
 

 

 University of Groningen

The Image Biomarker Standardization Initiative
image standardization intitiative; Zwanenburg, Alex; Vallières, Martin; Abdalah, Mahmoud A.;
Aerts, Hugo J. W. L.; Andrearczyk, Vincent; Apte, Aditya; Ashrafinia, Saeed; Bakas, Spyridon;
Beukinga, Roelof J.
Published in:
RADIOLOGY

DOI:
10.1148/radiol.2020191145

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
image standardization intitiative, Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J. W. L.,
Andrearczyk, V., Apte, A., Ashrafinia, S., Bakas, S., Beukinga, R. J., Boellaard, R., Bogowicz, M., Boldrini,
L., Buvat, I., Cook, G. J. R., Davatzikos, C., Depeursinge, A., Desseroit, M-C., Dinapoli, N., ... Echegaray,
S. (2020). The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-
Throughput Image-based Phenotyping. RADIOLOGY, 295(2), 328-338.
https://doi.org/10.1148/radiol.2020191145

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1148/radiol.2020191145
https://research.rug.nl/en/publications/9d431446-ab84-4071-bb2f-403d087837a9
https://doi.org/10.1148/radiol.2020191145


ORIGINAL RESEARCH • COMPUTER APPLICATIONS

The Image Biomarker Standardization Initiative: 
Standardized Quantitative Radiomics for High-Throughput 
Image-based Phenotyping

Alex Zwanenburg, PhD*  •  Martin Vallières, PhD*  •  Mahmoud A. Abdalah, PhD  •  Hugo J. W. L. Aerts, PhD  •   
Vincent Andrearczyk, PhD  •  Aditya Apte, PhD  •  Saeed Ashrafinia, PhD  •  Spyridon Bakas, PhD  •   
Roelof J. Beukinga, PhD  •  Ronald Boellaard, PhD  •  Marta Bogowicz, PhD  •  Luca Boldrini, PhD  •  Irène Buvat, PhD  •   
Gary J. R. Cook, PhD  •  Christos Davatzikos, PhD  •  Adrien Depeursinge, PhD  •  Marie-Charlotte Desseroit, PhD  •   
Nicola Dinapoli, PhD  •  Cuong Viet Dinh, PhD  •  Sebastian Echegaray, PhD  •  For the Group1  • 

From OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helm-
holtz-Zentrum Dresden–Rossendorf, Fetscherstr 74, PF 41, 01307 Dresden, Germany (A.Z., S. Leger, E.G.C.T., C.R., S. Löck); National Center for Tumor Diseases (NCT), 
Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische 
Universität Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany (A.Z., S. Leger, E.G.C.T.); German Cancer 
Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany (A.Z., S. Leger, E.G.C.T., C.R., S. Löck); Medical Physics Unit, 
McGill University, Montréal, Canada (M.V., I.E.N.); Image Response Assessment Team Core Facility, Moffitt Cancer Center, Tampa, Fla (M.A.A.); Dana-Farber Cancer Institute, 
Brigham and Women’s Hospital, and Harvard Medical School, Harvard University, Boston, Mass (H.J.W.L.A.); Institute of Information Systems, University of Applied Sciences 
Western Switzerland (HES-SO), Sierre, Switzerland (V.A., A.D., H.M.); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY (A.A.); Depart-
ment of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Md (S.A.); Department of Radiology and Radiological Science, Johns Hopkins University, 
Baltimore, Md (S.A., A.R.); Center for Biomedical image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pa (S.B., C.D., S.M.H., S.P.); Department 
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa (S.B., C.D., S.M.H., S.P.); Department of Pathology and Laboratory Medicine, Perelman 
School of Medicine, University of Pennsylvania, Philadelphia, Pa (S.B.); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical 
Center Groningen (UMCG), Groningen, the Netherlands (R.J.B., R.B., E.A.G.P.); Radiology and Nuclear Medicine, VU University Medical Centre (VUMC), Amsterdam, the 
Netherlands (R.B.); Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (M.B., M.Guckenberger, S.T.L.); Fondazione 
Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy (L.B., N.D., R.G., J.L., V.V.); Laboratoire d'Imagerie Translationnelle en Oncologie, Université Paris Saclay, Inserm, 
Institut Curie, Orsay, France (I.B., C.N., F.O.); Cancer Imaging Dept, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United King-
dom (G.J.R.C., V.G., M.M.S.); Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland (A.D.); Laboratory of Medical 
Information Processing (LaTIM)–team ACTION (image-guided therapeutic action in oncology), INSERM, UMR 1101, IBSAM, UBO, UBL, Brest, France (M.C.D., M.H., 
T.U.); Department of Radiation Oncology, the Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands (C.V.D.); Department of Radiology, Stanford University School 
of Medicine, Stanford, Calif (S.E., S.N.). Received May 22, 2019; revision requested July 3; revision received December 9; accepted January 6, 2020. Address correspondence to 
A.Z. Fetscherstraße 74, PO Box PF 41, 01307 Dresden, Germany. (e-mail: alexander.zwanenburg@nct-dresden.de).

