p,a)57Co 0.27
58Ni(p, 2p)57Co 8.31

Co-58 71 d 58Fe(p,n)58Co 3.14

Ni-57 35.6 h 58Ni(p,pn)57Ni 12.43

Cr-51 27.7 d 52Cr(p,pn)51Cr 12.27

Mn-52 5.6 d 52Cr(p,n)52Mn 5.60

Tc-95 20 h 95Mo(p,n)95Tc 2.50

Tc-96 4.3 d 96Mo(p,n)96Tc 3.30

Re-181 19.9 h 182W(p, 2n)181Re 10.65

Mo-93 m 6.85 h 93Nb(p,n)93mMo 3.60

The accuracy is the ratio between the experimental values and reference (or true)

values. Thus, in case of gamma-ray spectrometry accuracy evaluation is intertwined

with the calibration status of the detector in terms of efficiency. A couple of reference

radionuclide sealed sources, of suitable energies and activities, have here been used to

check the detector response.

For the evaluation of precision and intermediate precision, both [18F]FLT and

reference sources may be used, through repeated acquisitions. When [18F]FLT is used,

fast decrease of the activity with time should be accounted for by applying the decay

equation.

Measurement of specificity would ideally require reference samples of the major

expected contaminants, so as to discriminate between the various possible peaks.

However, they are not all available in practice, and a multinuclide source covering a

broad energy range has been used.
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Quantification limit is the lowest activity that may be reliably quantified. To correctly

evaluate this characteristic, reference standards of impurities should be available with

appropriate radioactivity concentrations, but this is often not practical, and this

parameter is thus verified using the major expected radionuclide as the reference.

Accuracy

Accuracy was evaluated by 6 measurements of a reference source containing Co-60

(T1/2 = 5.27 y), with an expected activity, based on reference activity stated on the label,

of 2546 Bq. Recovery was calculated as a percentage according to the equation:

Recovery :
expvalue

calculated source value
� 100

Where:

– Exp value is the activity experimentally determined by the gamma-ray spectrometer

– Calculated source value is the activity of the source stated on the label, corrected

for decay if necessary

Accuracy

Expected activity: 2545.8 Bq

Measurement no. Measured activity (Bq) Recovery (%)

1 2666.2 104.7

2 2722.9 106.9

3 2636.2 103.5

4 2714.8 106.6

5 2654.0 104.2

6 2654.3 104.2

Precision (repeatability)

Precision was evaluated by measurement of repeatability using three different [18F]FLT

samples which were each measured six times. Low activity samples were used, to

match the activity range of potential impurities.

Repeatability

Test no. 1 Starting [18F]FLT activity at T0: 370 Bq

Measurement no. Measured activity (Bq) Decay corrected activity (Bq)

1 (T0) 370 370

2 (T1) 362 372

3 (T2) 353 371

4 (T3) 341 368

5 (T4) 328 363

6 (T5) 326 370

Average 369.4 Standard deviation 3.2

CV% 0.86%
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Repeatability

Test no. 2 Starting [18F]FLT activity (at T0): 1320 Bq

Measurement no. Measured activity (Bq) Decay corrected activity

1 (T0) 1320 1320

2 (T1) 1279 1311

3 (T2) 1240 1305

4 (T3) 1225 1322

5 (T4) 1131 1307

6 (T5) 1158 1314

Average 1313 Standard deviation 6.8

CV% 0.52%

Repeatability

Test no. 3 Starting [18F]FLT activity at T0: 3021 Bq

Measurement no. Measured activity (Bq) Decay corrected activity (Bq)

1 (T0) 3021 3021

2 (T1) 2933 3008

3 (T2) 2853 3001

4 (T3) 2793 3013

5 (T4) 2710 2998

6 (T5) 2659 3017

Average 3010 Standard deviation 9.1

CV% 0.30%

Intermediate precision

Intermediate precision was assessed using a Co-60 calibrated source, by repeating the

tests on three different days. The data obtained were evaluated with analysis of variance

(Anova test). Intermediate precision is acceptable when the experimental value, F-calc is

less than F-critical for the relevant number of degrees of freedom, at a confidence level

of 0.05.

