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Chapter 6
Port-Hamiltonian Systems

As described in the previous Chaps. 3 and 4, (cyclo-)passive systems are defined
by the existence of a storage function (nonnegative in case of passivity) satisfying
the dissipation inequality with respect to the supply rate s(u, y) = uTy. In contrast,
port-Hamiltonian systems, the topic of the current chapter, are endowed with the
property of (cyclo-)passivity as a consequence of their system formulation. In fact,
port-Hamiltonian systems arise from first principles physical modeling. They are
defined in terms of a Hamiltonian function together with two geometric structures
(corresponding, respectively, to power-conserving interconnection and energy dis-
sipation), which are such that the Hamiltonian function automatically satisfies the
dissipation inequality.

6.1 Input-State-Output Port-Hamiltonian Systems

An important subclass of port-Hamiltonian systems, especially for control purposes,
is defined as follows.

Definition 6.1.1 An input-state-output port-Hamiltonian systemwithn-dimensional
state space manifold X , input and output spaces U = Y = Rm, and Hamiltonian
H : X → R, is given as1

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u

y = gT (x) ∂H
∂x (x)

(6.1)

where the n × n matrices J(x),R(x) satisfy J(x) = −JT (x) and R(x) = RT (x) ≥ 0.

By the properties of J(x),R(x), it immediately follows that

1As before, ∂H
∂x (x) denotes the column vector of partial derivatives of H .
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114 6 Port-Hamiltonian Systems

dH
dt (x(t)) = ∂TH

∂x (x(t))ẋ(t) =
− ∂TH

∂x (x(t))R(x(t)) ∂H
∂x (x(t)) + yT (t)u(t) ≤ uT (t)y(t),

(6.2)

implying, cf. Definition 4.1.1, cyclo-passivity and passivity if H ≥ 0.
The Hamiltonian H is is equal to the total stored energy of the system, while

uTy is the externally supplied power. In the definition of a port-Hamiltonian sys-
tem, two geometric structures on the state space X play a role: the internal inter-
connection structure given by J(x), which by skew-symmetry is power-conserving,
and a resistive structure given by R(x), which by nonnegativity is responsible for
internal dissipation of energy. For a further discussion on the mathematical theory
underlying these geometric structures, as well as the port-based modeling origins of
port-Hamiltonian systems, we refer to the Notes at the end of this chapter.

A useful extension of Definition 6.1.1 to systems with feedthrough terms is given
as follows.

Definition 6.1.2 An input-state-output port-Hamiltonian system with feedthrough
terms is specified by an n-dimensional state space manifold X , input and output
spaces U = Y = Rm, Hamiltonian H : X → R, and dynamics

ẋ = [J(x) − R(x)] ∂H
∂x (x) + [G(x) − P(x)] u

y = [G(x) + P(x)]T ∂H
∂x (x) + [M(x) + S(x)] u,

(6.3)

where the matrices J(x),M(x),R(x),P(x), S(x) satisfy the skew-symmetry condi-
tions J(x) = −JT (x),M(x) = −MT (x), and the nonnegativity condition

[
R(x) P(x)
PT (x) S(x)

]
≥ 0, x ∈ X (6.4)

In this case, the power balance (6.2) takes the following form (using skew-symmetry
of J(x),M(x), and exploiting the nonnegativity condition (6.4))

d
dt H(x) = ∂TH

∂x (x)
(
[J(x) − R(x)] ∂H

∂x (x) + [G(x) − P(x)] u
) =

−
[

∂TH
∂x (x) uT

] [ R(x) P(x)
PT (x) S(x)

] [
∂H
∂x (x)
u

]
+ yTu ≤ uTy

(6.5)

leading to the same conclusion regarding (cyclo-)passivity as above.

Remark 6.1.3 Note that by (6.4) P = 0 whenever S = 0 (no feedthrough).

Both (6.3) and (6.5) correspond to a linear resistive structure. The extension to
nonlinear energy dissipation is given next.

Definition 6.1.4 An input-state-output port-Hamiltonian system with nonlinear
resistive structure is given as

ẋ = J(x)z − R(x, z) + g(x)u, z = ∂H
∂x (x)

y = gT (x)z
(6.6)

http://dx.doi.org/10.1007/978-3-319-49992-5_4


6.1 Input-State-Output Port-Hamiltonian Systems 115

where J(x) = −JT (x), and the resistive mapping R(x, ·) : Rn → Rn satisfies

zTR(x, z) ≥ 0, for all z ∈ Rn, x ∈ X (6.7)

Remark 6.1.5 Geometrically z = ∂H
∂x (x) ∈ T∗

xX , with T∗
xX , the co-tangent space of

X at x ∈ X , while ẋ ∈ TxX , the tangent space at x ∈ X . Hence, the resistivemapping
R is defined geometrically as a vector bundle map R : T∗X → TX .

Similarly to (6.2) we obtain

d

dt
H = ∂TH

∂x
(x)ẋ = −∂TH

∂x
(x)R

(
x,

∂H

∂x
(x)

)
+ yTu ≤ uTy, (6.8)

showing again (cyclo-)passivity. We leave the extension to systems with feedthrough
terms to the reader.

Example 6.1.6 Consider a mass–spring–damper system (massm, spring constant k,
momentum p, spring extension q, external force F) subject to ideal Coulomb friction

[
q̇
ṗ

]
=
[
0 1

−1 0

] [
kq
p
m

]
−
[

0
c sign p

m

]
+
[
0
F

]
, (6.9)

where sign is the multivalued function defined by

sign v =
⎧⎨
⎩

1 , v > 0
[−1, 1] , v = 0

−1 , v < 0
(6.10)

and c > 0 is a constant. This defines an input-state-output port-Hamiltonian system
with nonlinear resistive structure defined by the multivalued function c sign . Note
that strictly speaking, this entails a further generalization of Definition 6.1.4 since
the Coulomb friction mapping (6.10) is multivalued. The Hamiltonian H(q, p) =
1
2mp

2 + 1
2kq

2 satisfies

d

dt
H = − p

m
sign

p

m
+ F

p

m
≤ F

p

m
(6.11)

Example 6.1.7 The dynamics of a detailed-balanced mass action kinetics chemical
reaction network can be written as, see the Notes at the end of this chapter for further
information,

ẋ = −ZLExp
(
ZTLn x

x∗
)+ Sbu

y = STb Ln
x
x∗

(6.12)

where x ∈ Rn is the vector of chemical species concentrations, u is the vector of
boundary fluxes, and y is the vector of boundary chemical potentials. Furthermore,
x∗ is a thermodynamic equilibrium, Z is the complex composition matrix, Sb speci-
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fies which are the boundary chemical species, andL is a symmetric Laplacian matrix
(see Definition 4.4.6) on the graph of chemical complexes, with weights determined
by the kinetic reaction constants. Exp and Ln denote the component-wise exponen-
tial and logarithmmappings, i.e., (Exp (x))i = exp xi, (Ln (x))i = ln xi, i = 1, . . . , n.
Similarly, x

x∗ denotes component-wise division of the vector x by the vector x∗. The
Hamiltonian is given by the Gibbs’ free energy, which (up to constants) is equal to

H(x) =
n∑

i=1

xi ln
xi
x∗
i

+
n∑

i=1

(x∗
i − xi), (6.13)

corresponding to the chemical potentials zi = ∂H
∂xi

(x) = ln xi
x∗
i
. Since [299]

γTLExp γ ≥ 0 (6.14)

for all vectors γ, this defines an input-state-output port-Hamiltonian system, with
J = 0 and nonlinear resistive structure given by the mapping z �→ ZTLExp ZTz.

Finally, a linear input-state-output port-Hamiltonian system with feedthrough
terms is given by the following specialization of Definition 6.1.2

ẋ = [J − R]Qx + [G − P] u
y = [G + P]T Qx + [M + S] u

(6.15)

with quadratic Hamiltonian H(x) = 1
2x

TQx, Q = QT , and constant matrices
J,M,R,P, S satisfying J = −JT ,M = −MT and

[
R P
PT S

]
≥ 0 (6.16)

Since subtracting a constant from the Hamiltonian function H does not change the
system, the condition H ≥ 0 can be replaced by H being bounded from below.
Hence based on (6.2), (6.5), (6.8), we can summarize the characterization of
(cyclo-)passivity of input-state-output port-Hamiltonian systems as follows.

Proposition 6.1.8 Any input-state-output port-Hamiltonian system given by one of
the expressions (6.1), (6.3), (6.6), (6.15) is cyclo-passive, and passive if H is bounded
from below, respectively, Q ≥ 0. Furthermore, if the (nonlinear) resistive structure
is absent, then the system is lossless in case H is bounded from below.

In the modeling of physical systems, the port-Hamiltonian formulation directly fol-
lows from the physical structure of the system; see Sects. 6.2 and 6.3 and the Notes
at the end of this chapter for further information. On the other hand, one may still
wonder when the converse of Proposition 6.1.8 holds, i.e., when and how a passive
system can be written as a port-Hamiltonian system. In the linear case, this ques-
tion can be answered as follows. Consider the passive linear system (for simplicity
without feedthrough terms)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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ẋ = Ax + Bu
y = Cx

(6.17)

with positive-definite storage function 1
2x

TQx, i.e.,

ATQ + QA ≤ 0, BTQ = C, Q > 0 (6.18)

Now decompose AQ−1 into its skew-symmetric and symmetric part as

AQ−1 = J − R, J = −JT ,R = RT (6.19)

Then ATQ + QA ≤ 0 implies R ≥ 0, and ẋ = Ax + Bu, y = Cx, can be rewritten
into port-Hamiltonian form ẋ = (J − R)Qx + Bu, y = BTQx. The same result can be
shown to hold for linear passive systems withQ ≥ 0 under the additional assumption
kerQ ⊂ ker A. In this case, one defines F such that A = FQ, and factorizes F into
its skew-symmetric and symmetric part.

On the other hand, since in general the storage matrixQ of a passive system is not
unique, also the interconnection and resistive structure matrices J and R as obtained
in the above port-Hamiltonian formulation are not unique. Hence, if Q is not unique
then there exist essentially different port-Hamiltonian formulations of the same linear
passive system ẋ = Ax + Bu, y = Cx.

For nonlinear systems, the conversion from passive to port-Hamiltonian systems
is more subtle. For example,

ẋ = f (x) + g(x)u
y = h(x)

(6.20)

is lossless with storage function H ≥ 0 iff

∂TH
∂x (x)f (x) = 0

gT (x) ∂H
∂x (x) = h(x)

(6.21)

Nevertheless, the first equality in (6.21) does not imply that there exists a skew-
symmetric matrix J(x) such that f (x) = J(x) ∂H

∂x (x), as illustrated by the next
example.

Example 6.1.9 Consider the system

[
ẋ1
ẋ2

]
=
[

x1
−x2

]
+
[
0
1

]
u

y = x21x2

(6.22)

which is lossless with respect to the storage function H(x1, x2) = 1
2x

2
1x

2
2.

However, it is easy to see that there does not exist a 2 × 2 matrix J(x) = −JT (x),
depending smoothly on x = (x1, x2), such that
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[
x1

−x2

]
= J(x)

[
x1x22
x21x2

]

Hence, the system is not a port-Hamiltonian system with respect to H(x1, x2).

6.2 Mechanical Systems

The port-Hamiltonian formulation of standard mechanical systems directly follows
from classical mechanics. Consider as in Proposition 4.5.1, the Hamiltonian repre-
sentation of fully actuated Euler–Lagrange equations in n configuration coordinates
q = (q1, . . . , qn) given by the 2n-dimensional system

q̇ = ∂H
∂p (q, p), p = (p1, . . . , pn)

ṗ = − ∂H
∂q (q, p) + u, u = (u1, . . . , un)

y = ∂H
∂p (q, p) (= q̇), y = (y1, . . . , yn)

(6.23)

with u the vector of (generalized) external forces and y the vector of (generalized)
velocities. The state space of (6.23) with local coordinates (q, p) is called the phase
space. In most mechanical systems, the HamiltonianH(q, p) is the sum of a positive
kinetic energy and a potential energy

H(q, p) = 1

2
pTM−1(q)p + P(q) (6.24)

It was shown in Proposition 4.5.1 that along every trajectory of (6.23)

H(q(t1), p(t1)) = H(q(t0), p(t0)) +
∫ t1

t0

uT (t)y(t)dt, (6.25)

expressing that the increase in internal energy H equals the work supplied to the
system (uTy is generalized force times generalized velocity, i.e., power). Hence, the
system (6.23) is an input-state-output port-Hamiltonian system, which is lossless if
H is bounded from below. The system description (6.23) can be further generalized to

q̇ = ∂H
∂p (q, p), (q, p) = (q1, . . . , qn, p1, . . . , pn)

ṗ = − ∂H
∂q (q, p) + B(q)u, u ∈ Rm

y = BT (q) ∂H
∂p (q, p) (= BT (q)q̇), y ∈ Rm,

(6.26)
where B(q) is an input force matrix, with B(q)u denoting the generalized forces
resulting from the control inputs u ∈ Rm. If m < n, we speak of an underactuated
mechanical system. Also for (6.26) we obtain the power balance

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4


6.2 Mechanical Systems 119

dH

dt
(q(t), p(t)) = uT (t)y(t) (6.27)

A further generalization is obtained by extending (6.26) to input-state-output port-
Hamiltonian systems

ẋ = J(x) ∂H
∂x (x) + g(x)u, J(x) = −JT (x), x ∈ X

y = gT (x) ∂H
∂x (x),

(6.28)

whereX is an n̄-dimensional state space manifold, and J(x) is state-dependent skew-
symmetricmatrix. Note that (6.23) and (6.26) correspond to the full rank and constant
skew-symmetric matrix J given by

J =
[

0 In
−In 0

]
(6.29)

Models (6.28) arise, for example, by symmetry reduction of (6.23) or (6.26). A
classical example is Euler’s equations for the dynamics of the angular velocities of
a rigid body.

Example 6.2.1 (Euler’s equations; Example 4.2.4 continued) Consider a rigid body
spinning around its center of mass in the absence of gravity. In Example 4.2.4, we
already encountered Euler’s equations for the dynamics of the angular velocities.
The Hamiltonian formulation is obtained by considering the body angular momenta
p = (px, py, pz) along the three principal axes, and the Hamiltonian given by the
kinetic energy

H(p) = 1

2

(
p2x
Ix

+ p2y
Iy

+ p2z
Iz

)
, (6.30)

where Ix, Iy, Iz are the principal moments of inertia. The vector p of angular momenta
is related to the vector ω of angular velocities as p = Iω, where I is the diagonal
matrix with positive diagonal elements Ix, Iy, Iz. Euler’s equations are now given as

⎡
⎣ṗxṗy
ṗz

⎤
⎦ =

⎡
⎣ 0 −pz py

pz 0 −px
−py px 0

⎤
⎦

︸ ︷︷ ︸
J(p)

⎡
⎢⎢⎣

∂H
∂px
∂H
∂py
∂H
∂pz

⎤
⎥⎥⎦+

⎡
⎣bxby
bz

⎤
⎦ u (6.31)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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In the scalar input case, the last term bu denotes the torque around an axis with
coordinates b = (bx by bz)T , with corresponding collocated output given as

y = bx
px
Ix

+ by
py
Iy

+ bz
pz
Iz

, (6.32)

which is the velocity around the same axis (bx by bz)T .

Inmany cases (including the one obtained by symmetry reduction from the canon-
ical J given in (6.29)), the dependence of the matrix J on the state x will satisfy the
integrability conditions

n∑
l=1

[
Jlj(x)

∂Jik
∂xl

(x) + Jli(x)
∂Jkj
∂xl

(x) + Jlk(x)
∂Jji
∂xl

(x)

]
= 0, (6.33)

for i, j, k = 1, . . . , n.These integrability conditions are also referred to as the Jacobi-
identity. If these integrability conditions are met, we can construct by Darboux’s
theorem (see e.g., [347]), around any point x0 where the rank of the matrix J(x) is
constant, local coordinates

x̃ = (q, p, s) = (q1, . . . , ql, p1, . . . , pk, s1, . . . sl), (6.34)

with 2k the rank of J and n = 2k + l, such that J in these coordinates takes the form

J =
⎡
⎣ 0 Ik 0

−Ik 0 0
0 0 0

⎤
⎦ (6.35)

The coordinates (q, p, s) are also called canonical coordinates, and J satisfying
(6.33) is called a Poisson structure matrix. Otherwise, it is called an almost-Poisson
structure.