* A.Z. and M.V. contributed equally to this work.
1 The complete list of authors and affiliations is at the end of this article.

Conflicts of interest are listed at the end of this article.

See also the editorial by Kuhl and Truhn in this issue.

Radiology 2020; 00:1–11﻿  •  https://doi.org/10.1148/radiol.2020191145  •  Content code: 

Background:  Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized defini-
tions and validated reference values have hampered clinical use.

Purpose:  To standardize a set of 174 radiomic features.

Materials and Methods:  Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 
features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digi-
tal phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT 
image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on 
the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than 
three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final 
phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 
51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features.

Results:  Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) 
at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features 
(1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features 
(90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), 
most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI).

Conclusion:  A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software.

© RSNA, 2020

Online supplemental material is available for this article.

noninvasive, readily available in clinical care, and repeat-
able (3,4).

Radiomics extracts features from medical imaging that 
quantify its phenotypic characteristics in an automated, 
high-throughput manner (5). Such features may help 

Personalization of medicine is driven by the need to ac-
curately diagnose disease and define suitable treatments 

for patients (1). Medical imaging is a potential source of 
biomarkers because it provides a macroscopic view of tis-
sues of interest (2). Imaging has the advantage of being 
This copy is for personal use only. To order printed copies, contact reprints@rsna.org



Abbreviations
IBSI = Image Biomarker Standardization Initiative, ROI = region 
of interest

Summary
The Image Biomarker Standardization Initiative validated con-
sensus-based reference values for 169 radiomics features, thus 
enabling calibration and verification of radiomics software.

Key Results
	n Twenty-five research teams found agreement for calculation 

of 169 radiomics features derived from a digital phantom 
and a CT scan of a patient with lung cancer.

	n Among these 169 standardized radiomics features, good to 
excellent reproducibility was achieved for 167 radiomics fea-
tures using MRI, fluorine 18 fluorodeoxyglucose PET, and 
CT images obtained in 51 patients with soft-tissue sarcoma.

prognosticate, predict treatment outcomes, and assess tis-
sue malignancy in cancer research (6–9). In neuroscience, 
features may help detect Alzheimer disease (10) and diag-
nose autism spectrum disorder (11).

Despite the growing clinical interest in radiomics, 
published studies have been difficult to reproduce and 
validate (5,9,12–14). Even for the same image, two dif-
ferent software implementations will often produce dif-
ferent feature values. This is because standardized defini-
tions of radiomics features with verifiable reference values 
are lacking, and the image processing schemes required to 
compute features are not implemented consistently (15–
18). This is exacerbated by reporting that is insufficiently 
detailed to enable studies and findings to be reproduced 
(19).

We formed the Image Biomarker Standardization Ini-
tiative (IBSI) to address these challenges by fulfilling the 
following objectives: (a) to establish nomenclature and 
definitions for commonly used radiomics features; (b) to 
establish a general radiomics image processing scheme 
for calculation of features from imaging; (c) to provide 
data sets and associated reference values for verification 
and calibration of software implementations for image 
processing and feature computation; and (d) to provide a 
set of reporting guidelines for studies involving radiomic 
analyses.

