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Background and purpose: To develop and validate a pre-treatment radiomics-based prediction model to
identify pathological lymph nodes (pLNs) at risk of failures after definitive radiotherapy in head and neck
squamous cell carcinoma patients.

Materials and methods: Training and validation cohorts consisted of 165 patients with 558 pLNs and 112
patients with 467 pLNs, respectively. All patients were primarily treated with definitive radiotherapy,
with or without systemic treatment. The endpoint was the cumulative incidence of nodal failure. For each

Keywords: pLN, 82 pre-treatment CT radiomic features and 7 clinical features were included in the Cox proportional-
Head and neck cancer ‘
Radiomics hazard analysis.

Results: There were 68 and 23 nodal failures in the training and validation cohorts, respectively.
Multivariable analysis revealed three clinical features (T-stage, gender and WHO Performance-status)
and two radiomic features (Least-axis-length representing nodal size and gray level co-occurrence matrix
based - Correlation representing nodal heterogeneity) as independent prognostic factors. The model
showed good discrimination with a c-index of 0.80 (0.69-0.91) in the validation cohort, significantly bet-
ter than models based on clinical features (p < 0.001) or radiomics (p = 0.003) alone. High- and low-risk
groups were defined by using thresholds of estimated nodal failure risks at 2-year of 60% and 10%, result-
ing in positive and negative predictive values of 94.4% and 98.7%, respectively.
Conclusion: A pre-treatment prediction model was developed and validated, integrating the quantitative
radiomic features of individual lymph nodes with generally used clinical features. Using this prediction
model, lymph nodes with a high failure risk can be identified prior to treatment, which might be used
to select patients for intensified treatment strategies targeted on individual lymph nodes.

© 2020 Published by Elsevier B.V. Radiotherapy and Oncology 146 (2020) 58-65

Prediction model
Individual nodal failure
Pre-treatment

The optimal management of neck node metastases for head and
neck squamous cell carcinoma (HNSCC) patients remains to be
determined [1-4]. The clinical and radiographic complete nodal
response rates after definitive radiotherapy with or without sys-
temic treatment in node positive (N+) HNSCC patients are around
40-50% [1-3]. Neck dissection is generally recommended for
patients without complete response (CR), reducing neck failure
rates from 15-24% to 6-10% [1,4]. However, it is difficult to iden-
tify those patients without neck CR accurately. PET-CT guided
surveillance is advised for treatment response assessment with
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gen, The Netherlands.

E-mail address: t.zhai@umcg.nl (T.-T. Zhai).
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negative predictive value of 95%, while the positive predictive
value (PPV) of PET-CT is only around 50-80% [5-7]. The clinical
consequence of this low PPV is that 20-50% patients with non-
pathological lymph nodes will be diagnosed as pathological or
equivocal by PET-CT. Other studies showed that approximately
30-40% of neck dissection specimens harbor viable tumor cells,
meaning that most of these patients are over-treated with the risk
of severe post-operative complications [8-11]. In addition, in N+
patients with radiographic CR in the neck, the risk of regional fail-
ure varies between 2% and 8% [1,12]. This low regional failure rate
and the presumed possibility of salvage surgery suggests a wait-
and-see policy for patients with CR in the neck. However, only
around 20% of regional recurrences are surgically salvageable due
to fibrosis in the neck after radiotherapy [13-15]. Therefore, treat-
ment intensification in a selected high failure risk group combined
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with wait-and-see for the low failure risk group might strike a bal-
ance between over- and under-treatment.

Around 91% of lymph node failures occur in the high-dose area,
which corresponds to the initial nodal gross tumor volume area [8].
If the individual lymph nodes at risk of persistent or recurrent dis-
ease can be identified before treatment, selective intensified treat-
ment regimens, like intensified radiation treatment or planned
surgical dissection could be implemented for those lymph nodes
with the highest risk of failure [3,9,16-18]. However, to be able
to apply such strategies, it is essential to identify those pathologi-
cal lymph nodes that have a high risk of persistence or recurrence
[19].