Example 6.2.2 (Example 6.2.1 continued) It can be directly checked that the skew-
symmetric matrix J(p) defined in (6.31) satisfies the Jacobi-identity (6.33). This also
follows from the fact that J(p) is the canonical Lie–Poisson structure matrix on the
dual of the Lie algebra so(3) corresponding to the configuration space SO(3) of the
rigid body; see the Notes at the end of this chapter for further information.

The rest of this section will be devoted to mechanical systems with kinematic con-
straints, which is an important class of systems in applications (for example in robot-
ics). Consider a mechanical system with n degrees of freedom, locally described by
n configuration variables

q = (q1, . . . , qn) (6.36)

Expressing the kinetic energy as 1
2 q̇

TM(q)q̇, with M(q) > 0 being the
generalized mass matrix, we define in the usual way the Lagrangian function
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L(q, q̇) = 1
2 q̇

TM(q)q̇ − P(q), where P is the potential energy. Suppose now that
there are constraints on the generalized velocities q̇, described as

AT (q)q̇ = 0, (6.37)

with A(q) an n × k matrix of rank k everywhere. This means that there are k indepen-
dent kinematic constraints. Classically, the constraints (6.37) are called holonomic
if it is possible to find new configuration coordinates q = (q1, . . . , qn) such that the
constraints are equivalently expressed as

q̇n−k+1 = q̇n−k+2 = · · · = q̇n = 0 , (6.38)

in which case it is possible to eliminate the configuration variables qn−k+1,

. . . , qn, since the kinematic constraints (6.38) are equivalent to the geometric con-
straints constraints

qn−k+1 = cn−k+1, . . . , qn = cn , (6.39)

for constants cn−k+1, . . . , cn determined by the initial conditions. Then the sys-
tem reduces to an unconstrained system in the remaining configuration coordinates
(q1, . . . , qn−k). If it is not possible to find coordinates q such that (6.38) holds (that is,
if we are not able to integrate the kinematic constraints as above), then the kinematic
constraints are called nonholonomic.

The equations of motion for the mechanical system with Lagrangian L(q, q̇) and
kinematic constraints (6.37) are given by the constrained Euler–Lagrange equations

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = A(q)λ + B(q)u, λ ∈ Rk, u ∈ Rm

AT (q)q̇ = 0, (6.40)

where B(q)u are the external forces applied to the system, for some n × m matrix
B(q), while A(q)λ are the constraint forces. The Lagrange multipliers λ(t) are
uniquely determined by the requirement that the constraints AT (q(t))q̇(t) = 0 are
satisfied for all t.

Defining as before (cf. (4.107)) the generalized momenta

p = ∂L

∂q̇
(q, q̇) = M(q)q̇, (6.41)

the constrained Euler–Lagrange equations (6.40) transform into constrained Hamil-
tonian equations

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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q̇ = ∂H

∂p
(q, p)

ṗ = −∂H

∂q
(q, p) + A(q)λ + B(q)u

y = BT (q)
∂H

∂p
(q, p) (6.42)

0 = AT (q)
∂H

∂p
(q, p)

withH(q, p) = 1
2p

TM−1(q)p + P(q) the total energy.Thus, the kinematic constraints
appear as algebraic constraints on the phase space, and the constrained state space
is given as the following subset of the phase space

Xc =
{
(q, p) | AT (q)

∂H

∂p
(q, p) = 0

}
(6.43)

The algebraic constraints AT (q) ∂H
∂p (q, p) = 0 and constraint forces A(q)λ can be

eliminated in the following way. Since rank A(q) = k, there exists locally an n ×
(n − k) matrix S(q) of rank n − k such that

AT (q)S(q) = 0 (6.44)

Now define p̃ = (p̃1, p̃2) = (p̃1, . . . , p̃n−k, p̃n−k+1, . . . , p̃n) as

p̃1 := ST (q)p, p̃1 ∈ Rn−k

p̃2 := AT (q)p, p̃2 ∈ Rk (6.45)

It is readily checked that (q, p) �→ (q, p̃1, p̃2) is a coordinate transformation. Indeed,
by (6.44) the rowsofST (q) are orthogonal to the rowsofAT (q). In the newcoordinates
the constrained system (6.42) takes the form [293], ∗ denoting unspecified elements,

⎡
⎣ q̇

˙̃p1
˙̃p2

⎤
⎦ =

⎡
⎣ 0n S(q) ∗

−ST (q)
(−pT [Si, Sj](q)

)
i,j

∗
∗ ∗ ∗

⎤
⎦
⎡
⎢⎢⎣

∂H̃
∂q

∂H̃
∂p̃1

∂H̃
∂p̃2

⎤
⎥⎥⎦+

⎡
⎣ 0

0
AT (q)A(q)

⎤
⎦λ +

⎡
⎣ 0
Bc(q)
B(q)

⎤
⎦ u (6.46)

AT (q)
∂H

∂p
= AT (q)A(q)

∂H̃

∂p̃2
= 0

with H̃(q, p̃) the Hamiltonian H expressed in the new coordinates q, p̃. Here Si
denotes the i-th column of S(q), i = 1, . . . , n − k, and [Si, Sj] is the Lie bracket of
Si and Sj, in local coordinates q given as (see e.g., [1, 233])
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[Si, Sj](q) = ∂Sj
∂q

(q)Si(q) − ∂Si
∂q

Sj(q) (6.47)

with ∂Sj
∂q , ∂Si

∂q denoting the n × n Jacobian matrices.

The constraints AT (q) ∂H
∂p (q, p) = 0 are equivalently given as ∂H̃

∂p̃2 (q, p̃) = 0, and

by non-degeneracy of the kinetic energy 1
2p

TM−1(q)p these equations can be solved
for p̃2. Since λ only influences the p̃2-dynamics, the constrained dynamics is thus
determined by the dynamics of q and p̃1 alone (which together serve as coordinates
for the constrained state space Xc), given as

[
q̇
˙̃p1
]

= Jc(q, p̃
1)

[
∂Hc
∂q (q, p̃1)
∂Hc
∂p̃1 (q, p̃1)

]
+
[

0
Bc(q)

]
u (6.48)

Here Hc(q, p̃1) equals H̃(q, p̃) with p̃2 satisfying ∂H̃
∂p̃2 (q, p̃

1, p̃2) = 0, and where the

skew-symmetricmatrix Jc(q, p̃1) is given as the left-upper part of the structurematrix
in (6.46), that is

Jc(q, p̃
1) =

[
On S(q)

−ST (q)
(−pT [Si, Sj](q)

)
i,j

]
, (6.49)

where p is expressed as function of q, p̃, with p̃2 eliminated from ∂H̃
∂p̃2 = 0. Finally,

in the coordinates q, p̃, the output map is given as

y =
[
BT
c (q) B

T
(q)
]⎡⎣ ∂H̃

∂p̃1 (q, p̃
1)

∂H̃
∂p̃2 (q, p̃

1)

⎤
⎦ (6.50)

which reduces on the constrained state space Xc to

y = BT
c (q)

∂H̃

∂p̃1
(q, p̃1) (6.51)

Summarizing, (6.48) and (6.51) define an input-state-output port-Hamiltonian sys-
tem on Xc, with Hamiltonian Hc given by the constrained total energy, and with
structure matrix Jc given by (6.49).

The skew-symmetric matrix Jc defined onXc is an almost-Poisson structure since
it does not necessarily the integrability conditions (6.33). In fact, Jc satisfies the
integrability conditions (6.33), and thus defines a Poisson structure on Xc, if and
only if the kinematic constraints (6.37) are holonomic. In fact, if the constraints are
holonomic then the coordinates s as in (6.34) can be taken equal to the “integrated
constraint functions” qn−k+1, . . . , qn of (6.39).

Example 6.2.3 (Rolling coin) Let x, y be the Cartesian coordinates of the point of
contact of a vertical coin with the plane. Furthermore, ϕ denotes the heading angle
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θ

x

y

(x, y)
ϕϕ

Fig. 6.1 The geometry of the rolling coin

of the coin on the plane, and θ the angle of Willem Alexander’s head; cf. Fig. 6.1.
With all constants set to unity, the constrained Lagrangian equations of motion are

ẍ = λ1

ÿ = λ2

θ̈ = −λ1 cosϕ − λ2 sinϕ + u1 (6.52)

ϕ̈ = u2

where u1 is the control torque about the rolling axis, and u2 the control torque about
the vertical axis. The rolling constraints are

ẋ = θ̇ cosϕ, ẏ = θ̇ sinϕ (6.53)

(rolling without slipping). The energy is H = 1
2p

2
x + 1

2p
2
y + 1

2p
2
θ + 1

2p
2
ϕ, and

the kinematic constraints can be rewritten as px = pθ cosϕ, py = pθ sinϕ. Define
according to (6.45) new p-coordinates

p1 = pϕ

p2 = pθ + px cosϕ + py sinϕ

p3 = px − pθ cosϕ (6.54)

p4 = py − pθ sinϕ

The constrained state space Xc is given by p3 = p4 = 0, and the dynamics on Xc is
computed as
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⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
θ̇
ϕ̇
ṗ1
ṗ2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 cosϕ
0 sinϕ

O4 0 1
1 0

0 0 0 −1 0 0
− cosϕ − sinϕ −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Hc
∂x
∂Hc
∂y
∂Hc
∂θ
∂Hc
∂ϕ

∂Hc
∂p1
∂Hc
∂p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.55)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

[
u1
u2

]

[
y1
y2

]
=
[
0 1
1 0

][ ∂Hc
∂p1
∂Hc
∂p2

]
=
[
1
2p2
p1

]

whereHc(x, y, θ,ϕ, p1, p2) = 1
2p

2
1 + 1

4p
2
2. (Note that

∂Hc
∂p2

= 1
2p2 = pθ.) It can be ver-

ified that the structure matrix Jc in (6.55) does not satisfy the integrability conditions,
in accordance with the fact that the rolling constraints (rolling without slipping) are
nonholonomic.

6.3 Port-Hamiltonian Models of Electromechanical
Systems

This section will contain a collection of characteristic examples of port-Hamiltonian
systems arising in electromechanical systems, illustrating theuse of port-Hamiltonian
models for multi-physics systems. In most of the examples the interaction between
the mechanical and the electrical part of the system will take place through the
Hamiltonian function, which will depend in a non-separable way on state variables
belonging to the mechanical and variables belonging to the electrical domain.

Example 6.3.1 (Capacitor microphone [230]) Consider the capacitor microphone
depicted in Fig. 6.2.

The capacitanceC(q) of the capacitor is varying as a function of the displacement
q of the right plate (with massm), which is attached to a spring (with spring constant
k > 0) and a damper (with constant d > 0), and affected by a mechanical force F
(air pressure arising from sound). Furthermore, E is a voltage source. The equations
of motion can be written as the port-Hamiltonian system
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Fig. 6.2 Capacitor
microphone

E

F

C

R

⎡
⎣ q̇

ṗ
Q̇

⎤
⎦ =

⎛
⎝
⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦−

⎡
⎣0 0 0
0 d 0
0 0 1/R

⎤
⎦
⎞
⎠
⎡
⎢⎢⎣

∂H
∂q
∂H
∂p
∂H
∂Q

⎤
⎥⎥⎦

+
⎡
⎣ 0
1
0

⎤
⎦F +

⎡
⎣ 0

0
1/R

⎤
⎦E

y1 = ∂H
∂p = q̇

y2 = 1
R

∂H
∂Q = I

(6.56)

where p is the momentum, R the resistance of the resistor, I the current through the
voltage source, and the Hamiltonian H is the total energy

H(q, p,Q) = 1

2m
p2 + 1

2
k(q − q̄)2 + 1

2C(q)
Q2, (6.57)

with q̄ denoting the rest length of the spring. Note that the electric energy 1
2C(q)Q

2

not only depends on the electric charge Q, but also on the q-variable belonging to
the mechanical part of the system. Furthermore

d

dt
H = −cq̇2 − RI2 + Fq̇ + EI ≤ Fq̇ + EI, (6.58)

with Fq̇ the mechanical power and EI the electrical power supplied to the system.
In the application as a microphone the voltage over the resistor will be used (after
amplification) as a measure for the mechanical force F. Finally, we note that the
same model can be used for an electrical micro-actuator. In this case, the system
is controlled at its electrical side in order to produce a certain desired force at its
mechanical side. This physical phenomenon of bilateral operation will be also evi-
dent in the following examples.
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Fig. 6.3 Magnetically
levitated ball

ϕ

m

Example 6.3.2 (Magnetically levitated ball) Consider the dynamics of an iron ball
that is levitated by the magnetic field of a controlled inductor as schematically
depicted in Fig. 6.3. The port-Hamiltonian description of this system (with q the
height of the ball, p the vertical momentum, and ϕ the magnetic flux linkage of the
inductor) is given as

⎡
⎣q̇ṗ

ϕ̇

⎤
⎦ =

⎡
⎣ 0 1 0

−1 0 0
0 0 −R

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∂H

∂q
∂H

∂p
∂H

∂ϕ

⎤
⎥⎥⎥⎥⎥⎥⎦

+
⎡
⎣00
1

⎤
⎦ V

I = ∂H

∂ϕ

(6.59)

Although at first instance the mechanical and the magnetic part of the system look
decoupled, they are actually coupled via the Hamiltonian

H(q, p,ϕ) = mgq + p2

2m
+ ϕ2

2L(q)
, (6.60)

where the inductance L(q) depends on the height q. In fact, the magnetic energy ϕ2

2L(q)
depends both on the flux ϕ and the mechanical variable q. As a result, the right-hand
side of the second equation (describing the evolution of the mechanical momentum
variable p) depends on the magnetic variable ϕ, and conversely the right-hand side
of the third equation (describing the evolution of the magnetic variable ϕ) depends
on the mechanical variable q.
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Example 6.3.3 (Permanent magnet synchronous motor [242]) A state vector for a
permanent magnet synchronous motor (in rotating reference (dq) frame) is defined
as

x = M

⎡
⎣ id
iq
ω

⎤
⎦ , M =

⎡
⎣Ld 0 0

0 Lq 0
0 0 j

np

⎤
⎦ (6.61)

composed of themagnetic flux linkages andmechanical momentum (with id, iq being
the currents, and ω the angular velocity), Ld,Lq stator inductances, j the moment of
inertia, and np the number of pole pairs. The Hamiltonian H(x) is given as H(x) =
1

2
xTM−1x. This leads to a port-Hamiltonian formulation with J(x),R(x) and g(x)

determined as

J(x) =
⎡
⎣ 0 L0x3 0

−L0x3 0 −�q0

0 �q0 0

⎤
⎦ ,

R(x) =
⎡
⎣RS 0 0

0 RS 0
0 0 0

⎤
⎦ , g(x) =

⎡
⎣ 1 0 0
0 1 0
0 0 − 1

np

⎤
⎦ ,

(6.62)

with RS the stator winding resistance, �q0 a constant term due to interaction of the
permanent magnet and the magnetic material in the stator, and L0 := Ldnp/j. The

three inputs are the stator voltages
(
vd, vq

)T
and the (constant) load torque. Outputs

are id, iq, and ω. The system can also operate as a dynamo, converting mechanical
power into electrical power.