Materials and Methods

Study Design
We divided the current work into three phases (Fig 1). 
The first two phases focused on iterative standardization 
and were followed by a third validation phase. In phase 
I, the main objective was to standardize radiomics feature 
definitions and to define reference values, in the absence 
of any additional image processing. In phase II, we de-
fined a general radiomics image processing scheme and 
obtained reference values for features under different im-
age processing configurations. In phase III, we assessed 
if the standardization conducted in the previous phases 
resulted in reproducible feature values for a validation 
data set.

Research Teams
We invited teams of radiomics researchers to collaborate 
in the IBSI. Participation was voluntary and open for the 
duration of the study. Teams were eligible if they (a) de-
veloped their own software for image processing and fea-
ture computation and (b) could participate in any phase 
of the study.

Radiomics Features
We defined a set of 174 radiomics features (Table 1). This 
set consisted of features commonly used to quantify the 
morphologic characteristics, first-order statistical aspects, 
and spatial relationships between voxels (texture) in re-
gions of 4interest (ROIs) in three-dimensional images. 
To compute texture features, additional feature-specific 
parameters were required. This increased the number of 
computed features beyond 174 (Appendix E1 [online]). 
All feature definitions are provided in chapter 3 of the 
IBSI reference manual (Appendix E2 [online]).

General Radiomics Image Processing Scheme
We defined a general radiomics image processing scheme 
based on descriptions in the literature (3,6,17,20). The 
scheme contained the main processing steps required for 
computation of features from a reconstructed image and 
is depicted in Figure 2. A full description of these image 
processing steps may be found in chapter 2 of the IBSI 
reference manual (online).

Data Sets
Each phase used a different data set. In phase I, we de-
signed a small 80-voxel three-dimensional digital phan-
tom with a 74-voxel ROI mask to facilitate the process of 
establishing reference values for features, without involv-
ing image processing.

In phase II, we used a publicly available CT image in a 
patient with lung cancer. The accompanying segmentation 
of the gross tumor volume was used as the ROI (21).

The validation data set used in phase III consisted of a 
cohort of 51 patients with soft-tissue sarcoma who under-
went multimodality imaging (coregistered CT, fluorine 18 
fluorodeoxyglucose PET, and T1-weighted MRI) from the 
Cancer Imaging Archive (20,22,23). Each image was ac-
companied by a gross tumor volume segmentation, which 
was used as the ROI. PET and MRI were centrally prepro-
cessed (Appendix E1 [online]) to ensure that standardized 
uptake value conversion and bias-field correction steps did 
not affect validation.

Defining Consensus on the Validity of Feature 
Reference Values
In the first two phases, research teams computed fea-
ture values from the ROI in the associated image data 
set directly (phase I) and according to predefined image 
processing parameters (phase II; Appendix E1 [online]). 
All of the most recent values submitted by each team were 
collected and limited to three significant digits. Then, we 
used the mode of the submitted values for each feature as 
a tentative reference value.

We quantified the level of consensus on the validity 
of a tentative reference value for each feature using two 
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Iterative Standardization Process
In the first two phases, we iteratively refined consensus on the 
validity of feature reference values. This iterative process simul-
taneously served to standardize feature definitions and the gen-
eral radiomics image processing scheme (24). At the start of 
the iterative process, we provided initial definitions for features 
(phase I) and the general radiomics image processing scheme 
(phase II) in a working document. For phase I, we manually 
calculated mathematically exact reference values for all but 
morphologic features to verify values produced by the research 
teams. For phase II, we defined five different image process-
ing configurations (configurations A–E) that covered a range 

measures: (a) the number of research teams that submitted a 
value that matched the tentative reference value within a toler-
ance margin (Appendix E1 [online]) and (b) the previous num-
ber divided by the total number of research teams that submitted 
a value.

Four consensus levels were assigned based on the first consen-
sus measure as follows: less than three, weak; three to five, mod-
erate; six to nine, strong; 10 or more, very strong. The second 
measure assessed the stability of the consensus. We considered a 
tentative reference value for a feature to be valid only if it had at 
least moderate consensus and it was reproduced by an absolute 
majority (exceeding 50%) of the contributing research teams.

