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Artificial Intelligence / Intelligence artificielle

Radiogenomic Models Using Machine
Learning Techniques to Predict EGFR
Mutations in Non-Small Cell Lung Cancer

Jay Kumar Raghavan Nair, MD1,2,3 , Umar Abid Saeed, MD1,3,
Connor C. McDougall, MSc4, Ali Sabri, MD, Mmed, FRCPC5,6,
Bojan Kovacina, MD, CM, FRCPC6, B. V. S. Raidu, MSc7,
Riaz Ahmed Khokhar, MS1,8, Stephan Probst, MD9,
Vera Hirsh, MD, FRCPC10, Chankowsky Jeffrey, MD, CM, FRCPC1,
Léon C. Van Kempen, MD11,12, and Jana Taylor, MD, CM, FRCPC1

Abstract
Background: The purpose of this study was to build radiogenomics models from texture signatures derived from
computed tomography (CT) and 18F-FDG PET-CT (FDG PET-CT) images of non-small cell lung cancer (NSCLC) with
and without epidermal growth factor receptor (EGFR) mutations. Methods: Fifty patients diagnosed with NSCLC
between 2011 and 2015 and with known EGFR mutation status were retrospectively identified. Texture features extracted
from pretreatment CT and FDG PET-CT images by manual contouring of the primary tumor were used to develop multivariate
logistic regression (LR) models to predict EGFR mutations in exon 19 and exon 20. Results: An LR model evaluating FDG
PET-texture features was able to differentiate EGFR mutant from wild type with an area under the curve (AUC), sensitivity,
specificity, and accuracy of 0.87, 0.76, 0.66, and 0.71, respectively. The model derived from CT texture features had an AUC,
sensitivity, specificity, and accuracy of 0.83, 0.84, 0.73, and 0.78, respectively. FDG PET-texture features that could
discriminate between mutations in EGFR exon 19 and 21 demonstrated AUC, sensitivity, specificity, and accuracy of 0.86, 0.84,
0.73, and 0.78, respectively. Based on CT texture features, the AUC, sensitivity, specificity, and accuracy were 0.75, 0.81, 0.69,
and 0.75, respectively. Conclusion: Non-small cell lung cancer texture analysis using FGD-PET and CT images can identify
tumors with mutations in EGFR. Imaging signatures could be valuable for pretreatment assessment and prognosis in
precision therapy.

Résumé
Contexte : L’objectif de cette étude était de construire des modèles de radiogénomique à partir des signatures texturales
dérivées de clichés acquis par tomodensitométrie (TDM) et tomographie par émission de positons couplée à la tomodensi-
tométrie au fluorodésoxyglucose (TEP/TDM 18-FDG) de cancer du poumon non à petites cellules (CPNPC), avec ou sans
mutation du récepteur du facteur de croissance épidermique (EGFR).Méthodes :Cinquante patients porteurs d’un diagnostic de
CPNPC entre 2011 et 2015 et d’une mutation de l’EGFR ont été identifiés de manière rétrospective. Les caractéristiques
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texturales extraites des clichés de TDM et de TEP/TDM 18-FDG avant traitement par tracé manuel des contours des tumeurs
primaires ont été exploitées pour mettre au point des modèles de régression logistique (RL) multivariés afin de prédire les
mutations des exons 19 et 21 du gène codant pour l’EGFR. Résultats :Un modèle LR d’analyse des caractéristiques texturales de
TEP/TDM 18-FDG a permis de différencier les mutants de l’EGFR des types sauvages avec une aire sous la courbe (ASC), une
sensibilité, une spécificité et une précision de respectivement 0,87, 0,76, 0,66 et 0,71. Le modèle dérivé des caractéristiques
texturales de la TDM présentait une ASC, une sensibilité, une spécificité et une précision de respectivement 0,83, 0,84, 0,73 et
0,78. Les caractéristiques texturales de TEP/TDM 18-FDG pouvant discriminer les mutations de l’exon 19 et de l’exon 21 de
l’EGFR arboraient une ASC, une sensibilité, une spécificité et une précision de respectivement 0,86, 0,84, 0,73 et 0,78. Selon les
caractéristiques texturales de la TDM, l’ASC, la sensibilité, la spécificité et la précision étaient respectivement de 0,75, 0,81, 0,69
et 0,75.Conclusion : L’analyse de la texture du cancer du poumon non à petites cellules (CPNPC) sur des clichés acquis par TEP/
TDM 18-FDG et TDM peut permettre d’identifier les tumeurs porteuses de mutations du gène de l’EGFR. Les signatures
inhérentes aux clichés d’imagerie pourraient constituer de précieux outils pour l’examen préthérapeutique et le pronostic lors de
l’établissement d’un traitement de précision.