Radiomics refers to the data values generated by the quantifica-
tion of features describing intensity, shape and textural character-
istics of a region of interest in medical images. Radiomics have
shown the potential to predict survival, tumour response, side
effects, virus status, and genomic information [20-23]. In our pre-
vious study, the quantitative computed tomography (CT) based
radiomics of the gross tumor volume and pathological lymph
nodes showed prognostic value for regional recurrence on the
patient level [24]. To our knowledge, pre-treatment prediction of
individual lymph node failures in HNSCC using radiomics has not
been investigated so far. Since lymph node radiomic features pro-
vide information on the individual lymph node phenotypes, which
might improve the performance of prediction models estimating
the failure risk of each pathological lymph node. Therefore, the
aim of this study was to test the hypothesis that the performance
of a prediction model for individual nodal failure can be improved
by adding radiomic features of individual lymph nodes to the pre-
diction models, consisting of commonly used classical prognostic
factors. Such a model could support decision-making not only for
individual patients, but also for specific pathological lymph nodes.

Materials and methods

Patient selection and treatment

This was a retrospective analysis of prospectively acquired
HNSCC patient data available at the University Medical Center
Groningen (UMCG). This study was approved by the medical ethi-
cal committee of the UMCG. The study population consisted of 348
consecutive non-surgically treated clinically N+ HNSCC patients
between July 2007 and June 2016. All patients were primarily trea-
ted with definitive radiotherapy to a total dose of 70 Gy with frac-
tions of 2 Gy in 6-7 weeks, with or without chemotherapy or
cetuximabh. A more detailed description of the radiation protocol
has been published previously [20,25]. The Appendix A presents
the patient recruitment pathway as well as the exclusion criteria.
In total, 165 patients treated before January 2013 was included
in the training cohort and 112 patients treated thereafter was
include in the validation cohort [26].

Clinical parameters

The clinical parameters considered as candidate predictors for
nodal failure included: gender (male vs. female), T-stage (T3-T4
vs. T1-T2), N-stage (N2-N3 vs. N1), clinical stage (IV vs. IIl), treat-
ment modality (radiotherapy only vs. radiotherapy with systemic
treatment), WHO performance-status (WHO PS; 1-3 vs. 0) and
age. All parameters were prospectively collected from our data reg-
istration program. T, N and clinical stage were defined according to
the 7th edition of the American Joint Committee on Cancer (AJCC)
Staging Manual [27]. Due to the important role of human papillo-
mavirus (HPV) status in oropharyngeal cancer (OPC), HPV status
(HPV— vs. HPV+) was included in a subgroup analysis of the OPC
patients from the training and validation cohorts [28,29].

HPV-status was assessed by p16 immunohistochemistry and con-
firmed by DNA polymerase chain reaction in case of pl6-
positivity in OPC patients. In this study cohort, only one and two
HPV+ OPC patients were treated with cetuximab in the training
and validation cohort, respectively. Therefore, they were not dis-
cussed separately [30].

CT image acquisition, radiomic features extraction, and reproducibility
evaluation

All patients underwent a standard contrast-enhanced planning
CT-scan. The nodes were considered as pathological lymph nodes
(pLNs) in cases of positive cytology, presence of necrosis, short-
axis diameter >10 mm and/or FDG-PET positivity. All pLNs were
delineated on the planning CT-scans by experienced head and neck
radiation oncologists. Overall, 82 radiomic features were extracted
from every pLNs using Matlab (R2014a; Mathworks, Natick, USA)
with feature definition and calibration according to “Image bio-
marker standardisation initiative” and reported following REMARK
guideline [31,32]. Scans from 18 patients were used for inter-
observer and intra-observer radiomic reproducibility tests. The
radiomic features with inter- and intra-class correlation coeffi-
cients (ICCs) > 0.75 were considered robust for delineation varia-
tion and were included in the further analysis. A more detailed
description of the CT scan parameters, radiomic features and
reproducibility evaluation is given in Appendix B.