Figure 1:  Flowchart of study overview. The workflow in a typical radiomics analysis starts with acquisition and reconstruction of a medical 
image. Subsequently, the image is segmented to define regions of interest (ROI). Afterward, radiomics software is used to process the image 
and to compute features that characterize an ROI. We focused on standardizing the image processing and feature computation steps. Stan-
dardization was performed within two iterative phases. In phase I, we used a specially designed digital phantom to obtain reference values 
for radiomics features directly. In phase II, a publicly available CT image in a patient with lung cancer was used to obtain reference values 
for features under predefined configurations of a standardized general radiomics image processing scheme. Standardization of image 
processing and feature computation steps in radiomics software was prospectively validated during phase III by assessing reproducibility 
of standardized features in a publicly available multimodality patient cohort of 51 patients with soft-tissue sarcoma. 18F-FDG = fluorine 18 
fluorodeoxyglucose, T1w = T1-weighted.
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Validation
After the standardization process finished, we asked the re-
search teams to compute 174 features from the gross tumor 
volume in each of the images in the soft-tissue sarcoma valida-
tion cohort using a realistic, predefined image processing con-
figuration (Appendix E1, [online]). The computed feature val-
ues were collected and processed centrally, as follows. First, for 
each team, we removed any feature that was not standardized 
by their software. To do so, we compared the reference values 
of the respective feature with the values that the team obtained 
from the CT image in the patient with lung cancer under im-
age processing configurations C, D, and E (as in phase II). If 
a value did not match its reference value, the feature was not 
used. The reproducibility of remaining standardized features 
was subsequently assessed using a two-way, random-effects, sin-
gle-rater, absolute agreement intraclass correlation coefficient 
(ICC) (25). Using the lower boundary of the 95% confidence 
interval of the ICC value (26), reproducibility of each feature 
was assigned to one of the following categories, as suggested by 
Koo and Li (27): poor, lower boundary less than 0.50; moder-
ate, lower boundary greater than or equal to 0.50 and less than 
0.75; good: lower boundary greater than 0.75 and less than 
0.90; excellent, lower boundary greater than 0.90.

Results

Characteristics of the Participating Research Teams
Twenty-five teams contributed to the IBSI (Fig 3; Appendix E1 
[online]). Fifteen teams contributed to both standardization 
phases, and nine teams contributed to the validation phase. 
One team retired because they switched to software developed 
by another team. Five teams implemented 95% or more of the 
defined features. Nine teams were able to compute features for 

of image processing parameters and methods commonly used 
in radiomics studies (Appendix E1 [online]).

After producing the initial working document, we asked the 
research teams to compute feature values from the ROI in the 
digital phantom (phase I) and from the ROI in the lung can-
cer CT image after image processing according to the different 
predefined image processing configurations (phase II). Feature 
values were collected and processed to analyze the consensus on 
the validity of tentative reference values. The results were then 
made available to all teams at an average interval of 4 weeks. The 
study leader would also contact the teams with feedback after 
comparing their submitted feature values with the mathemati-
cally exact values (phase I only) and with feature values obtained 
by other teams (phases I and II). The research teams provided 
feedback in the form of questions and suggestions concerning 
the descriptions in the working document and the standardiza-
tion of radiomics software. The working document was regularly 
updated as a result. Teams would then make changes to their 
software based on the results of the analysis and feedback from 
the study leader.

The two iterative phases were staggered to make it easier to 
separate differences and errors related to feature computation 
from those related to image processing. The initial contributions 
from phase I were analyzed in September 2016. We initiated 
phase II after achieving moderate or better consensus on the va-
lidity of reference values for at least 70% of the features, that is, 
time point 6 (January 2017). Initial contributions for phase II 
were analyzed at time point 10 (April 2017). Afterward, phases 
I and II were concurrent. We halted the iterative standardization 
process at time point 25 (March 2019) after we attained strong 
or better consensus on validity of reference values for more than 
90% of the features in both phases I and II. The overall timeline 
of the study is summarized in Appendix E1 (online).