Example 6.3.4 (Synchronous machine) The standard eight-dimensional model for
the synchronous machine, as described, e.g., in [177], can be written in port-
Hamiltonian form as (see [98] for details)

⎡
⎢⎢⎣

ψ̇s

ψ̇r

ṗ
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−Rs 033 031 031
033 −Rr 031 031
013 013 −d −1
013 013 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂H
∂ψs

∂H
∂ψr

∂H
∂p
∂H
∂θ

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎣
I3 031 031
033 e1 031
013 0 1
013 0 0

⎤
⎥⎥⎦
⎡
⎣Vs

Vf

τ

⎤
⎦

⎡
⎣IsIf

ω

⎤
⎦ =

⎡
⎣ I3 033 031 031
013 eT1 0 0
013 013 1 0

⎤
⎦

⎡
⎢⎢⎢⎢⎣

∂H
∂ψs

∂H
∂ψr

∂H
∂p
∂H
∂θ

⎤
⎥⎥⎥⎥⎦ ,

(6.63)
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where 0lk denotes the l × k zero matrix, I3 denotes the 3 × 3 identity matrix, and
e1 is the first basis vector of R3. This defines a port-Hamiltonian input-state-output
system with Poisson structure matrix J(x) given by the constant matrix

J =
⎡
⎣066 062

026
0 −1
1 0

⎤
⎦ , (6.64)

and resistive structure matrix R(x), which is also constant, having diagonal blocks

Rs =
⎡
⎣rs 0 0
0 rs 0
0 0 rs

⎤
⎦ , Rr =

⎡
⎣rf 0 0
0 rkd 0
0 0 rkq

⎤
⎦ , d, 0, (6.65)

denoting, respectively, the stator resistances, rotor resistances, andmechanical fric-
tion. The state variables x of the synchronous machine comprise of

• ψs ∈ R
3, the stator fluxes,

• ψr ∈ R
3, the rotor fluxes: the first one corresponding to the field winding and the

remaining two to the damper windings,
• p, the angular momentum of the rotor,
• θ, the angle of the rotor.

Moreover,Vs ∈ R
3, Is ∈ R

3 are the three-phase stator terminal voltages and currents,
Vf , If are the rotor field winding voltage and current, and τ ,ω are the mechanical
torque and angular velocity.

The synchronous machine is designed depending on two possible modes of oper-
ation: synchronous generator or synchronous motor. In the first case, mechanical
power is converted to electrical power (supplied to an electrical transmission net-
work); see Fig. 6.4 for a schematic view. Conversely, in the synchronous motor case
electrical power is drawn from the power grid in order to deliver mechanical power.

The Hamiltonian H (total stored energy of the synchronous machine) is the sum
of the magnetic energy of the machine and the kinetic energy of the rotating rotor,
given as the sum of the two nonnegative terms

Fig. 6.4 The state and port
variables of the synchronous
generator

Synchronous Generator

θ ψs

p ψr

excitation
system

ω

τ

Vs

Is

Vf If

mechanical
power

electrical
power
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H(ψs,ψr, p, θ) = 1
2

[
ψT
s ψT

r

]
L−1(θ)

[
ψs

ψr

]
+ 1

2Jr
p2

= magnetic energy Hm + kinetic energy Hk,

(6.66)

where Jr is the rotational inertia of the rotor, and L(θ) is an 6 × 6 inductancematrix.
In the round rotor case (no saliency; cf. [177, 192])

L(θ) =
[

Lss Lsr(θ)
LT
sr(θ) Lrr

]
(6.67)

where

Lss=
⎡
⎣ Laa −Lab −Lab

−Lab Laa −Lab
−Lab −Lab Laa

⎤
⎦ , Lrr =

⎡
⎣Lffd Lakd 0
Lakd Lkkd 0
0 0 Lkkq

⎤
⎦ (6.68)

while

Lsr(θ) =
⎡
⎣ cos θ cos θ − sin θ
cos(θ − 2π

3 ) cos(θ − 2π
3 ) − sin(θ − 2π

3 )

cos(θ + 2π
3 ) cos(θ + 2π

3 ) − sin(θ + 2π
3 )

⎤
⎦×

⎡
⎣Lafd 0 0

0 Lakd 0
0 0 Lakq

⎤
⎦

(6.69)

A crucial feature of the magnetic energy term Hm in the Hamiltonian H is its depen-
dency on the mechanical rotor angle θ; see the formula (6.69) for Lsr(θ). This depen-
dence is responsible for the interaction between the mechanical domain of the gen-
erator (the mechanical motion of the rotor) and the electromagnetic domain (the
dynamics of the magnetic fields in the rotor and stator), and thus for the functioning
of the synchronous machine as an energy-conversion device, transforming mechan-
ical power into electrical power, or conversely (Fig. 6.4).

The synchronous machine is connected to its environment by three types of ports;
see Fig. 6.4. In the case of operation as a synchronous generator, the scalarmechani-
cal portwith power variables τ ,ω is to be interconnected to a prime mover, such as a

Fig. 6.5 DC motor

_

V

I

J

b

R L

K

ω

τ

+
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turbine. This port is also used for control purposes, e.g., via so-called droop control.
Second, there are three stator terminal ports, with vectors of power variables Vs, Is.
Third, there is the port with scalar power variables Vf , If , which is responsible for
the magnetization of the rotor, and which is controlled by an excitation system.

Example 6.3.5 (DC motor) The system depicted in Fig. 6.5 consists of five ideal
modeling subsystems: an inductorLwith stateϕ (flux), a rotational inertia J with state
p (angular momentum), a resistor R and friction b, and a gyrator K . The Hamiltonian
(corresponding to the linear inductor and inertia) reads as H(p,ϕ) = 1

2Lϕ2 + 1
2J p

2.
The linear resistive relations are VR = −RI, τd = −bω, withR, b > 0 and τd a damp-
ing torque. The equations of the gyrator (convertingmagnetic power intomechanical,
and conversely) are

VK = −Kω, τ = KI (6.70)

withK the gyrator constant. The subsystems are interconnectedby the equationsVL +
VR + VK + V = 0 (and equal currents), as well as τJ + τd + τ = 0 (with common
angular velocity), leading to the port-Hamiltonian input-state-output system

[
ϕ̇
ṗ

]
=
[−R −K
K −b

]⎡⎢⎣
ϕ

L
p

J

⎤
⎥⎦+

[
1
0

]
V

I = [1 0
]
⎡
⎢⎣

ϕ

L
p

J

⎤
⎥⎦ .

(6.71)

Note that, as in the case of the synchronous machine, the system can operate in two
modes: either as a motor (converting electrical power into mechanical power) or as a
dynamo (converting rotational motion and mechanical power into electrical current
and power).

6.4 Properties of Port-Hamiltonian Systems

A crucial property of a port-Hamiltonian system is cyclo-passivity, and passivity if
the Hamiltonian satisfies H ≥ 0. Apart from this, the port-Hamiltonian formulation
also reveals other structural properties. The first one is the existence of conserved
quantities, which are determined by the structure matrices J(x),R(x).

Definition 6.4.1 ACasimir function for an input-state-output port-Hamiltonian sys-
tem (6.1) or (6.3) is any function C : X → R satisfying

∂TC

∂x
(x) [J(x) − R(x)] = 0, x ∈ X (6.72)
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It follows that for u = 0

d

dt
C = ∂TC

∂x
(x) [J(x) − R(x)]

∂H

∂x
(x) = 0, (6.73)

and thus a Casimir function is a conserved quantity of the system for u = 0, inde-
pendently of the Hamiltonian H. Note furthermore that if C1, . . . ,Cr are Casimirs,
then also the composed function �(C1, . . . ,Cr) is a Casimir for any � : Rr → R.
Finally, the existence of Casimirs C1, . . . ,Cr entails the following invariance prop-
erty of the dynamics: any subset

{x | C1(x) = c1, . . . ,Cr(x) = cr} (6.74)

for arbitrary constants c1, . . . , cr is an invariant subset of the dynamics.

Proposition 6.4.2 C : X → R is a Casimir function for (6.1) or (6.3) if and only if

∂TC

∂x
(x)J(x) = 0 and

∂TC

∂x
(x)R(x) = 0, x ∈ X (6.75)

Proof The “if” implication is obvious. For the converse we note that (6.72) implies
by skew-symmetry of J(x)

0 = ∂TC

∂x
(x) [J(x) − R(x)]

∂C

∂x
(x) = −∂TC

∂x
(x)R(x)

∂C

∂x
(x), (6.76)

and therefore, in view of R(x) ≥ 0, ∂TC
∂x (x)R(x) = 0, and thus also ∂TC

∂x (x)
J(x) = 0. �

Hence, the vectors ∂C
∂x (x) of partial derivatives of the Casimirs C are contained in the

intersection of the kernels of the matrices J(x) and R(x) for any x ∈ X , implying that
the maximal number of independent number of Casimirs is always bounded from
above by dim (ker J(x) ∩ ker R(x)). Equality, however, need not be true because of
lack of integrability of J(x) and/or R(x); see Example 6.4.4 below and the Notes at
the end of this chapter.

Example 6.4.3 (Example 6.2.1 continued) Consider Euler’s equations for the angu-
lar momenta of a rigid body, with J being given by (6.31) and R = 0. It follows that
C(p1, p2, p3) = p2x + p2y + p2z (the squared total angular momentum) is a Casimir
function.

Example 6.4.4 (Example 6.2.3 continued) The pde’s (6.72) for the existence of a
Casimir function take the form

∂C
∂p1

= ∂C
∂p2

= ∂C
∂φ

= 0

∂C
∂x cosφ + ∂C

∂y sin φ + ∂C
∂θ

= 0
(6.77)
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This can be seen not to possess a non-trivial solution C, due to the non-holonomicity
of the kinematic constraints.

The definition of Casimir C for (6.1) can be further strengthened by requiring that
d
dt C = 0 for all input values u. This leads to the stronger condition

∂TC

∂x
(x)J(x) = 0,

∂TC

∂x
(x)R(x) = 0,

∂TC

∂x
(x)g(x) = 0, x ∈ X (6.78)

A second property of the dynamics of port-Hamiltonian systems, which is closely
connected to the structure matrix J(x) and its integrability conditions (6.33) is
volume-preservation. Indeed, consider the case R(x) = 0, and let us assume that
(6.33) is satisfied with rank J(x) = dimX = n, implying the existence of local coor-
dinates (q, p) such that (see (6.35))

J =
[

0 Ik
−Ik 0

]
(6.79)

with n = 2k. Define the divergence of any set of differential equations

ẋi = Xi(x1, . . . , xn), i = 1, . . . , n, (6.80)

in a set of local coordinates x1, . . . , xn as

div(X)(x) =
n∑

i=1

∂Xi

∂xi
(x) (6.81)

Denote the solution trajectories of (6.80) from x(0) = x0 by x(t; x0) = Xt(x0), t ≥ 0.
Then it is a standard fact that the maps Xt : Rn → Rn are volume-preserving, that
is,

det

[
∂Xt

∂x
(x)

]
= 1, for all x, t ≥ 0, (6.82)

if and only if div(X)(x) = 0 for all x. Returning to the Hamiltonian dynamics

ẋ = J(x)
∂H

∂x
(x), (6.83)

with J given by (6.79) it is easily verified that the divergence in the (q, p)-coordinates
is everywhere zero, and hence the solutions of (6.83) preserve the standard volume
in (q, p)-space. In case rank J(x) < dimX and there exist local coordinates (q, p, s)
as in (6.35), then the divergence is still zero, and it follows that the Hamiltonian
dynamics (6.83) preserves the standard volume in (q, p, s)-space, with the additional
property that on any (invariant) level set
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Fig. 6.6 LC-circuit
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s1 = c1, . . . , s� = cl (6.84)

the volume in (q, p)-coordinates is preserved.

Example 6.4.5 (LC-circuit) Consider the LC-circuit (see Fig. 6.6) consisting of two
inductors with magnetic energies H1(ϕ1),H2(ϕ2) (ϕ1 and ϕ2 being the magnetic
flux linkages), and a capacitor with electric energy H3(Q) (Q being the charge). If
the elements are linear then H1(ϕ1) = 1

2L1
ϕ2
1, H2(ϕ2) = 1

2L2
ϕ2
2 and H3(Q) = 1

2CQ
2.

Furthermore, V = u denotes a voltage source. Using Kirchhoff’s current and voltage
laws one immediately arrives at the port-Hamiltonian system formulation

⎡
⎣ Q̇

ϕ̇1

ϕ̇2

⎤
⎦ =

⎡
⎣ 0 1 −1

−1 0 0
1 0 0

⎤
⎦

︸ ︷︷ ︸
J

⎡
⎢⎢⎣

∂H
∂Q
∂H
∂ϕ1

∂H
∂ϕ2

⎤
⎥⎥⎦+

⎡
⎣0
1
0

⎤
⎦ u (6.85)

y = ∂H

∂ϕ1
(= current through first inductor)

with H(Q,ϕ1,ϕ2) := H1(ϕ1) + H2(ϕ2) + H3(Q) the total energy. Clearly, the
matrix J is skew-symmetric, and since J is constant it trivially satisfies (6.33). The
quantityϕ1 + ϕ2 (total flux linkage) can be seen to be aCasimir function. The volume
in (Q,ϕ1,ϕ2)-space is preserved.

Finally, let us comment on the implications of the port-Hamiltonian structure
for the use of Brockett’s necessary condition for asymptotic stabilizability. Loosely
speaking, Brockett’s necessary condition [51] tells us that a necessary condition
for asymptotic stabilizability of a nonlinear system ẋ = f (x, u), f (0, 0) = 0, using
continuous state feedback is that the image of the map (x, u) �→ f (x, u), for x and
u arbitrarily close to zero, should contain a neighborhood of the origin. Applica-
tion to input-state-output port-Hamiltonian systems leads to the following necessary
condition for asymptotic stabilizability.

Proposition 6.4.6 Consider the input-state-output port-Hamiltonian system (6.3)
with equilibrium x0. A necessary condition for asymptotic stabilizability around x0
is that for every ε > 0
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∪{x;||x−x0||<ε} (im [J(x) − R(x)] + im [G(x) − P(x)]) = Rn (6.86)

As an application of this result, we note that the port-Hamiltonian system (6.48)
arising from a mechanical system with kinematic constraints does never satisfy the
necessary condition (6.86). Indeed, by the specific forms of J , R = 0, and g, see
(6.48) and (6.49),

im [J(x) − R(x)] + im [G(x) − P(x)] ⊂ im

[
S(q)
0

]
+ im

[
0

In−k

]
(6.87)

where rank S(q) = n − k, q ∈ Q. After possibly reordering the rows of S(q)wemay
without loss of generality assume that

S(q) =
[
S1(q)
S2(q)

]
(6.88)

with the (n − k) × (n − k) matrix S2(q) of full rank n − k in a neighborhood of the
equilibrium position vector of interest, and therefore the rows of S1 depending on the

rows of S2. It follows that vectors of the form

[∗
0

]
, with 0 the (n − k)-dimensional

zero-vector, can not be in the image of S(q), and hence not in im [J(x) − R(x)] +
im [G(x) − P(x)]. Hence,
Corollary 6.4.7 Mechanical systems with kinematic constraints (6.48) are not
asymptotically stabilizable using continuous feedback.

Forholonomic kinematic constraints this is not surprising, since in this casewe should
first eliminate the conserved quantities q̄n−k+1. . . . , q̄n as in (6.39) from the system
(6.48). However, since for nonholonomic kinematic constraints such an elimination
is not possible, the above observation indeed entails an important obstruction for
asymptotic stabilization2 of mechanical systems with nonholonomic constraints.

For a further discussion of the dynamical properties of port-Hamiltonian systems,
we refer to the extensive literature on this topic; see the references quoted in the
Notes at the end of this chapter. Still another use of the port-Hamiltonian structure
will be provided separately in the next section.

6.5 Shifted Passivity of Port-Hamiltonian Systems

In many cases of interest, the desired set-point of a port-Hamiltonian system is not
equal to the minimum of the Hamiltonian function H (an equilibrium of the system
for zero-input), but instead is a steady-state value corresponding to a nonzero constant

2However, asymptotic feedback stabilization using discontinuous or time-varying feedback may
still be possible.
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input. (We already encountered the same scenario in Chap.4 in the context of passive
systems.) This motivates the following developments.