Endpoints

The endpoint was the cumulative incidence of nodal failure,
defined as residual or recurrent lymph node metastases within or
overlapping with the primary pathological lymph node region
before treatment. In contrast with regional or neck failure
[33,34], in which the entire neck is considered, nodal failure refers
to failure of each separate node. Residual disease was defined as a
persistent node at a minimum of 12 weeks after treatment. A
recurrent node was defined as a new pathological node after an ini-
tial complete response. Recurrent diseases outside the original
pathological lymph node region were not considered as events in
this analysis. Residual and recurrent diseases are managed simi-
larly in clinic, and thus were analysed together [27]. All nodal fail-
ures were contoured on the follow-up CT or MRI scans, and the
follow-up imaging was co-registered to the planning CT. Every
nodal failure was linked to the original pLN. Nodal failure was con-
firmed by histological or cytological diagnosis, or obvious lymph
nodes with >10 mm short-axis diameter, detected on at least
two image modalities from CT, MRI, PET-CT and ultrasound. Time
to event was defined as the date from the first day of radiotherapy
to the date of nodal failure. The lymph nodes without failures that
were removed by neck dissection were censored at the date of sur-
gery and others were censored at the date of last follow-up.
Patients received systematic follow-up, consisting of clinical head
and neck examination and additional imaging in cases of suspi-
cious findings, after treatment every 3 months in the first 2 years
and every 6 months thereafter.

Data analysis

Model development and validation

Univariable cox-regression analysis was performed to assess
clinical risk factors for nodal failure.

To reduce the probability of overfitting and multi-collinearity,
pre-selection was performed for the radiomic features. If the
Spearman rank-order correlation between pairs of radiomic fea-
tures was >0.80, then the radiomic feature with the lower univari-
able association with the endpoint was excluded from further
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analysis [20,35]. All clinical and pre-selected radiomic features
were included in a multivariable Cox proportional hazard regres-
sion analysis (forward selection based on Likelihood ratio test,
p < 0.05) to create multivariable clinical, radiomic and combined
models.

The complete process of radiomic feature pre-selection and fea-
ture selection (multivariable model training) was repeated on 1000
bootstrap samples of the training set according to the TRIPOD
guideline [26]. Only the most frequently selected variables were
considered in the final clinical, radiomic and combined models.
The concordance-index (c-index) was determined to assess the
model’s discriminative power.

The performances of the final clinical, radiomic and combined
models were then tested with the validation cohort.

Nodal failure risk curves and nomogram

The baseline cumulative hazard function HO(t) of the combined
model was described in the simplified look-up table in Appendix C,
and a nomogram for nodal control probability estimation at 1 and
2 years after treatment was created. Nodal failure risk curves at
2 years were constructed based on the combined model. To deter-
mine the cut off points for the optimal positive and negative pre-
dictive values (PPV and NPV), all calculated nodal failure
probabilities from training and validation cohorts at 2 years were
compared with the actual nodal failures.

Subgroup analysis for oropharyngeal cancer

The same analysis procedure was repeated for the subgroup of
OPC patients from the training cohort to create OPC-clinical, OPC-
radiomic and OPC-combined models. The models trained with the
HNSCC group and the OPC group patients were compared and exter-
nally validated with the OPC patients from the validation cohort.

Statistical analysis

Statistical analysis was conducted with the R software (version
3.2.1). Two tailed p-values <0.05 were considered statistically sig-
nificant. The chi-square test was used to compare the categorical
variables and an independent sample t-test was used to compare
normally distributed variables between different groups. Model
performance was calculated using the Harrell’s c-index. The z-
score test was used to test the difference between two c-indices.
The Hosmer-Lemeshow (HL) test was used to test the calibration
for the nodal failure risk at 2 years, p-values >0.05 represent good
calibration.

Results

The training cohort consisted of 165 patients with 558 pLNs.
There were 68 (12.2%) nodal failures in 37 (22.4%) patients during
follow-up and the median follow-up was 36.1 (range: 2.9-130.2)
months. The validation cohort consisted of 112 patients with 467
pLNs. There were 23 (4.9%) nodal failures in 19 (17.0%) patients
during follow-up and the median follow-up was 30.8 (range:
3.7-65.8) months. The other failures including local failure, regio-
nal failure, distant metastasis and death were recorded on the
patient level and summarized in Appendix D. Less events were
seen in the validation cohort due to the shorter follow up and more
HPV-positive OPC patients compared with the training cohort.