Table 1: Overview of Included Radiomics Features

Feature Family Base Definition

No. of Features

Phase I
Phase II Configuration  
A–B (2D)

Phase II Configuration  
C–E (3D) Phase III

Morphologic characteristics 29 29 29 29 29
Local intensity 2 2 2 2 2
Intensity-based statistics 18 18 18 18 18
Intensity histogram 23 23 23 23 23
Intensity-volume histogram 7 7 7 7 7
Gray-level co-occurrence matrix* 25 150 100 50 25
Gray-level run-length matrix* 16 96 64 32 16
Gray-level size-zone matrix* 16 48 32 16 16
Gray-level distance-zone matrix* 16 48 32 16 16
Neighborhood gray tone difference matrix* 5 15 10 5 5
Neighboring gray level dependence matrix* 17 51 34 17 17
Total 174 487 351 215 174

Note.—Data are numbers of features. A set of 174 radiomics features was standardized and validated in three phases. In phase I, features 
were computed without any prior image processing. In phase II, features were computed after image processing with five predefined con-
figurations (configurations A–E; image slice-based (two-dimensional [2D]) or volumetric (three-dimensional [3D]); Appendix E1 [online]). 
In the final phase III, we assessed the reproducibility of features standardized in phases I and II.
* Texture features have additional parameters that are required for their calculation, which increased the number of computed features  
(Appendix E1 [online]).
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all image processing configura-
tions in phase II (Appendix E1 
[online]).

The University Medical Cen-
ter Groningen and the French  
National Institute of Health 
and Medical Research provided 
three and two teams of research-
ers, respectively. This did not 
compromise consensus on the 
validity of feature reference val-
ues. Moderate, strong, or very 
strong consensus on the validity 
of the reference values was based 
on teams from at least three, 
five, and eight different top-
level institutions, respectively 
(Appendix E1 [online]).

Matlab (n = 10), C++ (n 
= 7), and Python (n = 5) were 
the most popular programming 
languages. No language depen-
dency was found; consensus of 
all features with a moderate or 
better consensus on the valid-
ity of their reference values was 
based on multiple program-
ming languages (Appendix E1 
[online]).

Consensus on Validity of 
Feature Reference Values
Consensus on the validity of 
feature reference values im-
proved during the course of 
the study, as shown in Figure 
4 and Table 2. Initially, only 
weak consensus existed for the 
majority of features: 232 of 
302 (76.8%) and 703 of 1075 
(65.4%) for phase I and II, 
respectively.

At the final analysis time 
point, the number of features 
with a weak consensus had de-
creased to two of 487 (0.4%) 
for phase I and 19 of 1347 
(1.4%) for phase II. The re-
maining features with weak 
consensus on the validity of their (tentative) reference values 
were the area and volume densities of the oriented minimum 
bounding box and the minimum volume enclosing ellipsoid 
(Appendix E1 [online]). We were unable to standardize the 
complex algorithms that are required to compute the oriented 
minimum bounding box and minimum volume enclosing el-
lipsoid. Therefore, the previous features should not be regarded 
as standardized.

As shown in Table 2, strong or better consensus could be es-
tablished for 463 of 487 (95.1%) and 1220 of 1347 (90.6%) 
features in phases I and II, respectively. None of these features 
were found to be unstable. In phase II, two of 108 (1.9%) fea-
tures with moderate consensus were unstable. Both were derived 
from the same feature: the area under the curve of the intensity-
volume histogram. Hence, we do not consider this feature to be 
standardized.

Figure 2:  Flowchart of the general radiomics image processing scheme for computing radiomics features. Image pro-
cessing starts with reconstructed images. These images are processed through several optional steps: data conversion (eg, 
conversion to standardized uptake values), image postacquisition processing (eg, image denoising), and image interpola-
tion. Either the region of interest (ROI) is created automatically during the segmentation step, or an existing ROI is retrieved. 
The ROI is then interpolated as well, and intensity and morphologic masks are created as copies. The intensity mask may be 
resegmented according to intensity values to improve comparability of intensity ranges across a cohort. Radiomics features 
are then computed from the image masked by the ROI and its immediate neighborhood (local intensity features) or the ROI 
itself (all others). Image intensities are moreover discretized prior to computation of features from the intensity histogram (IH), 
intensity-volume histogram (IVH), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-
level size-zone matrix (GLSZM), gray-level distance-zone matrix (GLDZM), neighborhood gray-tone difference matrix 
(NGTDM), and neighboring gray-level dependence matrix (NGLDM) families. All processing steps from image interpola-
tion to the computation of radiomics features were evaluated in this study.
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Then repeat the previous steps with the CT data set used in 
this study and one or more of the image processing configura-
tions used in phase II.