Proposition 6.5.1 Consider an input-state-output port-Hamiltonian system with
feedthrough terms (6.3), together with a constant input ū with corresponding steady-
state x̄ determined by

0 = [J(x̄) − R(x̄)]
∂H

∂x
(x̄) + [G(x̄) − P(x̄)] ū (6.89)

Denote

ȳ = [G(x̄) + P(x̄)]T
∂H

∂x
(x̄) + [M(x̄) + S(x̄)] ū (6.90)

Suppose we can find coordinates x in which the system matrices J(x),M(x),
R(x),P(x), S(x),G(x) are all constant. Then the system can be rewritten as

ẋ = [J − R] ∂Ĥx̄
∂x (x) + [G − P] (u − ū)

y − ȳ = [G + P]T ∂Ĥx̄
∂x (x) + [M + S] (u − ū)

(6.91)

with respect to the shifted Hamiltonian3 defined as

Ĥx̄(x) := H(x) − ∂TH

∂x
(x̄)(x − x̄) − H(x̄) (6.92)

If H is convex in the coordinates x, then Ĥx̄ has a minimum at x = x̄ (with value 0),
and the port-Hamiltonian system is passive with respect to the shifted supply rate
s(u, y) = (u − ū)T (y − ȳ), with storage function Ĥx̄.

Proof Observe that
∂Ĥx̄

∂x
(x) = ∂H

∂x
(x) − ∂H

∂x
(x̄) (6.93)

Adopting the shorthand notation z = ∂H
∂x (x) and z̄ = ∂H

∂x (x̄), we obtain

d
dt Ĥx̄ = (z − z̄)T [(J − R)z + (G − P)u]
= (z − z̄)T [(J − R)(z − z̄) + (G − P)(u − ū)]

= − [(z − z̄)T (u − ū)T
] [ R P

PT S

] [
(z − z̄)
(u − ū)

]
+ (u − ū)T (y − ȳ)

≤ (u − ū)T (y − ȳ),

(6.94)

showing passivity with respect to the shifted supply rate (u − ū)T (y − ȳ). Finally,
Ĥx̄(x̄) = 0 and convexity of H is equivalent to

3Note that the function Ĥx̄ admits the following geometric interpretation. Consider the surface in
Rn+1 defined by H , and the tangent plane at the point (x̄,H(x̄) ∈ Rn to this surface. Then Ĥx̄(x) is
the vertical distance above the point x ∈ Rn from this tangent plane to the surface.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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H(x) ≥ ∂TH

∂x
(x̄)(x − x̄) + H(x̄), for all x, x̄, (6.95)

implying that Ĥx̄(x) ≥ 0, x ∈ X . �
Recall from Chap.4, cf. (4.159), that the property of being passive with respect to the
shifted supply rate (u − ū)T (y − ȳ) is referred to as shifted passivity. It follows from
Proposition 6.5.1 that with constant system matrices J,M,R,P, S,G and a convex
Hamiltonian H the input-state-output port-Hamiltonian system with feedthrough
term is shifted passive with respect to any constant ū for which there exists a steady-
state x̄ (and corresponding ȳ).

Remark 6.5.2 The function Ĥx̄(x), regarded as a function of x and x̄, is known in
convex analysis as the Bregman divergence or Bregman distance. It also appears
as the availability function in thermodynamics (dating back to the classical work
of Gibbs [113]), and was introduced in the present context in [146]. Note that the
definition of Ĥx̄ (as well as the notion of a convex function) depends on the choice
of coordinates x for the state space X .

Example 6.5.3 Consider themodel of a power network formulated in Example 4.4.4;
see (4.87). Identifying the Hamiltonian with the storage function already defined4 in
(4.88)

H(q, p) = 1

2
pTJ−1p −

M∑
j=1

γj cos qj, (6.96)

the system takes the port-Hamiltonian form

[
q̇
ṗ

]
=
[

0 DT

−D −A

][ ∂H
∂q (q, p)
∂H
∂p (q, p)

]
+
[
0
u

]

y = ∂H
∂p (q, p)

(6.97)

The steady-state (q̄, p̄) corresponding to constant input ū is determined by

0 = DT ∂H
∂p (q̄, p̄)

0 = D ∂H
∂q (q̄, p̄) + A ∂H

∂p (q̄, p̄) + ū
(6.98)

Assuming the graph to be connected the first equation leads to ∂H
∂p (q̄, p̄) = 1ω∗, with

ω∗ ∈ R a common frequency deviation. Furthermore, by premultiplying the second
equation by the row-vector 1T of all ones,

0 = ω∗
N∑
i=1

Ai +
N∑
i=1

ūi, p̄ = J1ω∗, (6.99)

4The matrix J in the Hamiltonian refers to the inertia of the generators; not to be confused with the
Poisson structure.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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determining ω∗, and thus p̄, as a function of the total generated and consumed power∑
ūi. Finally, the steady-state vector q̄ of phase angle differences is determined by

0 = D�Sin q̄ − A1

∑N
i=1 ūi∑N
i=1 Ai

+ ū (6.100)

(Note that by boundedness of the mapping Sin this does not have a solution for large
ū.) Defining the shifted Hamiltonian as in (6.92) yields

Ĥ(q̄,p̄)(q, p) = 1
2 (p − p̄)TJ−1(p − p̄) −∑M

j=1γj cos qj
−∑M

j=1γj sin q̄j(qj − q̄j) +∑M
j=1γj cos q̄j

(6.101)

It follows that the system is shifted passive with respect to the shifted supply rate
(u − ū)T (y − ȳ) and storage function Ĥ(q̄,p̄), with ȳ = ∂H

∂p (q̄, p̄) = J−1p̄ = 1ω∗.

If no coordinates exist in which the matrices J(x),M(x),R(x),P(x), S(x),G(x) are
all constant, the analysis for nonzero ū becomes much harder. Define the combined
interconnection and resistive structure matrix

K(x) :=
[ −J(x) + R(x) −G(x) + P(x)
GT (x) + PT (x) M(x) + S(x)

]
(6.102)

Proposition 6.5.4 Consider an input-state-output port-Hamiltonian system with
feedthrough terms (6.3), and a steady-state triple ū, x̄, ȳ. Then the system is shifted
passive with storage function Ĥx̄ if5

[
∂TH
∂x (x) − ∂TH

∂x (x̄) uT − ūT
](

K(x)

[
∂H
∂x (x)
u

]
− K(x̄)

[
∂H
∂x (x̄)
ū

])
≥ 0 (6.103)

for all x, u.

Proof By direct computation of d
dt Ĥx̄; see [97]. �

Furthermore, shifting with respect to constant inputs ū can still be done if the input
matrix g(x) of the port-Hamiltonian system (6.1) satisfies the following integrability
conditionwith respect to the combined geometric structure J(x) − R(x). Assume that
for each j-th column gj(x) of the inputmatrix g(x) there exists a functionCj : X → R
such that

gj(x) = − [J(x) − R(x)]
∂Fj

∂x
(x), j = 1, . . . ,m (6.104)

Then for any constant ū, the dynamics of the port-Hamiltonian system (6.1) can be
rewritten as

5SinceK(x) + KT (x) ≥ 0 the condition (6.103) is automatically satisfied in caseK does not depend
on x.
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ẋ = [J(x) − R(x)]
∂H̃

∂x
(x) + g(x)(u − ū), (6.105)

with

H̃(x) := H(x) −
m∑
j=1

Fj(x)ūj (6.106)

(In case of constant matrices J,R, g one verifies that H̃(x) = Ĥx̄, where x̄ is the
steady-state corresponding to ū.) However, in general this does not imply passivity
with respect to the shifted supply rate (u − ū)T (y − ȳ), with ȳ the steady-state output
value. Nevertheless, the condition is useful especially in case part of the inputs can be
considered as constant “disturbances” ū, with remaining other inputs v corresponding
to the dynamics

ẋ = [J(x) − R(x)]
∂H

∂x
(x) + b(x)v + g(x)ū (6.107)

for some input matrix b(x). In this case, satisfaction of (6.104) allows one to rewrite
the system as

ẋ = [J(x) − R(x)]
∂H̃

∂x
(x) + b(x)v (6.108)

which is port-Hamiltonian with respect to the inputs v and corresponding outputs
z = bT (x) ∂H̃

∂x (x).
Finally, let us come back to the notion of the steady-state input–output relation as

defined in Chap.4, cf. (4.31). In the port-Hamiltonian case, one obtains the following
result

Proposition 6.5.5 Consider an input-state-output port-Hamiltonian system with
feedthrough terms (6.3). Its steady-state input–output relation is given as

{(ū, ȳ) | ∃x̄ s.t. 0 = [J(x̄) − R(x̄)] ∂H
∂x (x̄) + [G(x̄) − P(x̄)]ū,

ȳ = [G(x̄) + P(x̄)]T ∂H
∂x (x̄) + [M(x̄) + S(x̄)]ū } (6.109)

In particular, if [J(x̄) − R(x̄)] is invertible, the steady-state input–output relation is
given as the graph of the mapping (from ū to ȳ)

ȳ = −[G(x̄) + P(x̄)]T (J(x̄) − R(x̄))−1 [G(x̄) − P(x̄)]ū + [M(x̄) + S(x̄)]ū
(6.110)

which is linear in case the matrices J,R,G,P,M, S are all constant.

Note that the matrix in (6.110) is equal to the Schur complement of the matrix K(x̄)
defined in (6.102) with respect to its left-upper block. Since the symmetric part of
K(x̄) is ≥ 0, this Schur complement inherits the same positivity property.

Proposition 6.5.5 can be extended to input-state-output port-Hamiltonian systems
with nonlinear resistive structure as in Definition 6.1.4. For example, the steady-state
input–output relation corresponding to the port-Hamiltonian system

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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ẋ = −R(z) + u, y = z, z = ∂H

∂x
(x) (6.111)

with the nonlinear resistive mapping R satisfying (6.7), is given by

{(ū, ȳ) | ū = R(ȳ)} (6.112)

provided for each ū there exists a steady-state x̄ such that ū = R( ∂H
∂x (x̄)).

6.6 Dirac Structures

In Chap.3, the definition of dissipativitywas extended to differential-algebraic equa-
tion (DAE) systems F(ẋ, x, w) = 0, withw denoting the vector of external variables
(inputs and outputs).

Similarly, in this and the next section we show how the definition of input-state-
output port-Hamiltonian systems can be extended to the DAE case. This extension
is crucial from a modeling point of view, since first principles modeling of physical
systems often leads to DAE systems. This stems from the fact that in many modeling
approaches the system under consideration is naturally regarded as obtained from
interconnecting simpler subsystems. These interconnections often give rise to alge-
braic constraints between the state space variables of the subsystems; thus leading
to DAE systems.

The key to define port-Hamiltonian DAE systems is the geometric notion of a
Dirac structure, formalizing the concept of a power-conserving interconnection, and
generalizing the notion of an (almost-)Poisson structure matrix J(x) as encountered
before.

Let us return to the basic setting of passivity (see Chap.2), starting with a finite-
dimensional linear space and its dual, with the duality product defining power. Thus,
let F be an �-dimensional linear space, and denote its dual (the space of linear
functions on F) by E := F∗. We call F the space of flows f , and E the space of
efforts e. On the product space F × E , power is defined by

< e | f >, (f , e) ∈ F × E, (6.113)

where < e | f > denotes the duality product, that is, the linear function e ∈ E = F∗
acting on f ∈ F .

Remark 6.6.1 Recall from Chap.2 that ifF is endowed with an inner-product struc-
ture <,>, then E = F∗ can be identified with F in such a way that < e | f >=
< e, f >, f ∈ F , e ∈ E � F .

Example 6.6.2 LetF be the space of generalized velocities, and E = F∗ the space of
generalized forces, then< e | f > is mechanical power. Similarly, letF be the space
of currents, and E = F∗ be the space of voltages, then < e | f > is electrical power.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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In multi-body systems one considers the space of twists F = se(3) (the Lie algebra
of the matrix special Euclidian group SE(3)), with E = F∗ = se∗(3) the space of
wrenches.

As already introduced in Sect. 2.4, there exists on F × E a canonically defined sym-
metric bilinear form

 (f1, e1), (f2, e2) �:=< e1 | f2 > + < e2 | f1 > (6.114)

for fi ∈ F , ei ∈ E, i = 1, 2. Now consider a subspace

D ⊂ F × E (6.115)

and its orthogonal companionD⊥⊥ with respect to the bilinear form , � onF × E ,
defined as

D⊥⊥ = {(f , e) ∈ F × E | (f , e), (f̃ , ẽ) �= 0 for all (f̃ , ẽ) ∈ D} (6.116)

Clearly, if D has dimension d, then the subspace D⊥⊥ has dimension 2 dimF − d
(since  , � is a non-degenerate form on F × E , and furthermore dimF × E =
2 dimF).

Definition 6.6.3 A subspace D ⊂ F × E is a (constant) Dirac structure if

D = D⊥⊥ (6.117)

It immediately follows that the dimension of any Dirac structureD is equal to dimF .
Furthermore, let (f , e) ∈ D = D⊥⊥. Then by (6.114)

0 = (f , e), (f , e) �= 2 < e | f >= 0 (6.118)

Hence, a Dirac structureD defines a power-conserving relation between the variables
(f , e) ∈ F × E . Conversely, we obtain
Proposition 6.6.4 Let F be a finite-dimensional linear space. Then D ⊂ F × E is
a Dirac structure if and only if < e | f >= 0 for all (f , e) ∈ D, and D is a maximal
subspace with this property. In particular, for any subspace D ⊂ F × E satisfying
< e | f >= 0 for all (f , e) ∈ D we have dimD ≤ dimF , while D satisfying < e |
f >= 0 for all (f , e) ∈ D is a Dirac structure if and only if dimD = dimF .

Proof First, consider any subspace D ⊂ F × E satisfying < e | f >= 0 for all
(f , e) ∈ D. Let (f1, e1), (f2, e2) ∈ D. Then also (f1 + f2, e1 + e2) ∈ D, and thus

0 = < e1 + e2 | f1 + f2 > =
< e1 | f2 > + < e2 | f1 > + < e1 | f1 > + < e2 | f2 > =
< e1 | f2 > + < e2 | f1 > =  (f1, e1), (f2, e2) �

(6.119)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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Hence, D ⊂ D⊥⊥. In view of (6.118), we have thus proved that < e | f >= 0 for
all (f , e) ∈ D if and only if D ⊂ D⊥⊥. Furthermore, D ⊂ D⊥⊥ implies dimD ≤
dimD⊥⊥ = 2 dimF − dimD, and hence dimD ≤ dimF . Conversely, if dimD =
dimF thenD = D⊥⊥, andD is a Dirac structure. Hence, we have proved the second
claim, and the “only if” direction of the first claim using (6.118). For the “if” direction
of the first claim we use again that< e | f >= 0 for all (f , e) ∈ D impliesD ⊂ D⊥⊥.
Now suppose that D � D⊥⊥. Then we can non-trivially extend D to a subspace D′
such that D′ ⊂ D′⊥⊥, and thus D is not maximal. �

Remark 6.6.5 The condition dim D = dimF is intimately related to the statement
that a physical interconnection can not determine at the same time both the flow and
effort (e.g., current and voltage, or velocity and force).

Constant Dirac structures admit different matrix representations.

Proposition 6.6.6 Let D ⊂ F × E , with dim F = �, be a constant Dirac structure.
Take linear coordinates for F and dual coordinates for E = F∗, resulting in F �
Rm � E . Then D can be represented in any of the following ways.

1. (Kernel and Image representation)

D = {(f , e) ∈ F × E | Ff + Ee = 0} (6.120)

for � × � matrices6 F and E satisfying

(i) EFT + FET = 0

(ii) rank [F...E] = �
(6.121)

Equivalently in image representation,

D = {(f , e) ∈ F × E | ∃λ ∈ R� s.t. f = ETλ, e = FTλ} (6.122)

Conversely, for any � × � matrices F and E satisfying (6.121), the subspaces
(6.120) and (6.122) are Dirac structures.

2. (Constrained input–output representation)

D = {(f , e) ∈ F × E | ∃λ s.t. f = Je + Gλ, GTe = 0} (6.123)

for an � × � skew-symmetric matrix J, and a matrix G such that im G = {f |
(f , 0) ∈ D}. Furthermore, ker J = {e | (0, e) ∈ D}. Conversely, for any G and
skew-symmetric J the subspace (6.123) is a Dirac structure.