In total, 87 of 91 nodal failures occurred within 2 years after
treatment. The clinical characteristics of the training and validation
cohorts are summarized in Table 1. The patients in the validation
cohort were older than those in the training cohort. There were sig-
nificantly more patients with tumors originating from the
hypopharynx and larynx and fewer HPV-positive OPC patients in
the training cohort than that in the validation cohort. The two

cohorts were well balanced other clinical
characteristics.

The average ICCs of inter- and intra-observer agreement of all
radiomic features were 0.94 and 0.93. There were 6 radiomic fea-
tures with an ICC < 0.75 that were excluded from further analysis
(Appendix E).

Gender, T-stage, N-stage and WHO PS showed significant asso-
ciations with nodal failure in the univariable analysis (Appendix F).
These parameters were included in the final clinical model as inde-
pendent prognostic factors for nodal failure (Table 2).

Sixty of the 82 radiomic features were significantly associated
with nodal failure in the univariable analysis. The pre-selection
and feature selection (multivariable model training) were repeated
on 1000 bootstrap samples (Appendix G). The radiomic features
that were selected more than 750 times and that were significantly
associated with nodal failure in the multivariable analysis were
Least-axis-length of lymph node (LALLN, representing nodal size)
and Correlation of gray level co-occurrence matrix (Corr-GLCM,
representing nodal heterogeneity) (Table 2).

All clinical and radiomic features were included in the boot-
strapped variable selection for the development of the combined
model. All variables that were selected in the final clinical and
radiomic models were also selected and remained significant in
the final combined model except for N-stage (Table 2 and Appen-
dix G). The performances of the final clinical, radiomic and com-
bined models in the training and validation cohorts are
summarized in Fig. 1. The c-index of the radiomic model was
0.84 (95% confidence interval (CI): 0.77-0.91), slightly but not sig-
nificantly (p = 0.093) better than that of the clinical model 0.78
(95%CI: 0.71-0.85). When tested in the validation cohort, the c-
index of the radiomic model was 0.79 (95%Cl: 0.71-0.87) and
was higher than that of the clinical model (0.69; 95%Cl: 0.59-
0.79). The combined model performed significantly better than
the clinical model (p < 0.001) and radiomic model (p = 0.003), with
a c-index of 0.90 (95% CI: 0.83-0.97) in the training cohort and 0.80
(95% CI: 0.69-0.91) in the validation cohort.

The relationship between the nodal failure risk and the radio-
mic features (LALLN and Corr-GLCM) is shown in Fig. 2 for female
patients and Fig. 3 for male patients. A nomogram was developed
as the graphic representation of the combined model and can be
found in Appendix H. The HL-test for the probability of nodal fail-
ure at 2 years was not significant in the training cohort (p = 0.51)
nor in the validation cohort (p = 0.14), indicating that there is a
good agreement between the estimated nodal failure risk by using
the model and actual nodal failure risk based on the datasets. By
using cut-off values of the estimated risks of 60% and 10% for
high- and low-risk groups, respectively, the PPV and NPV were
94.4% and 98.7% (Fig. 4). The lymph nodes were stratified into
high-, intermediate- and low-risk groups according to the cut-off
values.

The subgroup analysis included all OPC patients with known
HPV-status. In the training cohort, 73 OPC patients with 268 LNs
resulted in 32 (11.9%) nodal failures from 21 patients. In the vali-
dation cohort, 64 OPC patients with 274 LNs resulted in 15 (5.5%)
nodal failures from 12 patients. Except for HPV status, no signifi-
cant differences in patient characteristics were found between
the two subgroups (Appendix I). Based on this analysis, we con-
structed OPC-clinical, OPC-radiomic and OPC-combined models
as shown in Appendix J. HPV status was identified as a significant
feature in the OPC-clinical model. However, in the combined
model, the textural feature short run high grey level emphasis
(SRHGE) of GLRLM was selected instead of HPV status because of
its larger predictive performance. The OPC-clinical (c-index: 0.68;
95%Cl: 0.54-0.82), OPC-radiomic c-index: 0.78; 95% (C1:0.63-0.93)
and OPC-combined (c-index: 0.78; 95%Cl: 0.65-0.91) models per-
formed similarly to the clinical (c-index: 0.68; 95%Cl: 0.52-0.84),