Initial consensus on the validity of reference values for many 
features was weak, which means that teams obtained different 
values for the same feature. This mirrored findings reported else-
where (15–18). Several notable causes of deviations were iden-
tified—for example, differences in interpolation, morphologic 
representation of the ROI, and nomenclature differences—and 
were subsequently resolved (Appendix E1 [online]). In effect, we 
cross-calibrated radiomics software implementations.

The demonstrated lack of initial correspondence between 
teams carries a clinical implication. Software implementations of 
seemingly well-defined mathematic formulas can vary greatly in 
the numeric results they produce. Clinical radiologists who are 
using advanced image analysis workstations should be aware of 
this, think critically about comparing results produced by differ-
ent workstations, and demand more details and validation stud-
ies from the vendors of those workstations.

Findings from most radiomics studies have not been trans-
lated into clinical practice, and they require external retrospec-
tive and prospective validation in clinical trials (2,28). The 

The most commonly imple-
mented features were mean, 
skewness, excess kurtosis, and 
minimum of the intensity-
based statistics family. These 
were implemented by 23 of 24 
research teams. No feature was 
implemented by all teams (Ap-
pendix E1 [online]).

Reproducibility of 
Standardized Features
We were able to find stable 
reference values with mod-
erate or better consensus for 
169 of 174 features. In the 
validation phase, most of 
these features could be repro-
duced well (Fig 5, Appendix 
E1 [online]). Excellent repro-
ducibility was found for 166 
of 174, 164 of 174, and 164 
of 174 features for CT, PET, 
and MRI, respectively. Good 
reproducibility was found for 
one of 174 (CT) and three of 
174 (PET and MRI) features. 
For each modality, two of 174 
features had unknown repro-
ducibility, which indicated 
that they were computed by 
fewer than two teams dur-
ing validation. These features 
were Moran’s I index and 
Geary’s C measure. Although 
they were standardized, they were expensive to compute. 
The remaining five of 174 features could not be standard-
ized during the first two phases and were not assessed during 
validation.

Discussion
In this study, the Image Biomarker Standardization Initiative 
(IBSI) produced and validated a set of consensus-based refer-
ence values for radiomics features. Twenty-five research teams 
were able to standardize 169 of 174 features, which were sub-
sequently shown to have good to excellent reproducibility in a 
validation data set.

With the completion of the current work, compliance with 
the IBSI standard can be checked for any radiomics software, as 
follows.

First, use the software to compute features using the digital 
phantom. Compare the resulting values against the reference 
values found in the IBSI reference manual and the compliance 
check spreadsheet created for this purpose (Appendix E3 [on-
line]). Investigate any difference. Subsequently, resolve the dif-
ferences or explain them (eg, the use of kurtosis instead of excess 
kurtosis).

Figure 3:  Bar graphs depict participation and radiomics feature coverage by research teams. A, Graph shows the num-
ber of research teams at each analysis time point during the two phases of the iterative standardization process. Teams com-
puted features without prior image processing (phase I) and after image processing (phase II), with the aim of finding refer-
ence values for a feature. Consensus on the validity of reference values was assessed at each time point, the time between 
which was variable (arbitrary unit [arb. unit]). B, Graph shows the final coverage of radiomics features implemented by 
each team in phase I, as well as the team’s ability to reproduce the reference value of a feature. We were unable to obtain 
reliable reference values for five features (no ref. value). The teams are listed in Appendix E1 (online). BCOM = Institute of 
Research and Technology b<>com, Brest; CaPTk = Cancer Imaging Phenomics Toolkit; CERR = Computational Environment 
for Radiological Research; KCL = King’s College London; LUMC = Leiden University Medical Center; MAASTRO = Maas-
tro, Maastricht, the Netherlands; MaCha = Marie-Charlotte Desseroit; MIRP = Medical Image Radiomics Processor; MITK 
= Medical Imaging Interaction Toolkit; QIFE = Quantitative Image Feature Engine; RaCaT = Radiomics Calculator; SERA = 
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data set resemble a realistic set of parameters given the entity 
and imaging modalities.