Intermediate Precision

Measurement no. Radioactivity (Bq)

Day 1 Day 2 Day 3

1 895.0 858.0 870.0

2 867.0 868.0 858.0

3 867.0 879.0 868.0

4 868.0 866.0 869.0

5 871.0 880.0 879.0

6 875.0 865.0 857.0

Average 873.83 869.33 866.83

Variance 116.9667 73.4667 67.7667

Standard deviation 10.81511 8.57127 8.23205

CV% 1.24% 0.99% 0.95%
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Variance analysis

Type of variation Degrees of freedom (DF) Average squares (AS) Fcalc

Interaction between days (n-1) ASB ASB/ASErr

Experimental error n (r-1) ASErr

Total nr-1

Results: The experimental value, Fcalc. was 0.877, while Fcritical was 3.68.

Specificity

Specificity was evaluated using a calibrated, multi-nuclide reference source, which con-

tains radionuclides whose gamma emissions cover a broad range of the energy

spectrum, and whose difference in energies may resemble those of the expected con-

taminants previously listed in Table 1. Indeed, major gamma emission energies of the

potential contaminant radionuclides are sufficiently separated from each other, and

from the main 511 keV emission due to annihilation, such that they can be efficiently

detected and quantitated using a NaI detector, whose resolution is typically in the order

of 50 keV.

Peak resolutions were determined for “pairs” of gamma emissions (that is

those which are closest in energy) using the equation described in the main

guidance:

Specificity

Composition of the multi-nuclide source (in order of increasing energy emissions):
Am-241, Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Sr-85, Cs-137, Y-88, Co-60

Radionuclide Energy (keV) Resolution (Rs)

1 Am-241 59.5 Am-241/Cd-109: 1.82

2 Cd-109 88 Cd-109/Co-57: 1.92

3 Co-57 122 Sn-113/Co-57: 8.64

4 Sn-113 392 Cs-137/Sn-113: 4.47

5 Cs-137 662 Y-88(I)/Cs-137: 2.91

6 Y-88 (peak I) 898 Co-60(I)/Y-88(I): 2.94

7 Co-60 (peak I) 1173 Co-60(I)/Co-60(II): 1.44

8 Co-60 (peak II) 1837 Co-60(I)/Y-88(II): 3.62

Linearity

As F-18 activity decreases rapidly with time, instead of preparing dilutions with

different radioactivity concentrations, measurements of the same starting solu-

tion were performed, and peak areas corrected for decay. The radioactivity of

the starting solution was quantified using a calibrated activimeter (dose

calibrator).
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Linearity

Starting activity of [18F]FLT: 16488 Bq

Radioactivity (Bq) Peak area (decay-corrected) Correlation coefficient (R)

16,487.67 4,421,627 0.999

8629.16 2,314,149

5644.31 1,513,678

3712.19 995,526

2241.00 654,623

1615.31 433,190

1054.80 282,874

694.55 186,263

460.02 123,367

300.05 80,468

194.77 71,629

130.72 35,057

Quantification limit

The quantification limit was estimated using two reference sources of Co-58

(t1/2 = 70.86 d) and Co-57 (t1/2 = 271.74 d), respectively. Six measurements were per-

formed with each of the two calibrated sources.

Intermediate Presicion

Mesurement no. Co-57 radioactivity (Bq) Co-57 radioactivity (Bq)

1 34.41 198.54

2 36.89 182.17

3 37.60 182.81

4 34.66 184.41

5 37.47 182.45

6 30.98 177.46

Average 35.34 184.64

Standard deviation 2.54 7.20

CV% 7.2 3.9

Based on these results, the limit of quantification is estimated to be 185 Bq. This will

easily allow for detection of any significant radionuclidic impurities to ensure the product

meets the specification for radionuclidic purity at the end of its shelf life (99.9%).

Range

The applicable measurement range was defined based on the assessment of linearity

and limit of quantification. The upper activity limit is determined by the intrinsic

characteristics of detector response, which is known to be linear provided that

deadtime does not exceed 5%. This experimentally corresponds to a value of ca. 16

kBq. The lower limit is set at 185 Bq based on the estimated limit of quantification.
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Summary of results
A summary of the validation results can be seen below.