3. (Hybrid input–output representation).
Let D be given as in (6.120). Suppose rank F = �1 ≤ �. Select �1 independent

6We may also allow F and E to be l′ × l matrices with l′ ≥ l, and satisfying (6.121). This is called
a relaxed kernel representation.
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columnsofF, andgroup them into amatrixF1.Write (possibly after permutations)

F = [F1
...F2], and correspondingly E = [E1

...E2], f =
[
f 1

f 2

]
, e =

[
e1

e2

]
. Then the

matrix [F1
...E2] can be shown to be invertible, and

D =
{[

f 1

f 2

]
,

[
e1

e2

]
|
[
f 1

e2

]
= J

[
e1

f 2

]}
(6.124)

where J := −[F1
...E2]−1[F2

...E1] is skew-symmetric. Conversely, for any skew-
symmetric J the subspace (6.124) is a Dirac structure.

4. (Canonical coordinate representation)
There exist linear coordinates (q, p, r, s) forF such that in these coordinates and
dual coordinates for E = F∗, (f , e) = (fq, fp, fr, fs, eq, ep, er, es) ∈ D if and only
if

fq = ep, fp = −eq
fr = 0, es = 0

(6.125)

Proof (1) It is directly checked that (6.122) defines a Dirac structure. Since by

(6.121) im

[
ET

FT

]
= ker [F...E], also (6.120) defines the same Dirac structure. Con-

versely, any �-dimensional subspace D can be written as D = im

[
ET

FT

]
for some

� × � matrices F,E satisfying rank [F...E] = �. If D is a Dirac structure then 0 =
eT f = (FTλ)TETλ = λTFETλ for allλ ∈ R�. This is equivalent toEFT + FET = 0.
(2)ConsiderD given by (6.123) with J = −JT . Then eT f = eT (Je + Gλ) = eTJe +
eTGλ = (GTe)Tλ = 0. Hence, D ⊂ D⊥⊥. Let now (f̃ , ẽ) be such that 0 =
(f , e), (f̃ , ẽ) � for all (f , e) ∈ D, i.e., f = Je + Gλ,GTe = 0. Then

0 = eT f̃ + ẽT f = eT f̃ + ẽT (Je + Gλ)

for all λ and e with GTe = 0. First take e = 0. Then 0 = ẽTGλ for all λ, implying
thatGT ẽ = 0.Hence, 0 = eT f̃ + ẽT Je = eT (f̃ − Jẽ) for all ewithGTe = 0, implying
that f̃ = Jẽ + Gλ̃, for some λ̃. ThusD⊥⊥ ⊂ D, and thereforeD⊥⊥ = D. On the other
hand, take any Dirac structure D ⊂ F × E . Define the following subspace of E

ED = {e ∈ E | ∃f s.t. (f , e) ∈ D} (6.126)

It can be checked that

E⊥
D = {f ∈ F | (f , 0) ∈ D}, (6.127)

where⊥ denotes orthogonalitywith respect to the duality product< | >. Furthermore,
select any subspace ĒD complementary to ED ⊂ E , i.e.,
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E = ED ⊕ ĒD

Define any matrix G such that ED = ker GT . Define the linear map J : E → F as
follows. Define J to be zero on ĒD. In view of (6.127), there exists for any e ∈ ED a
unique f ∈ Ē⊥

D such that (f , e) ∈ D.Define Je = f . Since (f , e) ∈ Dwehave eT f = 0,
implying skew-symmetry of J . It is readily checked that D is given as in (6.123).
(3) By skew-symmetry of J it directly follows that D defined by (6.124) is a Dirac
structure. With regard to all remaining statements, see [47].
(4) See [72]. �

Remark 6.6.7 One may also convert any matrix representation into any other one.
For example, start from a Dirac structureD given in constrained input–output repre-
sentation (6.123). Define G⊥ as a matrix of maximal rank such that G⊥G = 0 and
with independent rows. Then D is equivalently given in kernel representation as

D = {(f , e) |
[−G⊥

0

]
f +

[
G⊥J
GT

]
e = 0} (6.128)

Example 6.6.8 The combination of Kirchhoff’s current and voltage laws for an
electrical circuit constitute an example of a constrained input–output representation
(6.123) of a Dirac structure. Let F be the space of currents I through the edges of
the circuit graph, and E = F∗ the space of voltages V across the edges. Let D be the
N × M incidence matrix of the circuit graph (N nodes/vertices,M branches/edges).
Then Kirchhoff’s current and voltage laws define the Dirac structure

D := {(I, V ) ∈ RM × RM | DI = 0, ∃λ ∈ RN s.t. V = DTλ}, (6.129)

which is in constrained input–output representation (6.123), with J = 0 and G =
DT . Defining a matrix E such that im DT = ker E one obtains the relaxed kernel
representation DI = 0,EV = 0.

Given a Dirac structure D ⊂ F × E , one can define the following subspaces of F ,
respectively, E ,

G0 := {f ∈ F | (f , 0) ∈ D}
G1 := {f ∈ F | ∃e ∈ E s.t. (f , e) ∈ D}
P0 := {e ∈ E | (0, e) ∈ D}
P1 := {e ∈ E | ∃f ∈ F s.t. (f , e) ∈ D}

(6.130)

It can be readily checked that

P0 = G⊥
1 := {e ∈ E |< e | f >= 0, ∀f ∈ G1}

P1 = G⊥
0 := {e ∈ E |< e | f >= 0, ∀f ∈ G0} (6.131)
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With D expressed in kernel/image representation (6.120), (6.122) one obtains

G1 = im ET , P0 = ker E
P1 = im FT , G0 = ker F

(6.132)

The subspace G1 expresses the set of admissible flows f , and P1 the set of admissible
efforts e. The first subspace will turn out to be instrumental in the determination of
the Casimirs of a port-Hamiltonian DAE system in the next section, and the second
subspace in the characterization of its algebraic constraints.

Another key property of Dirac structures is the fact that the composition of Dirac
structures is again a Dirac structure. In the next section, this will lead to the fun-
damental property that any power-conserving interconnection of port-Hamiltonian
DAE systems defines another port-Hamiltonian DAE system. We will start by show-
ing that the composition of two Dirac structures is again a Dirac structure. This
readily implies that the power-conserving interconnection of any number of Dirac
structures is a Dirac structure.

Thus let us consider a Dirac structure DA ⊂ F1 × F2 × E1 × E2, and another
Dirac structure DB ⊂ F2 × F3 × E2 × E3. The space F2 is the space of shared flow
variables, and E2 is the space of shared effort variables; see Fig. 6.7.

Consider the interconnection equations (the minus sign included for a consistent
power flow convention)

fA = −fB ∈ F2, eA = eB ∈ E2 (6.133)

Then the composition DA ◦ DB of the Dirac structures DA and DB is defined as

DA ◦ DB :=
{
(f1, e1, f3, e3) ∈ F1 × E1 × F3 × E3 | ∃(f2, e2) ∈ F2 × E2
s.t. (f1, e1, f2, e2) ∈ DA and (−f2, e2, f3, e3) ∈ DB

} (6.134)

The next theorem is proved in [63].

Theorem 6.6.9 Let DA ⊂ F1 × E1 × F2 × E2 and DB ⊂ F2 × E2 × F3 × E3
be Dirac structures. Then DA ◦ DB ⊂ F1 × E1 × F3 × E3 is a Dirac structure.
(We refer to the next Sect. 6.7, see in particular (6.165), how this extends to the
composition of multiple Dirac structures.) The following explicit expression can be
given for the composition of two Dirac structures in terms of their kernel/image
representation.

f1

e1

f3

e3

fA

eA

fB

eB

DA DB

Fig. 6.7 The composition of DA and DB
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Proposition 6.6.10 ConsiderDirac structuresDA ⊂ F1 × E1 × F2 × E2,DB ⊂ F2 ×
E2 × F3 × E3, given in combined kernel representation

[
F1 E1 F2A E2A 0 0
0 0 −F2B E2B F3 E3

]
⎡
⎢⎢⎢⎢⎢⎢⎣

f1
e1
f2
e2
f3
e3

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 (6.135)

Then define

M =
[

F2A E2A

−F2B E2B

]
(6.136)

and let LA, LB be matrices such

L = [LA LB
]
, ker L = im M

Then a relaxed kernel representation of DA ◦ DB is obtained by premultiplying
(6.135) by the matrix L, resulting in

LAF1f1 + LAE1e1 + LBF3f3 + LBE3e3 = 0

In many cases of interest, the notion of a constant Dirac structure D ⊂ F × E , with
F and E = F∗ linear spaces, is not sufficient for modeling purposes. We already
observed this for input-state-output port-Hamiltonian systems, where the matrices
J,R,P, S,M in (6.3) were allowed to be state-dependent. Furthermore, in many
examples the state spaceX is not a linear space, but instead a manifold. In particular,
this often occurs for 3-D mechanical systems. In such cases, the notion of a con-
stant Dirac structure given in Definition 6.6.3 needs to be extended to the following
definition of Dirac structures on manifolds.

Definition 6.6.11 Let X be a manifold. A Dirac structure D on X is a vector sub-
bundle of the Whitney sum7 TX ⊕ T∗X such that

D(x) ⊂ TxX × T∗
xX

is for every x ∈ X a constant Dirac structure as before.

Simply put, a Dirac structure on a manifold X is point-wise (for every x ∈ X ) a
constant Dirac structure D(x) ⊂ TxX × T∗

xX .
Most of the preceding theory concerning constantDirac structures can be extended

to Dirac structures on manifolds. In particular, the kernel and image, constrained

7The Whitney sum of two vector bundles with the same base space is defined as the vector bundle
whose fiber above each element of this common base space is the product of the fibers of each
individual vector bundle.
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input–output, and hybrid input–output representation of Proposition 6.6.6 carry over
to the case of a Dirac structure on a manifold; the difference being that the matrices
involved may be depending on x, and that the representations may exist only locally
on the state space manifold X .

In particular, given a Dirac structure D on a manifold X and any point x0 ∈ X
there exists a coordinate neighborhood of x0 such that for x within this coordinate
neighborhood

D(x) = {(f , e) ∈ TxX × T∗
xX | F(x)f + E(x)e = 0} (6.137)

for � × � matrices F(x) and E(x) satisfying

E(x)FT (x) + F(x)ET (x) = 0, rank[F(x)
...E(x)] = �, (6.138)

or equivalently,

D(x) = {(f , e) ∈ TxX × T∗
xX | f = ET (x)λ, e = FT (x)λ,λ ∈ R�} (6.139)

Conversely, for any � × � matrices F(x) and E(x) satisfying (6.138), the subspaces
(6.137) and (6.139) define locally a Dirac structure on X .

Furthermore, D may be locally represented as

D(x) = {(f , e) ∈ TxX × T∗
xX | ∃λ s.t. f = J(x)e + G(x)λ, GT (x)e = 0},

(6.140)

for an � × � skew-symmetric matrix J(x), and a matrix G(x). Conversely, for any
G(x) and skew-symmetric J(x) (6.140) defines locally a Dirac structure.

Finally, starting from (6.137) we may locally split the flows f and e, and corre-
spondingly F(x),E(x), in such a way that

D(x) = {(f , e) ∈ TxX × T∗
xX =

{[
f 1

f 2

]
,

[
e1

e2

]
|
[
f 1

e2

]
= J(x)

[
e1

f 2

]}
(6.141)

where J(x) := −[F(x)1
...E(x)2]−1[F(x)2

...E(x)1] is skew-symmetric. Conversely, for
any skew-symmetric J(x) as above (6.141) defines locally a Dirac structure.

On the other hand, the canonical coordinate representation (6.125) is not always
possible for a Dirac structure D on a manifold X . In fact, analogously to the inte-
grability conditions (6.33) characterizing J(x) to be a Poisson structure for which
canonical coordinates as in (6.35) can be found, one can formulate integrability
conditions on D which (together with a constant rank assumption) are necessary
and sufficient for the local existence of canonical coordinates representing D as in
(6.125). We refer to the Notes at the end of this chapter for further information.
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The subspaces G0,G1,P0,P1 defined for a constant Dirac structure in (6.130)
generalize for a Dirac structure D on X to the distributions, respectively,
co-distributions, on X

G0(x) := {f ∈ TxX | (f , 0) ∈ D(x)}
G1(x) := {f ∈ TxX | ∃e ∈ T∗

xX s.t. (f , e) ∈ D(x)}
P0(x) := {e ∈ T∗

xX | (0, e) ∈ D(x)}
P1(x) := {e ∈ T∗

xX | ∃f ∈ TxX s.t. (f , e) ∈ D(x)}
(6.142)

The integrability of the distributions G0,G1 and co-distributions P0,P1 on X is
implied by the integrability of the Dirac structure D; see again the Notes at the end
of this chapter.

Also, the theory regarding composition of constant Dirac structures can be
extended to Dirac structures on manifolds; we refer to the next section for the appro-
priate setting.

6.7 Port-Hamiltonian DAE Systems

From a network modeling perspective (see also the Notes at the end of this chapter),
lumped-parameter physical systems are naturally described by a set of ideal energy-
storing elements, a set of energy-dissipatingor resistive elements, and a set of external
ports by which interaction with the environment can take place. All of them are
interconnected to each other by a power-conserving interconnection, see Fig. 6.8.

This power-conserving interconnection includes idealpower-conserving elements
such as (in the electrical domain) transformers, gyrators, or (in the mechanical
domain) transformers, kinematic pairs, and kinematic constraints. Power-conserving
elements do not store energy, nor dissipate energy, but instead route the energy flow.

Associated with the energy-storing elements are state variables x1, . . . , xn, being
coordinates for some n-dimensional state space manifold X , and a total energy H :
X → R. The power-conserving interconnection is formalized by a Dirac structure

Fig. 6.8 Port-Hamiltonian
DAE system

environment

elements

portsenergy-
storing
elements

power-
conserving

interconnection

resistive
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relating the flows and efforts of the energy-storing, energy-dissipating elements and
external ports

D(x) ⊂ TxX × T∗
xX × FR × ER × FP × EP, x ∈ X , (6.143)

where (fS, eS) ∈ TxX × T∗
xX are the flows and efforts of the energy-storing elements,

(fR, eR) ∈ FR × ER are the flows and efforts of the energy-dissipating elements, and
finally (fP, eP) ∈ FP × EP are the flows and efforts of the external ports.

Remark 6.7.1 Geometrically, D is a Dirac structure on the manifold X × FR ×
FP, which is invariant under translation along FR,FP directions, and therefore only
depending on x ∈ X . See also [41, 218].

In the case of a linear state space X and a constantDirac structureD, the expression
(6.143) simplifies to

D ⊂ FS × ES × FR × ER × FP × EP (6.144)

where FS = X , ES = X ∗. The equally dimensioned vectors of flow variables and
effort variables of the energy-storing elements are given as

ẋ(t) = dx

dt
(t),

∂H

∂x
(x(t)), t ∈ R, (6.145)

which are equated with fS, eS by8

fS = −ẋ
eS = ∂H

∂x (x)
(6.146)

Furthermore, fR, eR are related by a (static) energy-dissipating (resistive) relation,
which can be any subset R ⊂ FR × ER, satisfying the property

eTRfR ≤ 0, for all (fR, eR) ∈ R (6.147)

This leads to the following.

Definition 6.7.2 A port-Hamiltonian DAE system is defined by a Dirac structureD
as in (6.143), a Hamiltonian H : X → R, and an energy-dissipating relation R ⊂
FR × ER satisfying (6.147). The dynamics is given by the requirement that for all
t ∈ R (− dx

dt (t),
∂H
∂x (x(t)), fR(t), eR(t), fP(t), eP(t)

) ∈ D(x(t))
(fR(t), eR(t)) ∈ R (6.148)

It is directly verified that this definition includes the definitions of input-state-output
port-Hamiltonian systems as given before, cf. (6.1), (6.3), (6.6), (6.15), as special

8The minus sign is inserted in order to have a consistent power flow convention.
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cases (with inputs u and outputs y given by (fP, eP). However, in general Definition
6.7.2 entails algebraic constraints on the state variables x.

By the power-conservation property of a Dirac structure (6.118) and (6.147), any
port-Hamiltonian DAE system satisfies the energy-balance

dH
dt (x(t)) = < ∂H

∂x (x(t)) | ẋ(t) >=
= eTRfR(t) + eTP(t)fP(t) ≤ eTP(t)fP(t),

(6.149)

as was the case for input-state-output port-Hamiltonian systems. Thus port-
Hamiltonian DAE systems are cyclo-passive with respect to the supply rate eTPfP,
and passive if H is bounded from below.