Our study has several limitations. First, our aim was to lay 
a foundation for standardized computation of radiomics fea-
tures. To this end, we sought to standardize 174 commonly used 
features and to obtain reference values using image processing 
methods that radiomics researchers most commonly employ. To 
keep the scope manageable, many other features such as fractals 
and image filters were not assessed (32), important modality-spe-
cific image processing steps were not benchmarked, and uncom-
mon image processing methods were not investigated. This is a 
serious limitation and one that the IBSI is currently addressing.

Despite the fact that standardized feature computation is 
an important step toward reproducible radiomics, the need for 
standardization and harmonization related to image acquisition, 
reconstruction, and segmentation remains, as these constitute 
additional sources of variability in radiomics studies. Because of 

IBSI, in addition to the presented work, has defined reporting 
guidelines that indicate the elements that should be reported 
to facilitate this process. However, we refrained from creating 
a comprehensive recommendation on how to perform a good 
radiomics analysis for several reasons. First, such recommen-
dations will need to be modality specific and possibly entity 
specific (29,30). The related specific evidence for the effect of 
particular parameters, for example, the choice of interpolation 
algorithm, is far from complete. Second, recommendations 
or guidelines regarding parts of the radiomics analysis are al-
ready covered comprehensively elsewhere, for example, by the 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis statement on diagnostic 
and prognostic modeling (31). Certainly, the image process-
ing configurations used in phase II are not intended for gen-
eral use, as their primary aim was to cover a range of different 
methods. Only the configurations defined for the validation 

Figure 4:  Bar graphs depict iterative development of consensus on the validity of reference values for radiomics features. We tried to find reliable reference values for 
radiomics features in an iterative standardization process. In phase I, features were computed without prior image processing, whereas in phase II, features were assessed 
after image processing with five predefined configurations (configurations A–E; Appendix E1 [online]). The panels show, A, the overall development of consensus on the 
validity of (tentative) reference values in phases I and II and, B, the development of consensus in phase II, according to image processing configuration. Consensus on the 
validity of a reference value is based on the number of research teams that produce the same value for a feature (weak: 3; moderate: three to five; strong: six to nine; very 
strong: 10). We analyzed consensus at each of the analysis time points, the time between which was variable (arbitrary unit; arb. unit). New features were included at 
time points 5 and 22, causing an apparent decrease in consensus. For phase II, we first analyzed consensus at time point 10. Image processing configurations C and D 
were altered after time point 16. Configuration E was altered after revising the resegmentation processing step at time point 22. See Appendix E1 (online) for more informa-
tion regarding the timeline.
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In conclusion, the Image Biomarker Standardization Initia-
tive was able to produce and validate reference values for ra-
diomics features. These reference values enable verification of 
radiomics software, which will increase reproducibility of ra-
diomics studies and facilitate clinical translation of radiomics.
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this variability, features that can be reproduced from the same 
image using standardized radiomics software may nevertheless 
lack reproducibility in multicentric or multiscanner settings 
(14,19,33). We did not address these issues here as their compre-
hensive harmonization is the ongoing focus of other consortia 
and professional societies (2). Other approaches have also been 
proposed to address these issues, such as the reduction of cohort 
effects on radiomics features using statistical methods (34) and 
application of artificial intelligence to convert between recon-
struction kernels in CT imaging (35).

Table 2: Consensus on the Validity of Reference Values of Radiomics Features at Initial and Final Analysis Time Points for Phases I and II

Parameter

Total
Weak  

Consensus
Moderate  
Consensus

Strong  
Consensus No. of  

Features  
with Very  
Strong  
Consensus

No. of  
Features with  
Moderate  
Consensus  
or Greater 

No. of  
Features  
with Strong  
Consensus  
or Greater

No. of  
Features

No. of  
Unstable  
Features

No. of  
Features

No. of  
Unstable  
Features

No. of  
Features

No. of  
Unstable  
Features

No. of  
Features

No. of  
Unstable  
Features

Initial analysis  
  time point 
  Phase I 302 147  

(48.7)
232  

(76.8)
133  

(57.3)
48  

(15.9)
12 (25.0) 16 (5.3) 2 (12.5) 6 (2.0) 70 (23.2) 22 (7.3)

  Phase II 1075 610  
(56.7)

703  
(65.4)

537  
(76.4)

342  
(31.8)