regarding all
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Table 1
Characteristics of the head and neck squamous cell carcinoma patients in the training and validation cohorts.
Training cohort Validation cohort p-value
Characteristic n=165 % n=112 %
Age at diagnosis (median + SD, years) 60 +9 64+10 0.025°
Gender 0.302°
Female 45 273 37 33.0
Male 120 72.7 75 67.0
T-stage® 0.154°
T1 11 6.7 13 11.6
T2 35 212 22 19.6
T3 49 29.7 22 19.6
T4 70 42.4 55 49.1
N-stage® 0.226°
N1 33 20.0 19 17.0
N2 123 74.5 91 81.3
N3 9 5.5 2 1.8
Clinical stage® 0.400°
11 25 15.2 13 11.6
v 140 84.8 99 88.4
Treatment modality 0.369°
RT only 49 29.7 39 34.8
RT with systemic treatment 116 70.3 73 65.2
WHO PS 0.310°
0 105 63.6 65 58.0
1 52 315 35 313
2 7 4.2 10 8.9
3 1 0.6 2 1.8
Tumor site 0.006°
oral cavity 11 6.7 11 9.8
oropharynx 75 455 70 62.5
nasopharynx 4 24 5 4.5
hypopharynx 33 200 11 9.8
larynx 42 255 15 134
HPV status 0.002°
OPC HPV- 48 29.1 30 26.8
OPC HPV+ 25 15.2 34 304
OPC unknown 2 1.2 6 54
Not OPC 90 545 42 375

Abbreviations: T = tumor; N = lymph node; RT = radiotherapy; WHO PS = World Health Organization performance status; HPV = human papillomavirus; OPC = oropharyngeal

cancer.

2 According to the 7th edition of the AJCC/UICC staging system.
b p-Value was calculated using the independent sample t-test.
© p-Value was calculated using the chi-square test.

Table 2

Estimated coefficients (f) of clinical, radiomic and combined models.

Clinical model

Radiomic model

Combined model

B Corrected HR HR p- B Corrected HR HR p- B Corrected HR HR p-
Ji (95% CI) Value B (95% CI) Value B (95% CI) Value
Gender 2.39 2.08 10.97 2.67-45.09 <0.001 2.19 1.88 8.94 2.17-36.81 0.002
(Male vs. Female)
T-stage 1.24 1.08 346 1.38-8.73 0.008 1.08 093 296 1.16-7.50 0.023
(T3-T4 vs. T1-T2)
N-stage 0.98 0.85 266 153-463 <0.001 - - - - -
(N2-N3 vs. N1)
WHO PS 0.90 0.78 246 1.46-4.16 0.001 1.06 091 290 1.71-491 <0.001
(1-3 vs. 0)
LALLN* (¢cm) 0.87 0.78 239 1.94-295 <0.001 0.83 0.71 231 1.89-282 <0.001
Corr-GLCM™* 349 3.14 32.93 3.45- 0.002 2.84 244 17.05 1.70- 0.016
314.65 171.06

Abbreviations: T = tumor; N = lymph node; WHO PS = World Health Organization performance status; LALLN = Least axis length of lymph node; Corr-GLCM = Correlation of
grey level co-occurrence matrix; HR = Hazard ratio; Cl = confidence interval.
" Radiomic features, LALLN and Corr-GLCM are continuous variables.

radiomic (c-index: 0.86; 95%CI: 0.78-0.94) and combined models

(c-index: 0.81; 95%CI: 0.68-0.94) with non-significant p-values of
0.537, 0.120, and 0.899) when they were tested in the subgroup

of oropharyngeal cancer patients in the validation cohort, respec-

tively (Fig. 1).