The algebraic constraints that are present in a port-Hamiltonian DAE system
are determined by the distribution P1 defined by D (cf. (6.142)), as well as by the
Hamiltonian H. In fact, the condition

(
∂H

∂x
(x), eR, eP

)
∈ P1(x), x ∈ X , (6.150)

may entail algebraic constraints on the state x.
On the other hand, the Casimir functions C : X → R of the port-Hamiltonian

DAE system (6.148) are determined by the distributionG1. Indeed, dCdt = ∂TC
∂x (x)ẋ =

0 if and only ∂TC
∂x (x)fS = 0 for all fS for which there exists fR, fP such that (fS, fR, fP) ∈

G1(x). Furthermore, C is a Casimir for fP = 0 if and only if ∂TC
∂x (x)fS = 0 for all fS

for which there exists fR such that (fS, fR, 0) ∈ G1(x).
Definition 6.7.2 is a geometric, coordinate-free, definition. Equational represen-

tations of port-Hamiltonian DAE systems are obtained by choosing a coordinate
representation of the Dirac structure D as in (6.143). In case the Dirac structure D
is given in kernel representation

D(x) = {(fS, fR, fP, eS, eR, eP) | FS(x)fS + ES(x)eS+
FR(x)fR + ER(x)eR + FP(x)fP + EP(x)eP = 0} (6.151)

for matrices FS(x),ES(x),FR(x),ER(x),FP(x),EP(x) satisfying

(i) ESFT
S + FSET

S + ERFT
R + FRET

R + EPFT
P + FPET

P = 0

(ii) rank

[
FS

...FR
...FP

...ES
...ER

...EP

]
= dimF (6.152)

this leads to the following specification of algebraic constraints and Casimirs. With
respect to the algebraic constraints, we notice that

eS ∈ im FT
S (x), (6.153)
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implying the algebraic constraints

∂H

∂x
(x) ∈ im FT

S (x) (6.154)

With respect to the Casimirs we notice that

fS ∈ im ET
S (x), (6.155)

implying that C : X → R is a Casimir function if and only if dC
dt (x(t)) = ∂TC

∂x (x(t))
ẋ(t) = 0 for all ẋ(t) ∈ im ET

S (x(t)). Hence, C is a Casimir of the port-Hamiltonian
DAE system (6.148) if and only if it satisfies the set of pde’s

ES(x)
∂C

∂x
(x) = 0, x ∈ X (6.156)

Finally, C is a Casimir function for fP = 0 if and only if ∂TC
∂x (x)ES(x)λ = 0 for all λ

such that ET
P (x)λ = 0. As a result, C is a Casimir function for fP = 0 if and only if

it satisfies the conditions

ES(x)
∂C

∂x
(x) ∈ im EP(x), x ∈ X (6.157)

Example 6.7.3 Consider the LC-circuit of Example 6.4.5 without voltage source
(V = 0), and where the two inductors are replaced by two capacitors with charges
Q1,Q2, and dually the capacitor is replaced by an inductor with flux linkage ϕ. This
does not change the Dirac structure (determined by Kirchhoff’s current and voltage
laws). However, while the original LC-circuit has a Casimir ϕ1 + ϕ2, in the present
LC-circuit there is the algebraic constraint

∂H

∂Q1
(Q1,Q2,ϕ) + ∂H

∂Q2
(Q1,Q2,ϕ) = 0 (6.158)

constraining the state variables Q1,Q2.

Example 6.7.4 The constrained Hamiltonian equations (6.42) can be viewed as a
port-Hamiltonian DAE system, with respect to the Dirac structure D given in con-
strained input–output representation (6.123) as

D = {(fS, fP, eS, eP) | 0 = AT (q)eS, eP = BT (q)eS,

−fS =
[

0 In
−In 0

]
eS +

[
0

A(q)

]
λ +

[
0

B(q)

]
fP, λ ∈ Rk}

(6.159)
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The kinematic constraints correspond to the following algebraic constraints on the
state variables (q, p)

0 = AT (q)
∂H

∂p
(q, p), (6.160)

while the Casimir functions C for u = 0 are determined by the equations

∂TC

∂q
(q)q̇ = 0, for all q̇ satisfying AT (q)q̇ = 0 (6.161)

Hence, finding a Casimir function amounts to (partially) integrating the kinematic
constraints AT (q)q̇ = 0. In particular, if the kinematic constraints are holonomic,
and thus can be expressed as in (6.38), then q̄n−k+1, . . . , q̄n generate all the Casimir
functions.

The results concerning composition of Dirac structures as treated in the previous
Sect. 6.6 imply that any power-conserving interconnection of port-Hamiltonian sys-
tems is again a port-Hamiltonian system. Indeed, let us consider k port-Hamiltonian
DAE systems specified by Dirac structures

Di(xi) ⊂ TxiXi × T∗
xiXi × F i

R × E i
R × F i

P × E i
P, xi ∈ Xi, i = 1, . . . , k (6.162)

together with Hamiltonians and energy-dissipating relations

Hi : Xi → R, Ri ⊂ F i
R × E i

R, i = 1, . . . , k (6.163)

Furthermore, define an interconnection Dirac structure

DI ⊂ F1
P × E1

P × · · · × F k
P × Ek

P × F e
P × Ee

P (6.164)

with F e
P, Ee

P spaces of external flows and efforts. DI specifies the way the flows and
efforts f iP, e

i
P of the composing systems are connected to each other and to the new

external flows and efforts f eP , eeP in a power-conserving manner. The composition
through the shared flows and efforts in F1

P × E1
P × · · · × F k

P × Ek
P defines a new

Dirac structure

(D1(x1) × · · · × Dk(xk)) ◦ DI ⊂ TxX × T∗
xX × FR × ER × F e

P × Ee
P (6.165)

(note that this amounts to the composition of two Dirac structures), where

x ∈ X := X1 × · · · × Xk, FR := F1
R × · · · × F k

R, ER := E1
R × · · · × Ek

R (6.166)

As a result, the interconnected system is again a port-Hamiltonian DAE system on
the product state space X with Hamiltonian H : X → R given as H(x) = H1(x1) +
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· · · + Hk(xk), and with energy-dissipating relation R given as the direct product of
R1, . . . ,Rk .

Example 6.7.5 (PID control) Consider the standard Proportional–Integral-
Derivative (PID) controller

yc = kPuc + kI

∫
ucdt + kDu̇c (6.167)

for certain positive constants kP, kI , kD. Trivially rewriting (6.167) as

kDu̇c = −kPuc − kI

∫
ucdt + yc, (6.168)

and defining ξ = ∫ ucdt (or equivalently ξ̇ = uc) and η = kDuc, the PID-controller
can be formulated as the linear input-state-output9 port-Hamiltonian system

[
ξ̇
η̇

]
=
[
0 1

−1 −kP

] [
kIξ
η
kD

]
+
[
0
1

]
yc

uc = [0 1
] [kIξ

η
kD

] (6.169)

with Hamiltonian Hc(ξ, η) = 1
2kIξ

2 + 1
2kD

η2.
Considering any plant input-state-output port-Hamiltonian system as in (6.1)

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u

y = gT (x) ∂H
∂x (x)

(6.170)

the closed-loop system arising from standard feedback u = −yc, uc = y with the
PID-controller is given by the port-Hamiltonian DAE system

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u[

ξ̇
η̇

]
=
[
0 1

−1 −kP

] [
kIξ
η
kD

]
−
[
0
1

]
u

0 = gT (x) ∂H
∂x (x) − [0 1

] [kIξ
η
kD

] (6.171)

with total Hamiltonian H(x) + 1
2kIξ

2 + 1
2kD

η2. This port-Hamiltonian system is in
constrained input–output representation (6.123),withu acting as a vector ofLagrange
multipliers.

9Note that yc serves as an input to (6.169) and uc as an output, contrary to the intuitive use of a
PID-controller, where uc equals the output of the plant system and −yc is the input applied to the
plant system. This is of course caused by the fact that the D-action involves a differentiation.
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We close this section by indicating two direct extensions from the input-state-
output port-Hamiltonian case to the DAE case. The first concerns shifted passivity.
Consider a port-Hamiltonian DAE system for which we can find coordinates in
which theDirac structure is constant. Furthermore, assume that the resistive structure
R is linear. A steady-state x̄, corresponding to steady-state values f̄R, ēR, f̄P, ēP, is
characterized by

(
0,

∂H

∂x
(x̄), f̄R, ēR, f̄P, ēP

)
∈ D, (f̄R, ēR) ∈ R (6.172)

Using now the linearity of D and R, we can subtract (6.172) from (6.148), so as to
obtain

(−ẋ(t),
∂H

∂x
(x(t)) − ∂H

∂x
(x̄),

fR(t) − f̄R, eR(t) − ēR, fP(t) − f̄P, eP(t) − ēP) ∈ D
(fR(t) − f̄R, eR(t) − ēR) ∈ R

(6.173)

Similar to Proposition 6.5.1, this defines a shifted port-Hamiltonian system with
respect to the sameDirac structureD and resistive structureR, and with Hamiltonian
given by the shifted Hamiltonian function Ĥx̄, and shifted external port variables
fP − f̄P, eP − ēP.

The second extension concerns the notion of steady-state input–output relation
(4.31). For a port-Hamiltonian DAE system, � this relation is given as

�ss = {(f̄P, ēP) | ∃x̄, f̄R, ēR such that(
0, ∂H

∂x (x̄), f̄R, ēR, f̄P, ēP
) ∈ D(x̄), (f̄R, ēR) ∈ R} (6.174)

It directly follows that ēTP f̄P ≥ 0 for all (f̄P, ēP) ∈ �ss.

6.8 Port-Hamiltonian Network Dynamics

Section4.4 already presented a treatment of passive network systems. In this section
we will go one step further, by identifying large classes of network systems as port-
Hamiltonian systems, where the Dirac structure of the network system is determined
by the network interconnection structure.

Let us start with some basic notions regarding graphs, extending the background
already provided in Sect. 4.4. Like in Sect. 4.4 “graph” throughout means “directed
graph.” Given a graph, we define its vertex space �0 as the vector space of all
functions from V to some linear spaceR. In the examples,R will be mostlyR = R

in which case �0 can be identified with R
N . Furthermore, we define the edge space

�1 as the vector space of all functions from E toR. Again, ifR = R then �1 can be
identifiedwithR

M . The dual spaces of�0 and�1 will be denoted by�0, respectively,
by �1. The duality pairing between f ∈ �0 and e ∈ �0 is given as

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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< f | e >=
∑
v∈V

< f (v) | e(v) > , (6.175)

where < | > on the right-hand side denotes the duality pairing between R and R∗.
A similar expression holds for f ∈ �1 and e ∈ �1 (with summation over the edges).

The incidence matrix D of the graph induces a linear map D̂ from the edge space
to the vertex space as follows. Define D̂ : �1 → �0 as the linear map with matrix
representation D ⊗ I , where I : R → R is the identity map and ⊗ denotes the Kro-
necker product. D̂ will be called the incidence operator. For R = R the incidence
operator reduces to the linear map given by the matrixD itself, in which case we will
throughout use D both for the incidence matrix and for the incidence operator. The
adjoint map of D̂ is denoted as

D̂∗ : �0 → �1,

and is called the coincidence operator. ForR = R
3 the coincidence operator is given

by DT ⊗ I3, while forR = R the coincidence operator is simply given by the trans-
posed matrix DT , and we will throughout use DT both for the co-incidence matrix
and for the coincidence operator.

In order to define open network systems we will identify a subset Vb ⊂ V of
boundary vertices. The remaining subsetVi := V − Vb are called the internal vertices
of the graph.

The splitting of the vertices into internal and boundary vertices induces a splitting
of the vertex space and its dual, given as

�0 = �0i ⊕ �0b, �0 = �0i ⊕ �0b, (6.176)

where �0i is the vertex space corresponding to the internal vertices and �0b the
vertex space corresponding to the boundary vertices. Consequently, the incidence
operator D̂ : �1 → �0 splits as

D̂ = D̂i ⊕ D̂b, (6.177)

with D̂i : �1 → �0i and D̂b : �1 → �0b. For R = R we will simply write

D =
[
Di

Db

]
(6.178)

Furthermore, we define the boundary space �b as the linear space of all functions
from the set of boundary vertices Vb to the linear space R. Note that the boundary
space �b is equal to the linear space �0b, and that the linear mapping D̂b can be also
regarded as a mapping D̂b : �1 → �b. The dual space of �b will be denoted as �b.
The elements fb ∈ �b are called the boundary flows and the elements eb ∈ �b the
boundary efforts.
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A paradigmatic example of a port-Hamiltonian network system is amass–spring–
damper system. Let us start with mass–spring systems, as already considered in
Chap.4, Example 4.4.5, as an example of a passive network system. Any mass–
spring system is modeled by a graph G with N vertices corresponding to the masses
and M edges corresponding to the springs, specified by an incidence matrix D. For
ease of notation, consider first the situation that the mass–spring system is located
in one-dimensional space R = R, and the springs are scalar. A vector in the vertex
space �0 then corresponds to the vector p of the scalar momenta of all N masses,
i.e., p ∈ �0 = RN . Furthermore, a vector in the dual edge space �1 will correspond
to the total vector q of extensions of allM springs, i.e., q ∈ �1 = RM .

Next ingredient is the Hamiltonian H : �1 × �0 → R, which is the sum of the
kinetic and potential energies of each mass and spring. In the absence of boundary
vertices the dynamics of the mass–spring system is described as

[
q̇
ṗ

]
=
[

0 DT

−D 0

][ ∂H
∂q (q, p)
∂H
∂p (q, p)

]
, (6.179)

defined with respect to the constant Poisson structure on the linear state space �1 ×
�0 given by the skew-symmetric matrix

J :=
[

0 DT

−D 0

]
(6.180)

implicitly already encountered in Sect. 4.4; see (4.83).
The inclusion of boundary vertices, and thereby of external interaction, can be

done in different ways. The first option is to associate boundary masses to the bound-
ary vertices. We are then led to the port-Hamiltonian input-state-output system

q̇ = DT ∂H

∂p
(q, p)

ṗ = −D
∂H

∂q
(q, p) + Efb

eb = ET ∂H

∂p
(q, p)

(6.181)

Here E is a matrix with as many columns as there are boundary vertices; each
column consists of zeros except for exactly one 1 in the row corresponding to the
associated boundary vertex. Furthermore fb ∈ �b are the external forces exerted (by
the environment) on the boundary masses, and eb ∈ �b are the velocities of these
boundary masses.

A second possibility is to regard the boundary vertices as being massless. In this
case, we obtain the port-Hamiltonian input-state-output system (with p now denoting
the vector of momenta of the masses associated to the internal vertices)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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q̇ = DT
i

∂H

∂p
(q, p) + DT

b e
b

ṗ = −Di
∂H

∂q
(q, p)

fb = Db
∂H

∂q
(q, p)

(6.182)

with eb ∈ �b the velocities of the massless boundary vertices, and fb ∈ �b the forces
at the boundary vertices as experienced by the environment. Note that in this second
case the external velocities eb of the boundary vertices can be considered to be inputs
to the system and the forces fb to be outputs; in contrast to the previously considered
case (boundary vertices corresponding to boundary masses), where the forces fb are
inputs and the velocities eb the outputs of the system.

For a mass–spring–damper system the edges will correspond partly to springs,
and partly to dampers. This corresponds to an incidence matrix

D = [Ds Dd
]
, (6.183)

where the columns of Ds reflect the spring edges and the columns of Dd the damper
edges. For the casewithout boundary vertices the dynamics of amass–spring–damper
system with linear dampers takes the form

[
q̇
ṗ

]
=
[

0 DT
s

−Ds −DdRDT
d

]
⎡
⎢⎢⎣

∂H

∂q
(q, p)

∂H

∂p
(q, p)

⎤
⎥⎥⎦ (6.184)

with R the diagonal matrix of damping coefficients. In the presence of boundary
vertices, we may again distinguish between massless boundary vertices, with inputs
being the boundary velocities and outputs the boundary (reaction) forces, and bound-
ary masses, in which case the inputs are the external forces and the outputs the
velocities of the boundary masses.