Validation result summary

Test Parameter Acceptance Criteria Result

Accuracy Recovery 90–110% Measurement Recovery

1 104.7%

2 106.9%

3 103.5%

4 106.6%

5 104.2%

6 104.2%

Repeatability 6 repetitions using [18F]FLT, 3
different activities

%CV ≤5% Radioactivity %CV

370 Bq 0.86%

1320 Bq 0.52%

3021 Bq 0.30%

Intermediate Precision Fcalc. < Fcritical Fcalc. = 0.877 Fcritical = 3.68

Specificity Resolution of > 1 between peaks Peak Pair Rs

Am-241/Cd-109 1.82

Cd-109/Co-57 1.92

Sn-113/Co-57 8.64

Cs-137/Sn-113 4.47

Y-88(I)/Cs-137 2.91

Co-60(I)/Y-88(I) 2.94

Co-60(I)/Co-60(II) 1.44

Co-60(I)/Y-88(II) 3.62

Limit of Quantification Reported value 185 Bq

Linearity 12 samples of F-18 R > 0.99 R = 0.999

Range Reported value 185 Bq - 16 kBq

Conclusions
The validation results have demonstrated that the method is acceptable with respect to

the various test parameters and thus fit for purpose. The method is sensitive and accurate

enough to enable determination of the radionuclidic purity of [18F]fluorodeoxythymidine

with respect to long-lived radionuclides, in order to comply with the specifications for this

preparation in the European Pharmacopoeia.
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Glossary
Accuracy

The accuracy of an analytical procedure expresses the closeness of agreement between the value which is accepted either
as a conventional true value or an accepted reference value and the value found. This is sometimes termed trueness.

Analytical procedure
The analytical procedure refers to the way of performing the analysis. It should describe in detail the steps
necessary to perform each analytical test. This may include but is not limited to: the sample, the reference
standard and the preparation of reagents, use of the apparatus, generation of the calibration curve, use of the
formulae for the calculation, etc.

Detection limit
The detection limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be
detected but not necessarily quantified as an exact value. This is normally expressed as limit of detection (LOD).

Linearity
The linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly
proportional to the concentration (amount) of analyte in the sample.

Precision
The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) between a
series of measurements obtained from multiple sampling of the same homogeneous sample under the
prescribed conditions. Precision may be considered at 3 levels: repeatability, intermediate precision and
reproducibility. The precision of analytical procedure is usually expressed as the variance, standard deviation or
coefficient of variation of a series of measurements.

Repeatability
The repeatability of an individual analytical procedure expresses the precision under the same operating
conditions over a short time interval. Repeatability is also termed intra-assay precision.

Intermediate precision
The intermediate precision of an individual analytical procedure expresses within laboratory variations: different
days, different analysts, different equipment, etc.

Reproducibility
The reproducibility of an individual analytical procedure expresses the precision between laboratories
(collaborative studies, usually applied to standardisation of methodology).

Quantification limit
The quantification limit of an individual analytical procedure is the lowest amount of analyte in a sample which
can be quantitatively determined with suitable precision and accuracy. The quantification limit is a parameter of
quantitative assays for low levels of substances in sample matrices and is used particularly for the determination
of impurities and/or degradation products. This is normally expressed as limit of quantification (LOQ).

Radioactivity (assay, content or potency)
(Assay, content or potency): Quantitative determination of radionuclide decay over time. For non-spectrometric methods
of measurement of radioactivity like using ionization chambers, solid-state detectors (scintillation or semiconductors) and
liquid scintillation, the detectors are in general unable to fully discriminate all radiations coming from different radionu-
clides. Thus, the reliability of these radioactivity measurements methods requires the assurance of the absence of interfer-
ing radionuclides (radionuclidic purity) or their relative contribution to the measurement results.

Radiochemical purity
The radiochemical purity of a radiopharmaceutical preparation represents that fraction of the radionuclide present
in its stated chemical form.

Radionuclidic purity
The radionuclidic purity of a radiopharmaceutical preparation represents the proportion of the total radioactivity
that is present as the required radionuclide.

Range
The range of an analytical procedure is the interval between the upper and lower concentration (amounts) of
analyte in the sample (including these concentrations) for which it has been demonstrated that the analytical
procedure has a suitable level of precision, accuracy and linearity.

Recovery
This term denotes the obtained result from an analytical procedure with respect to the true value of the sample
under analysis and is often given as a percentage.
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Robustness
The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small but
deliberate variations in method parameters and provides an indication of its reliability during normal usage.

Specificity
Specificity is the ability to assess unequivocally the analyte in the presence of components which may be
expected to be present. Typically, these might include impurities, degradation products, matrixes, etc. Lack of
specificity of an individual analytical procedure may be compensated by other supporting analytical procedure(s).

This definition has the following implications:
• Identification: to ensure the identity of an analyte.
• Purity tests: to ensure that all the analytical procedures performed allow an accurate statement of the content of
impurities of an analyte, i.e. related substances test, heavy metals, residual solvents content, etc.
• Assay (content or potency): to provide an exact result which allows an accurate statement on the content or
potency of the analyte in a sample.
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