Discussion

To our knowledge, this is the first study to develop and validate

quantitative radiomic

features

a pre-treatment prediction model for individual nodal failures. By
combining non-invasive

of
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P3 < 0.001
I |
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[ validation cohort 0.69 0.79 0.80
W OPC-Training cohort 0.75 0.79 0.85
[ opc-validation cohort 0.68 0.68 0.86 0.78 0.81 0.78

Fig. 1. Prediction performances of models. P1, P2 and P3 showed the comparisons between the clinical, radiomic and combined models; P4, P5 and P6 showed the
comparisons between the clinical and OPC-clinical models, radiomic and OPC-radiomic models, and combined and OPC-combined models on OPC-validation cohort (the

orange bar). Abbreviation: OPC = oropharyngeal cancer.
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Fig. 2. The risk of nodal failure for female patients at 2 years. Abbreviations: WHO PS = WHO performance score; LALLN = Least-axis-length of lymph node; GLCM = Grey level

co-occurrence matrix.

individual lymph nodes with clinical features, it is possible to clas-
sify pLNs as low- or high-risk. This might provide new options for
defining more personalised treatment strategies.

The significant clinical features in the clinical model (T-stage, N-
stage, gender and WHO PS) and OPC-clinical model (T-stage, gen-
der and HPV status) are consistent with earlier reports [1,24,36].
Sixty radiomic features showed significant association with nodal
failure in the univariable analysis. Out of the sixty radiomic
features, the geometric feature (LALLN) and textural feature

(Corr-GLCM) were the most frequently selected radiomic features
in the 1000 bootstrap samples and identified as independent prog-
nostic factors in the radiomic and combined models.

LALLN, representing the size of the lymph node, refers to the
length of the shortest axis along which the lymph node is extended
in three-dimensions (3D). This is consistent with the results
reported by Vergeer et al., they found that the lymph node size
was a prognostic factor for nodal control. In their study, the nodal
volume was used to represent the nodal size [37]. Nodal volume
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Fig. 3. The risk of nodal failure for male patients at 2 years. Abbreviations: WHO PS = WHO performance score; LALLN = Least axis length of lymph node; GLCM = Grey level
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was also associated with nodal control in the univariable analysis
of this study and highly correlated with LALLN (0.84), but per-
formed worse than LALLN in the prediction of nodal control, and
nodal volume did not add prognostic information to the model
with LALLN. Another prognostic feature was the short-axis diame-
ter of the lymph node, which is also representative for the size of
the lymph node. The short-axis diameter is frequently used in radi-
ological reports and defined as the widest diameter perpendicular
to the longest axis in the transverse plane. It was highly correlated

(0.96) with LALLN and performed similarly to LALLN in this study.
However, LALLN was the most selected radiomic feature (868
times of 1000 bootstrapped samples, short-axis diameter was
selected 31 times only), indicating its robustness (Appendix G),
and therefore was included in the model.

Patients with advanced N-stage tend to have larger LALLN and
multiple lymph nodes. The patients with advanced N-stage (7th
edition) showed worse nodal control in the clinical univariable
and multivariable analysis of this cohort. We believe that the 8th
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edition N-stage might have an even stronger association with the
nodal failures since it includes extra-nodal extension (ENE) and
HPV+ oropharyngeal cancer’s new staging system [38]. This is
unfortunately not possible to explore for this retrospective study
due to the low accuracy of ENE evaluation using existing CT images
[39]. However, for patients with more than one pathological lymph
node, the use of LALLN for each lymph node is much more informa-
tive than the N-stage for individual nodal failure prediction. The
combined model with LALLN performed significantly better than
models with N-stage.

Corr-GLCM is a textural feature describing the heterogeneity of
the lymph node. It describes the correlation of a reference voxel to
its neighbours. Haralick et al. showed that Corr-GLCM could be
used for quantifying heterogeneity and for distinguishing hetero-
geneous and homogeneous materials [40]. In this study, the lymph
nodes with lower Corr-GLCM values had large areas of similar
intensities, i.e. lower heterogeneity, and lower nodal failure risk.
Intra-lymph node heterogeneity can be increased by the presence
of necrosis, which can be recognized as an area with lower
CT-intensities surrounded by an irregular rim of higher
CT-intensities in contrast-enhanced CT images [41]. Therefore,
Corr-GLCM may indicate necrosis status of lymph nodes.