The formulation of mass–spring–damper systems in R = R directly extends to
R = R3 using the incidence operator D̂ = D ⊗ I3 as defined before. Furthermore,
the set-up can be extended [298] to multi-body systems and spatial mechanisms
(networks of rigid bodies in R

3 related by joints) by considering the linear space
R := se∗(3), the dual of the Lie algebra of the Lie group SE(3) describing the
position of a rigid body in R

3. Finally we note that other examples like hydraulic
networks are analogous to mass–spring–damper system; see e.g., [287].

Remark 6.8.1 The example of a power network given in Example 4.4.4 defines a
port-Hamiltonian system which is similar to a mass–spring–damper system, with
the difference that in this case the dampers (corresponding to A) are associated to
the vertices of the graph and the edges correspond to the transmission lines with
potential energies −γj cos qj, j = 1, . . . ,M.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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Remark 6.8.2 Note the slight discrepancy of the role of the flows f and efforts
e with respect to the definition of a port-Hamiltonian DAE systems given in the
previous Sect. 6.7. Indeed, in Sect. 6.7 flows and efforts are used interchangeably,
with the exception of the flows and efforts fS, eS corresponding to the energy-storing
elements, which (cf. (6.146)) are given by fS = −ẋ and eS = ∂H

∂x (x). In the current
network setting, the flows f are elements of the spaces �0,�1, and the efforts e of
their dual spaces �0,�1. In particular, the flows in �1 correspond to the classical
[211] through variables, and the efforts in �1 to the across variables.

The port-Hamiltonian formulation of the dynamics (6.184) leads to the following
stability analysis. Without loss of generality10, we throughout assume that the graph
is connected, or equivalently, see Sect. 4.4, kerDT

s ∩ kerDT
d = span 1, where1 is the

vector of all ones. We start with the following proposition regarding the equilibria.

Proposition 6.8.3 Consider the dynamics (6.184). Its set of equilibria E is given as

E = {(q, p) ∈ �1 × �0 | ∂H

∂q
(q, p) ∈ kerDs,

∂H

∂p
(q, p) ∈ span 1} (6.185)

Proof (q, p) is an equilibrium whenever

DT
s

∂H

∂p
(q, p) = 0, Ds

∂H

∂q
(q, p) + DdRD

T
d

∂H

∂p
(q, p) = 0 (6.186)

Premultiplication of the second equation by the row-vector ∂TH
∂p (q, p), making use

of the first equation, yields ∂TH
∂p (q, p)BdRBT

d
∂H
∂p (q, p) = 0, or equivalently DT

d
∂H
∂p

(q, p) = 0, which implies Ds
∂H
∂q (q, p) = 0. Hence, ∂H

∂p (q, p) ∈ kerDT
s ∩ kerDT

d =
span 1. �
In other words, for (q, p) to be an equilibrium, the elements of the vector of velocities
∂H
∂p (q, p) should be equal to each other,whereas ∂H

∂q (q, p) should be in the space kerDs

of cycles of the subgraph of masses and springs (resulting in zero net spring forces
applied to the masses at the vertices).

Similarly, the Casimirs are computed as follows.

Proposition 6.8.4 The Casimir functions of (6.184) are functions C(q, p) satisfying

∂C

∂p
(q, p) ∈ span 1,

∂C

∂q
(q, p) ∈ kerDs (6.187)

Proof The function C(q, p) is a Casimir if
[
∂C

∂q
(q, p)

∂C

∂p
(q, p)

] [
0 DT

s
−Ds −DdRDT

d

]
= 0, (6.188)

or equivalently (see Proposition6.4.2)

10Since otherwise the same analysis can be performed on each connected component of the graph.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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∂TC

∂p
(q, p)Ds = 0,

∂TC

∂q
(q, p)DT

s = 0,
∂TC

∂p
(q, p)DdRD

T
d = 0 (6.189)

Post-multiplication of the third equation by ∂C
∂p (q, p), making use of the first equation,

gives the result. �

Therefore, all Casimir functions can be expressed as functions of the linear Casimir
functions

C(q, p) = 1Tp, C(q, p) = kTq, k ∈ kerDs (6.190)

This implies that starting from an arbitrary initial position (q0, p0) ∈ �1 × �0 the
solution of the mass–spring–damper system (6.184) will be contained in the affine
space

A(q0,p0) :=
[
q0
p0

]
+
[

0
ker 1T

]
+
[
im DT

s
0

]
(6.191)

i.e., for all t the difference q(t) − q0 remains in the space im DT
s of co-cycles of the

mass–spring graph, while 1Tp(t) = 1Tp0.
Under generically fulfilled conditions on the Hamiltonian H(q, p), each affine

space A(q0,p0) will intersect the set of equilibria E in a single point (q∞, p∞), which
qualifies as the point of asymptotic convergence starting from (q0, p0). For sim-
plicity, consider linear mass–spring–damper systems, corresponding to a quadratic
Hamiltonian function

H(q, p) = 1

2
qTKq + 1

2
pTGp, (6.192)

whereK is the positive diagonalmatrix of spring constants, andG is the positive diag-
onal matrix of reciprocals of the masses. In this case, the set of equilibria is given as
E = {(q, p) ∈ �1 × �0 | Kq ∈ ker Bs,Gp ∈ span 1}, while indeed it is easily seen
that for each (q0, p0) there exists a unique point (q∞, p∞) ∈ E ∩ A(q0,p0). In fact, q∞
is given by the spring graph co-cycle/cycle decomposition

q0 = v0 + q∞, v0 ∈ im DT
s ⊂ �1,Kq∞ ∈ kerDs ⊂ �1 (6.193)

Furthermore, p∞ is uniquely determined by

Gp∞ ∈ span 1, 1Tp∞ = 1Tp0 (6.194)

This leads to the following asymptotic stability theorem. First note that

d

dt
H(q, p) = −∂TH

∂p
(q, p)DdRD

T
d

∂H

∂p
(q, p)

= −pTGDdRD
T
d Gp ≤ 0

(6.195)
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Theorem 6.8.5 Consider a linear mass–spring–damper system with H(q, p) =
1
2q

TKq + 1
2p

TGp, where K and G are diagonal positive matrices. Then for every
(q0, p0), there exists a unique equilibrium point (q∞, p∞) ∈ E ∩ A(q0,p0), determined
by (6.193), (6.194). Define the spring Laplacian matrix Ls := DsKDT

s . Then for every
(q0, p0) the following holds: the trajectory starting from (q0, p0) converges asymp-
totically to (q∞, p∞) if and only if the largest GLs-invariant subspace contained in
kerDT

d is equal to span 1.

The condition that the largest GLs-invariant subspace contained in kerDT
d is equal to

span 1 amounts to pervasive damping: the influence of the dampers spreads through
the whole system.

Another feature of the dynamics of the mass–spring–damper system (6.184) is
its robustness with regard to constant external (disturbance) forces. Indeed, con-
sider a mass–spring–damper system with boundary masses and general Hamiltonian
H(q, p), subject to constant forces f̄b

[
q̇
ṗ

]
=
[

0 DT
s

−Ds −DdRDT
d

]
⎡
⎢⎢⎣

∂H

∂q
(q, p)

∂H

∂p
(q, p)

⎤
⎥⎥⎦+

[
0
E

]
f̄b, (6.196)

where we assume11 the existence of a q̄ such that

Ds
∂H

∂q
(q̄, 0) = Ef̄b (6.197)

The shifted Hamiltonian Ĥ(q̄,0)(q, p) := H(q, p) − (q − q̄)T ∂H
∂q (q̄, 0) − H(q̄, 0) as

defined before in (6.92) satisfies

d

dt
Ĥ(q̄,0)(q, p) = −∂TH

∂p
(q, p)DdRD

T
d

∂H

∂p
(q, p) ≤ 0 (6.198)

Specializing to a quadratic Hamiltonian H(q, p) = 1
2q

TKq + 1
2p

TGp one obtains
Ĥ(q̄,0)(q, p) = 1

2 (q − q̄)TK(q − q̄) + 1
2p

TGp, leading to the following analogofThe-
orem 6.8.5.

Proposition 6.8.6 Consider a linear mass–spring–damper system (6.196) with con-
stant external disturbance f̄b and Hamiltonian H(q, p) = 1

2q
TKq + 1

2p
TGp, where

K and G are diagonal positive matrices. and with im E ⊂ im Ds. The set of steady
states is given by Ē = {(q, p) ∈ �1 × �0 | DsKq = Ef̄b,Gp ∈ span 1}. For every
(q0, p0) there exists a unique equilibrium point (q̄∞, p∞) ∈ Ē ∩ A(q0,p0). Here p∞ is
determined by (6.194), while q̄∞ = q̄ + q∞, with q̄ such that DsKq̄ = Ef̄b and q∞
the unique solution of (6.193) with q0 replaced by q0 − q̄. Furthermore, for each

11If the mapping q �→ ∂H
∂q (q, 0) is surjective, then there exists for every f̄b such a q̄ if and only if

im E ⊂ im Ds.
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(q0, p0) the trajectory starting from (q0, p0) converges asymptotically to (q̄∞, p∞)

if and only if the largest GLs-invariant subspace contained in kerDT
d is equal to

span 1.

Note that the above proposition has the classical interpretation in terms of robustness
of integral control with regard to constant disturbances: the springs act as integral
controllers which counteract the influence of the unknown external force f̄b so that
the vector of velocities M−1p will still converge to span 1.

An alternative to the above formulation of mass–spring–damper systems is to
consider instead of the spring extensions q the configuration vector qc ∈ �0 =: Qc

describing the positions of the masses. For ordinary springs, the relation between
qc ∈ �0 and q ∈ �1 describing the extensions of the springs is given as q = DTqc.
Hence, the energy can be also expressed as the function Hc of (qc, p) defined as

Hc(qc, p) := H(DTqc, p) (6.199)

It follows that the dynamics of the mass–spring–damper system is alternatively given
by the following Hamiltonian equations in the state variables qc, p

q̇c = ∂Hc

∂p
(qc, p)

ṗ = −∂Hc

∂qc
(qc, p) − DdRD

T
d

∂Hc

∂p
(qc, p) + Efb

eb = ET ∂Hc

∂p
(qc, p)

(6.200)

What is the relation with the formulation given before? It turns out that this relation
is precisely given by the standard procedure of symmetry reduction of a Hamiltonian
system. Indeed, since1TD = 0 theHamiltonian functionHc(qc, p) given in (6.199) is
invariant under the action of the groupR acting on the phase space�0 × �0 � R2N

by the symplectic group action

(qc, p) �→ (qc + α1, p) , α ∈ R (6.201)

From standard reduction theory of Hamiltonian dynamics with symmetries, see e.g.,
[179, 197], it thus follows that we may factor out the configuration space Qc := �0

to the reduced configuration space

Q := �0/R (6.202)

Using the identification Q := �0/R � DT�0 ⊂ �1 the reduced state space of the
mass–spring–damper system is given by im DT × �0, with im DT ⊂ �1, and the
Hamiltonian equations (6.200) on�0 × �0 reduce to the port-Hamiltonian equations
(6.184) on im DT × �0 ⊂ �1 × �0 as before.
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The above example of a mass–spring–damper system on a graph can be general-
ized as follows. First note that a mass–spring–damper system with additive Hamil-
tonian H given by (6.192) can be also interpreted as the interconnection of port-

Hamiltonian systems ṗi = u0i , y
0
i = ∂H0

i
∂pi

(pi) corresponding to the masses (index i

ranging over the vertices), port-Hamiltonian systems q̇j = u1j , y
1
j = ∂H1

j

∂qj
(qj) cor-

responding to the springs (with j ranging over the spring edges), and static port-
Hamiltonian systems y1k = rju1k, rk > 0, corresponding to dampers (with index k
ranging over the damper edges), via the interconnection equations

uv = −Dyb, ub = DTyv (6.203)

Here the superscripts v, b, again refer to inputs and outputs of the port-Hamiltonian
systems associated to, respectively, the vertices and edges (branches). In the same
waywe can therefore consider arbitrary port-Hamiltonian systemswith scalar inputs
and outputs associated with the vertices and the edges, interconnected by (6.203).
Like in the general theory of interconnection of port-Hamiltonian systems this again
defines a port-Hamiltonian DAE system, with Dirac structure determined by the
Dirac structures of the port-Hamiltonian systems associated to the vertices and to the
edges, and by the interconnection (6.203).

Remark 6.8.7 Similar to the second scenario considered for passive systems in
Sect. 9.94, we may also consider the interconnection of single-input single-output
port-Hamiltonian systems associated to the vertices of a graph by the interconnec-
tion u = −Ly + e, cf. (4.91), where L is a balanced Laplacian matrix. Decomposing
L into its symmetric and skew-symmetric part we then obtain an interconnected
port-Hamiltonian system with extra energy-dissipating terms corresponding to the
symmetric part of L.

Remark 6.8.8 Another paradigmatic exampleof port-Hamiltonian systemsongraphs
areRLC-electrical circuits. In this case, all the energy-storing and energy-dissipating
elements are associated to the edges of the circuit graph. This leads to the consider-
ation of the Kirchhoff–Dirac structure defined as

DK := {(f1, e1, fb, eb) ∈ �1 × �1 × �b × �b |
Dif1 = 0,Dbf1 = fb, ∃ e0i ∈ �0i s.t. e1 = −DT

i e
0i − DT

b e
b} (6.204)

capturing Kirchhoff’s current and voltage laws. The port-Hamiltonian formulation
of the electrical circuit is obtained by supplementing the Kirchhoff–Dirac structure
by energy-storage relations corresponding to either capacitors or inductors, and by
energy-dissipating relations corresponding to the resistors [297].

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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6.9 Scattering of Port-Hamiltonian Systems

In Sects. 2.4 and 3.4, we already introduced the scattering transformation from flow
and effort vectors f , e to wave vectors v, z. Thus, let F be an �-dimensional linear
space of flows, and consider the canonically defined symmetric bilinear form, cf.
(6.114), on F × E , with E = F∗, given as

 (f1, e1), (f2, e2) �:=< e1 | f2 > + < e2 | f1 > (6.205)

for fi ∈ F , ei ∈ E∗, i = 1, 2. Furthermore, as in Sect. 2.4, let V ⊂ F × E be any
�-dimensional positive space of  , �, and Z ⊂ F × E an �-dimensional nega-
tive space of  , �, which is orthogonal (in the sense of  , �) to V . This means
that

F × E = V ⊕ Z (6.206)

Now, consider a constant Dirac structure D ⊂ F × E , that is

D = D⊥⊥ (6.207)

with⊥⊥ denoting orthogonal companionwith respect to , �. It follows that , �
is zero when restricted to D, and thus

D ∩ V = 0, D ∩ Z = 0 (6.208)

This implies that theDirac structureD can be represented as the graph of an invertible
linear map O : V → Z , that is,

D = {(f , e) = v + z | z = Ov}, (6.209)

where v + z ∈ V ⊕ Z is the scattering representation of (f , e) ∈ F × E with respect
to the scattering subspaces V,Z .

Furthermore, for any (f1, e1), (f2, e2) ∈ D, with scattering representation v1 + z1,
respectively, v2 + z2, we obtain by (2.35) and (6.207)

0 =< e1 | f2 > + < e2 | f1 >=< v1, v2 >V − < z1, z2 >Z , (6.210)

where <, >V and <, >Z are the inner-products on V , respectively, Z , induced
from  , �; see Sect. 2.4, Eq. (2.35). This implies that

< z1, z2 >Z=< Ov1,Ov2 >Z=< v1, v2 >V (6.211)

for all v1, v2 ∈ V . Hence, the linear mapO : V → Z is an inner-product preserving
map fromV ,with inner product<, >V , toZ with inner-product<, >Z . Conversely,
letO : V → Z be an inner-product preserving map. If we now define D by (6.209),

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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then by (6.210) and (6.211)

0 =< v1, v2 >V − < z1, z2 >Z=< e1 | f2 > + < e2 | f1 > ,

and thusD ⊂ D⊥⊥. Furthermore, because dimD = �, we concludeD = D⊥⊥, imply-
ing that D is a Dirac structure. Hence constant Dirac structures D ⊂ F × E are in
one-to-one correspondence with inner-product preserving linear mapsO : V → Z .
This leads to the following definition.