73 (21.3) 30 (2.8) 0 (0) 0 (0) 372 (34.6) 30 (2.8)

    Config A 215 28  
(13.0)

114  
(53.0)

26  
(22.8)

98  
(45.6)

2 (2.0) 3 (1.4) 0 (0) 0 (0) 101 (47.0) 3 (1.4)

    Config B 215 149  
(69.3)

188  
(87.4)

149  
(79.3)

27  
(12.6)

0 (0) 0 (0) 0 (0) 0 (0) 27 (12.6) 0 (0)

    Config C 215 97  
(45.1)

87  
(40.5)

72  
(82.8)

112  
(52.1)

25 (22.3) 16 (7.4) 0 (0) 0 (0) 128 (59.5) 16 (7.4)

    Config D 215 162  
(75.3)

141  
(65.6)

129  
(91.5)

63  
(29.3)

33 (52.4) 11 (5.1) 0 (0) 0 (0) 74 (34.4) 11 (5.1)

    Config E 215 174  
(80.9)

173  
(80.5)

161  
(93.1)

42  
(19.5)

13 (31.0) 0 (0) 0 (0) 0 (0) 42 (19.5) 0 (0)

Final analysis  
  time point 
  Phase I 487 2 (0.4) 2 (0.4) 2 (100.0) 22 (4.5) 0 (0) 234  

(48.0)
0 (0) 229 (47.0) 485 (99.6) 463 (95.1)

  Phase II 1347 20 (1.5) 19 (1.4) 18 (94.7) 108 (8.0) 2 (1.9) 1152  
(85.5)

0 (0) 68 (5.0) 1328 (98.6) 1220 (90.6)

    Config A 351 4 (1.1) 4 (1.1) 3 (75.0) 22 (6.3) 1 (4.5) 307  
(87.5)

0 (0) 18 (5.1) 347 (98.9) 325 (92.6)

    Config B 351 5 (1.4) 4 (1.1) 4 (100.0) 24 (6.8) 1 (4.2) 317  
(90.3)

0 (0) 6 (1.7) 347 (98.9) 323 (92.0)

    Config C 215 4 (1.9) 4 (1.9) 4 (100.0) 9 (4.2) 0 (0) 171  
(79.5)

0 (0) 31 (14.4) 211 (98.1) 202 (94.0)

    Config D 215 4 (1.9) 4 (1.9) 4 (100.0) 6 (2.8) 0 (0) 192  
(89.3)

0 (0) 13 (6.0) 211 (98.1) 205 (95.3)

    Config E 215 3 (1.4) 3 (1.4) 3 (100.0) 47 (21.9) 0 (0) 165  
(76.7)

0 (0) 0 (0) 212 (98.6) 165 (76.7)

Note.—Data are number of features, with percentages in parentheses. Reference values of radiomics features were iteratively obtained in 
two phases. In phase I, features were computed without prior image processing, whereas in phase II, features were computed after image 
processing with five predefined configurations (configurations A–E; Appendix E1 [online]). Consensus on the validity of a reference value 
was based on the number of research teams that produced the same value (weak: 3; moderate: three to five; strong: six to nine; very 
strong: 10). Unstable features are those for which the consensus was only carried by a minority of teams (50%). Features with very 
strong consensus were never unstable, and the respective column was omitted. The number of features increased between the initial and 
final time points due to adding new features and computing features with additional feature-specific parameters (Appendix E1 [online]). 
Config = configuration.
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Figure 5:  Bar graph shows reproducibility of standardized radiomics features. 
We assessed reproducibility of 169 standardized features on a validation cohort 
of 51 patients with soft-tissue sarcoma using multimodality imaging (CT, fluorine 
18 fluorodeoxyglucose PET, and T1-weighted MRI; shown as CT, PET and MRI) 
according to the feature values computed by research teams. We assigned each 
feature to a reproducibility category based on the lower boundary of the 95% 
confidence interval of the two-way random effects, single rater, absolute agree-
ment intraclass correlation coefficient of the feature (poor: ,0.50; moderate: 
0.50–0.75; good: 0.75–0.90; excellent: 0.90). Five features could not be stan-
dardized in this study. Two features with unknown reproducibility were computed 
by fewer than two teams during validation.
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