The textural feature SRHGE, which replaced HPV-status, was
selected for the OPC-combined model. This feature emphasises
small areas with high CT-intensities (short run length with high
grey levels). The association between radiomic features and HPV-
status has been shown in a series of reports [42,43], and was also
significant in this study with a p-value of 0.001. In the present
study, a lower SRHGE was associated with a higher nodal failure
risk. Lower SRHGE values are expected in volumes with lower con-
trast enhancement. Since contrast enhancement is related to local
circulation, lower SRHGE values can be expected in hypo-vascular
volumes with a higher risk of hypoxia [44,45]. Therefore, higher
failure risk in lymph nodes with a lower SRHGE could be associated
with hypoxia. Further research is necessary to explore the possible
underlying biological mechanisms behind radiomic phenotypes
|46,47], which might provide a non-invasive means of assessing
these biological features.

In the management of neck node metastases in HNSCC patients,
PET-CT surveillance has significantly improved the assessment of
response status with a very high NPV of 95% [5-7]. In the random-
ized controlled PET-NECK trial reported by Mehanna et al., it was
shown that PET-CT surveillance spared a neck dissection for
approximately 80% of patients [7]. However, PET-CT at 8-12 weeks
after radiotherapy has a low PPV of 50-80%, mainly due to
radiation-induced inflammatory changes [5-7]. The clinical conse-
quence of this low PPV is that 20-50% patients with non-
pathological lymph nodes will be diagnosed as pathological or
equivocal by PET-CT. In the PET-NECK trial, 66 out of 266 patients
had an incomplete or equivocal imaging response, meaning that
20-50% (13-33 patients) patients have false positive PET-CT
|5-7]. Therefore, performing surgical resection for all of those
patients is not the optimal workflow. Our combined model based
on clinical and radiomics features can identify the lymph nodes
with a PPV for the high-risk group of 94.4% and a NPV for the
low-risk group of 98.7% prior to treatment. If we could identify
the high-risk lymph nodes before treatment, an intensified radia-
tion schedule or lymph node targeted dissection before or after
(chemo-)radiation could be arranged to avoid complex clinical
decisions on re-irradiation or severe post-operative complications.
For the low- and intermediate-risk lymph nodes, a wait-and-see
policy could be applied when they have complete PET-CT response.
Frequently imaging follow-up is recommended for those
intermediate-risk lymph nodes that show incomplete PET-CT
response. For the low-risk lymph nodes, a wait-and-see policy
could be applied to avoid frequently imaging follow up. This

hypothesis should be investigated in follow-up studies. Neck man-
agement could be modified by using the pre-treatment prediction
model as a supplement to post-treatment PET-CT surveillance.
Such a workflow might improve the nodal control rate in the
high-risk patients and reduce the number of unnecessary lymph
node dissections in the low-risk patients.

A limitation of the current study is that only contrast-enhanced
CT images were used. The model is therefore not applicable to CT-
scans without contrast-enhancement, since the textural features
could differ from those in our study. However, when we used the
model without the textural feature (corr-GLCM), model perfor-
mance was good with a C-statistic of 0.90 in the training cohort
and 0.79 in the validation cohort, indicating that the model with-
out corr-GLCM could also be used. To further improve the current
combined prediction model for lymph node failure, radiomic fea-
tures from other image modalities such as MRI, PET-CT and ultra-
sound could be investigated, as well as the changes of the radiomic
features between pre-, during- and post-treatment imaging [48].
Another limitation is the lack of histological confirmation of nodal
failure in some of the cases, therefore at least two image modalities
were used to confirm the diagnosis. Although we used training and
validation datasets in this study, datasets from other institutions
using different data acquisition protocols and CT-scanners are
needed for further validation.

In conclusion, we developed a multivariable prediction model
for nodal failures that can be applied to estimate the risk of failure
for individual pathological lymph nodes, based on quantitative and
non-invasive radiomic features describing the size and heterogene-
ity of the whole lymph node in combination with clinical features
of the patient. This prediction model allows for an accurate predic-
tion of failure for individual lymph nodes and could be used to
guide decisions on treatment strategies customized for individual
pathological lymph nodes.
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