Definition 6.9.1 Let D ⊂ F × E be a Dirac structure, and let (V,Z) be a pair of
scattering subspaces. The mapO : V → Z satisfying (6.209) is called the scattering
representation of D.

A matrix representation of the scattering representation O of a Dirac structure D is
obtained as follows. Consider a basis a1, . . . , a� for F and dual basis a∗

1, . . . , a
∗
� for

E , together with the resulting scattering transformation as in (2.40). Furthermore,
corresponding to this basis let D be given in kernel representation as

D = {(f , e) | Ff + Ee = 0}, (6.212)

with F,E square � × � matrices satisfying

EFT + FET = 0, rank[F ...E] = � (6.213)

Proposition 6.9.2 Let the Dirac structure D be given by (6.212). The matrix repre-
sentation of its scattering representation O : V → Z is the orthonormal matrix

O = (F − E)−1(F + E) (6.214)

Proof D is equivalently given in image representation asD = {(f , e)|f = ETλ, e =
FTλ,λ ∈ R�}. The coordinate relation between (f , e) ∈ F × E and its scattering
representation v + z is given as (cf. (2.41))

v = 1√
2
(f + e)

z = 1√
2
(−f + e)

(6.215)

Thus in scattering representation D is given as

D =
{
v + z | v = 1√

2
(ET + FT )λ, z = 1√

2
(−ET + FT )λ,λ ∈ R�

}
(6.216)

We claim that ET + FT is invertible. Indeed, suppose x ∈ ker (ET + FT ), that is,
ETx = −FTx. Since by (6.213) EFTx + FETx = 0 for all x, this implies EETx =
−EFTx = FETx = −FFTx, and thus

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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[EET + FFT ]x = 0, (6.217)

which in view of rank [F ...E] = � implies x = 0. Hence, ET + FT and F + E are
invertible. Therefore

D = {(v, z) | z = (FT − ET )(FT + ET )−1v} (6.218)

Similarly, it follows that −ET + FT and thus F − E are invertible. Comparing with
(6.209)we conclude thatO = (FT − ET )(FT + ET )−1. Finally, adding, respectively,
subtracting, EFT + FET = 0 to the expression FFT + EET yields the equality

(F + E)(FT + ET ) = (F − E)(FT − ET ) (6.219)

and thus O is also expressed as in (6.214). Furthermore, (6.219) implies

OOT = (F − E)−1(F + E)(FT + ET )(FT − ET )−1

= (F − E)−1(F − E)(FT − ET )(FT − ET )−1 = I�,

showing that O is orthonormal. �

Example 6.9.3 Let the Dirac structure D be given by a skew-symmetric matrix J ,
that is, D = {(f , e) | f = Je, J = −JT }. Then the scattering representation of D is
the orthonormal matrix

O = (I + J)−1(I − J) (6.220)

(known as the Cayley transform of J).

Remark 6.9.4 The same result holds for Dirac structures on a manifold X . In this
case, the Dirac structure is represented by an orthonormal matrixO(x) depending on
x ∈ X (where also the scattering subspaces V andZ may depend on x). In particular,
the scattering representation of the Dirac structure defined as the graph of J(x) =
−JT (x) is O(x) = (I + J(x))−1 (I − J(x)).

A special type of Dirac structures (called 0- and 1-junctions) are defined as follows

D0 ={(f , e) ∈ R� × R� | f1 + · · · + f� = 0, e1 = · · · = e�}
D1 ={(f , e) ∈ R� × Rn | e1 + · · · + e� = 0, f1 = · · · = f�} (6.221)

Using scattering representations they can be characterized as follows.

Proposition 6.9.5 Scattering representations O0,O1 of D0,D1 are given by

O0 = 2

�
I� − I�, O1 = −2

�
I� + I� (6.222)
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where I� denotes the � × � matrix filled with ones and I� is the � × � identity matrix.
Moreover, O0 and O1 are the only orthonormal � × � matrices that have equal
diagonal elements and equal off-diagonal elements.

Proof With respect to the last claim note that O = aI� + bI� is orthonormal if and
only �a + 2b = 0 and b2 = 1. The case b = 1 givesO1 = − 2

�
I� + I�, while b = −1

yields O0 = 2
�
I� − I�. The rest follows by direct computation. �

Similarly to Sect. 3.4, let us finally apply scattering to a standard input-state-output
port-Hamiltonian form

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u

y = gT (x) ∂H
∂x (x)

(6.223)

Consider a scattering representation of (fP, eP) = (u, y) (but not of (fS, eS)), defined
as

v = 1√
2
(u + y)

z = 1√
2
(−u + y)

(6.224)

The inverse of this transformation is u = 1√
2
(v − z), y = 1√

2
(v + z), which by sub-

stitution in (6.223) yields

ẋ = [J(x) − R(x) − g(x)gT (x)
]

∂H
∂x (x) + √

2g(x)v
z = √

2gT (x) ∂H
∂x (x) − v

(6.225)

Note that, compared with (6.223), artificial energy dissipation has been inserted in
two ways: (i) by an extra resistive structure matrix g(x)gT (x) ≥ 0, (ii) by a negative
unity feedthrough from v to z.

Finally, composition of Dirac structures takes the following form in scattering
formulation. Consider two Dirac structures DA,DB as in Theorem 6.6.9, composed
by setting

fA = −fB ∈ F , eA = eB ∈ E (6.226)

Now consider scattering representations (fA, eA) = vA + zA and (fB, eB) = vB + zB
with respect to the same scattering subspaces V,Z ⊂ F × E . Then (6.226) becomes

zA = vB
zB = vA

(6.227)

expressing that the outgoing wave vector for DA equals the incoming wave vector
for DB, and conversely. Hence, the composition of DA,DB is seen to correspond to
the configuration depicted in Fig. 6.9, known as the Redheffer star product [259] of
the orthonormal matrices OA and OB. This is formulated in the next proposition.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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Fig. 6.9 Redheffer star
product of OA and OB

v1

v3

z1

z3

OA

OB

vA= zB zA= vB

Proposition 6.9.6 Let the orthonormal mappings OA and OB be scattering rep-
resentations of DA and DB with respect to the same scattering subspaces. Then
the scattering representation of DA ◦ DB is given by OA � OB, with � denoting the
Redheffer star product.

Remark 6.9.7 Since DA ◦ DB is a Dirac structure it directly follows that the
Redheffer star product of the orthonormal mappings OA and OB is again an ortho-
normal mapping.

6.10 Notes for Chapter 6

1. Port-Hamiltonian systems were originally introduced (under the slightly differ-
ent name of port-controlled Hamiltonian systems) in Maschke & van der Schaft
[201, 202], Maschke, van der Schaft & Breedveld [203] and van der Schaft &
Maschke [294, 295].

2. A broad coverage of port-Hamiltonian systems and the background theory of
port-based modeling, including application areas, can be found in [93] and
the references quoted therein. The port-Hamiltonian formulation of bond-graph
models is described in Golo, van der Schaft, Breedveld, Maschke [115]. A
recent introductory survey of port-Hamiltonian systems theory, emphasizing
new developments, is [291].

3. For port-Hamiltonian systems (6.1) two geometric structures play a role: (i)
an (almost-)Poisson structure determined by the skew-symmetric matrix J(x),
(ii) the singular Riemannian metric determined by the symmetric positive semi-
definite matrix R(x). For some results and ideas on the interplay between these
two structures, and its consequences for the resulting dynamics we refer toMor-
rison [223], and the references quoted therein. Similar structures have been used
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in the description of thermodynamical systems, see e.g., Öttinger [246] and the
references therein.

4. One can also define a bracket with respect to the combined structure F(x) :=
J(x) − R(x), called the Leibniz bracket; see e.g., Ortega & Planas-Bielsa [236].

5. The formulation of detailed-balanced mass action kinetics chemical reaction
networks as in Example 6.1.7 can be found in van der Schaft, Rao & Jayaward-
hana [299]; see also [258, 301] for the generalization to complex-balanced
reaction networks. The port-Hamiltonian formulation was emphasized in van
der Schaft, Rao & Jayawardhana [300].

6. A broader discussion about the obstruction to a port-Hamiltonian formulation
indicated in Example 6.1.9 can be found in [213].

7. The formulation of autonomous Hamiltonian dynamics with regard to a Poisson
structure which not necessarily has full rank, is standard in the literature on
geometric mechanics, see e.g., Marsden & Ratiu [197], Olver [235].

8. The dual to any Lie algebra is endowed with a canonical Poisson structure, see
e.g.,Weinstein [347],Marsden&Ratiu [197]. For instance the Poisson structure
given in Example 6.2.2 for the Hamiltonian formulation of Euler’s equations is
the Lie–Poisson structure on so∗(3).

9. For an in-depth treatment of mechanical systems with kinematic constraints,
including the constrained Euler–Lagrange equations, see e.g., Bloch [43], Bullo
& Lewis [53], and the older reference Neimark & Fufaev [230]. For a classical
survey on the kinematic model, regarding the admissible velocities as being
directly controlled, we refer to Kolmanovsky & McClamroch [167].

10. The introduction of the new “momentum” variables p̃ in (6.45) is close to the
classical use of quasi-coordinates (see e.g., Steigenberger [326] for a survey).

11. The description in Sect. 6.2 of mechanical systems with kinematic constraints as
port-Hamiltonian systems defined with respect to the almost-Poisson structure
Jc on the constrained state space Xc given by (6.48) and (6.51) is taken from
van der Schaft & Maschke [293], where also the result can be found that Jc is
a Poisson structure (i.e., satisfying the Jacobi-identity (6.33)) if and only if the
kinematic constraints are holonomic. See also van der Schaft & Maschke [295]
and Dalsmo & van der Schaft [78]. For a survey on almost-Poisson structures
in nonholonomic mechanics see Cantrijn, de Leon & de Diego [60].

12. The port-Hamiltonian formulation of the classical eight-dimensional model of
the synchronous generator, see e.g., Kundur [177], in Example 6.3.4 is taken
from Shaik Fiaz, Zonetti, Ortega, Scherpen & van der Schaft [98]; see also van
der Schaft & Stegink [303].

13. Hamiltonian functions involving two kinds of state variables in a non-separable
way not only show up in multi-physics systems, as illustrated in Sect. 6.3, but
also in “cyber-physical systems” such as variable impedance control. In its
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most simple form a variable impedance controller is defined by a (virtual) linear
spring with energy H(q) = 1

2kq
2, where we regard, next to the extension q of

the spring, also the spring “constant” k as a state variable whose value may
change in time. This leads to the consideration of the port-Hamiltonian system
with inputs u1, u2 and outputs y1, y2 given as

[
q̇
k̇

]
=
[
u1
u2

]
,

[
y1
y2

]
=
[
kq
1
2q

2

]
(6.228)

Here the port (u1, y1) corresponds to interaction with the environment (defining
an impedance k), while the port (u2, y2) defines a control port, regulating the
value of the impedance k based on the output y2 = 1

2q
2, possibly modulated by

information about other variables in the total system. In robotics, this basic idea
is referred to as variable stiffness control; see e.g., [354] for a survey.

14. An extensive treatment of Casimir functions for autonomous Hamiltonian
dynamics as discussed in Sect. 6.4 can be found e.g., in Marsden & Ratiu [197]
and Olver [235]. For the Energy-Casimir method see e.g., Marsden & Ratiu
[197] and the references quoted in there. Here also the close connection with
symmetries can be found. Solving the pde’s (9.92) involves integrability condi-
tions on the structure matrices J(x) and R(x). In particular, if J(x) is a Poisson
structure (i.e., satisfying the Jacobi-identity), then there always exist r indepen-
dent solutions C1, . . . ,Cr of the pde’s ∂TC

∂x (x)J(x) = 0, with r = dim ker J(x).

15. System theoretic properties of the closely related class of input–output Hamil-
tonian systems introduced in Brockett [50] are investigated e.g., in van der
Schaft [269], Crouch & van der Schaft [73], Nijmeijer & van der Schaft [233]
(Chap.12).

16. A subclass of port-Hamiltonian systems, called reciprocal port-Hamiltonian
systems can be converted into a gradient system [71] formulation (with respect
to an indefinite Hessian Riemannian metric); cf. van der Schaft [284] and van
der Schaft & Jeltsema [291].

17. A systematic treatment of port-Hamiltonian systems with switching structure
matrices (with applications to switching electrical circuits or mechanical sys-
tems) can be found e.g., in Escobar, van der Schaft &Ortega [95], van der Schaft
& Camlibel [290], Valentin, Magos & Maschke [340]; see also van der Schaft
& Jeltsema [291].

18. The property that a system is shifted passive with respect to any constant ū and
corresponding steady-state x̄, cf. Sect. 6.5 and Proposition 6.5.1, was coined as
equilibrium independent passivity in Arcak, Meissen & Packard [11].

19. Proposition 6.5.4 is due to Ferguson, Middleton & Donaire [97].

20. Example 6.5.3 is taken from Bürger & De Persis [54]; see also Arcak [10], van
der Schaft & Stegink [303].

http://dx.doi.org/10.1007/978-3-319-49992-5_9
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21. The construction of the modified Hamiltonian H̃ in (6.106) can be found in
[199].

22. The definition of Dirac structure was originally intended as a generalization of
both Poisson and symplectic structures; cf. Courant [72], Dorfman [85]. The
name apparently originates from the concept of the Dirac bracket as appearing
for Hamiltonian systems with constraints in Dirac [81, 82]. The kernel, image
and constrained input–output representations of Dirac structures can be found in
Dalsmo & van der Schaft [78], see also Courant [72]. The hybrid input–output
representation is due to Bloch & Crouch [47]. See also van der Schaft [282] for
a survey.

23. The proof of Theorem 6.6.9, as well as of Proposition 6.6.10, can be found in
Cervera, van der Schaft & Banos [63] using ideas from Narajanan [228]; see
also van der Schaft [281].

24. The definition of port-Hamiltonian systems with respect to Dirac structures was
first given in van der Schaft & Maschke [294], and further developed in van
der Schaft & Maschke [189, 292]; see also Bloch & Crouch [47] for the use
of Dirac structures in the modeling of general LC circuits. For a treatment of
constrained mechanical systems in this context, see Maschke & van der Schaft
[206].

25. Integrability of Dirac structures (generalizing the Jacobi-identity for Poisson
structures) is treated in Courant [72], Dorfman [85]. See also Merker [218]
and the references quoted therein for further developments. For applications
of the integrability of Dirac structures to properties of port-Hamiltonian DAE
systems, including the connection to integrability of kinematic constraints, we
refer to Dalsmo & van der Schaft [78]; see also van der Schaft & Jeltsema [291]
and the references quoted therein. Necessary and sufficient conditions for the
integrability of composed Dirac structures are obtained in Blankenstein & van
der Schaft [40].

26. A further treatment of port-Hamiltonian DAE systems and their equational rep-
resentations can be found in van der Schaft [286].

27. Section6.8 is largely based on [298]. The port-Hamiltonian modeling of gen-
eral LC circuits can be found in Maschke, van der Schaft & Breedveld [205],
Maschke & van der Schaft [207]. See also Blankenstein [39]. The formulation
of RLC-circuits alluded to in Remark 6.8.8 can be found in van der Schaft &
Maschke [297]; with the notion of Kirchhoff–Dirac structure in (6.204) given
in van der Schaft & Maschke [298].

28. The scattering representation of Dirac structures as dealt with in Sect. 6.9 can be
found in Cervera, van der Schaft & Banos [63]. The proof of Proposition 6.9.2
is based on ideas from Courant [72].

29. Proposition 6.9.5 is originally due to Hogan & Fasse [128].
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30. Many of the definitions and results in this chapter can be extended to distributed-
parameter port-Hamiltonian systems; see e.g., van der Schaft [296], Duindam,
Macchelli, Stramigioli & Bruyninckx [93], van der Schaft & Jeltsema [291],
and the references quoted therein.

31. For a theory of symmetries of port-Hamiltonian systems, and the resulting reduc-
tion and existence of Casimirs, see e.g., van der Schaft [280], Blankenstein &
van der Schaft [41], Merker [218].

32. An extension of the port-Hamiltonian formalism to thermodynamical systems
can be found in Eberard, Maschke & van der Schaft [94].
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