Keywords
epidermal growth factor receptor (EGFR), non-small cell lung cancer ( NSCLC), radiomics, machine-learning

Introduction

Lung cancer remains the leading cause of cancer deaths both

men and women in Canada. Non-small cell lung cancers

(NSCLCs) account for 85% to 90% of all lung cancer cases.1

Conventional management of NSCLC involves resection of the

tumor, followed by chemotherapy, radiotherapy, or combina-

tion therapy if surgical resection is not feasible.2 Prognosis is

usually dependent on the stage of the disease at the time of the

diagnosis. However, it has been increasingly observed that

patients with same stage of the disease have different out-

comes. Different driver mutations have been identified in

NSCLC, including oncogenic mutations in epidermal growth

factor receptor (EGFR), BRAF, ROS1, MET, and ALK.3 Epi-

dermal growth factor receptor mutations are more frequently

detected in never smokers, and the frequency of EGFR-

mutated NSCLC has been shown to correlate with the ethnicity

of the patient.4 Landmark clinical trials have demonstrated that

patients with these mutations treated with targeted biological

therapies such as tyrosine kinase inhibitors had a better

progression-free survival, better tolerance to therapy, and qual-

ity of life than those patients treated with placebo or conven-

tional chemotherapies.5-10 Deletions within exon 19 and

mutations in exon 21 have been shown to be the most frequent

EGFR-TKI (tyrosine kinase inhibitors) sensitive mutations

(80%) in NSCLC.11

Detection of the activating mutation in driver mutations for

the selection of a targeted therapy requires DNA analysis of a

tumor biopsy. However, a representative tissue sample cannot

always be obtained because the tumor cannot always be biop-

sied. Also, random sampling does not always allow for ade-

quate assessment of the phenotypic or genetic variation within

a tumor, due to tumor heterogeneity12 Potentially, a liquid

biopsy could be obtained to determine mutations in plasma.

But, as demonstrated for EGFR, mutations can be missed

when the tumor is small and may not shed a sufficient amount

of DNA in the plasma circulation.13 Potential alternative non-

invasive methods which could aid in targeted treatment

planning for lung cancer patients are needed. Cross-

sectional imaging facilitates evaluation of the entire lesion,

compared to the targeted segment of the lesion on needle

biopsy. However, studies demonstrating the relationship

between morphological/qualitative computed tomography

(CT) scan features of the tumor and the presence/absence of

EGFRmutations, based on semantic features that demonstrate

interobserver variability.14-16 Therefore, there is a need for a

robust quantitative model to predict EGFR mutations in exon

19 and 21 in NSCLC lung cancer patients.

Radiomics refers to the extraction and analysis of quantita-

tive imaging features with high output from medical images

obtained from CT, positron emission tomography, or magnetic

resonance imaging.17 Radiogenomics is the combination of

radiomic features with genomic data.18 We hypothesize that

using texture signatures from CT and 18F-FDGPET features

can differentiate between lung cancer with wild-type EGFR

and exon 19- or exon 21-mutated EGFR. The goal of this study

is to develop an image texture biomarker for the detection of

different EGFR mutations.

Materials and Methods

Patient Selection

A retrospective chart review of 80 patients with lung cancer

diagnosed and treated at our institution, between 2011 and

2015 was performed. Fifty patients were identified who had

biopsy-proven NSCLC, pretreatment contrast-enhanced CT

and FDG PET-CT of the chest, and known EGFR mutation

status. Exclusion criteria included patients with small primary

tumors (less than 5 mm in maximum diameter), significant

air bronchograms, and breathing artifacts, which would have

precluded accurate texture analysis (Figure 1). Approval from

the local institution’s research ethics board was obtained

which waived off informed consent (MM-CODIM-MBM-

CR15-53).
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Imaging Acquisition and Segmentation

Contrast-enhanced CT and 18F-FDG PET-CT of the chest

were performed according to standard oncology protocol of

the institution. All scans of the chest were obtained using one

of the following CT scanners: Lightspeed VCT 64-slice or 16-

slice CT scanners (GE Healthcare, Milwaukee, Wisconsin),

Revolution 64-slice CT scanner (GE Healthcare), and

Somatom128-slice CT scanner (Siemens Healthcare, For-

chheim, Germany). The examinations were obtained in

inspiration, 30 seconds after administration of 60 ml of non-

ionic iodinated contrast material (Omnipaque300 I/mL; GE

Healthcare, Princeton, NJ) at the rate of 2 mL/s and covered

the region from the lung apices to the adrenal glands. FDG

PET-CT was performed on a single GE Discovery ST hybrid

PET/CT scanner; images were obtained approximately 60 to

90 minutes following 15 mCi of intravenous injection of

FDG. We employed a compensation method to correct for the

variations of radiomic features caused by using different CT

scanners and reconstruction techniques.19

Using the reformatted soft tissue algorithm contrast-

enhanced CT axial images with 5-mm slice thickness and

transverse FDG PET-CT images containing SUV > 2.5, con-

tours defining 3D tumor regions for each patient were manu-

ally drawn slice-by-slice on both CT and FDG PET-CT

images by Thoracic imaging fellows (J.K.R.N.) and

(U.A.S.) working in consensus. Contouring was then vali-

dated for each segmented region of interest, independently

by fellowship-trained Thoracic radiologist (J.T). Contouring

was done using OsiriX (Pixmeo SARL, Geneva, Switzerland)

software.20 Both OsiriX and DICOM Anonymizer Pro were

run on an iMac 2700 4.0 GHz IntelCorei7 with Retina 5k

display. Figure 2 demonstrates representative images of

segmentation.

Standardization of Molecular Testing

Tissue for histopathological examination was obtained using

endobronchial ultrasound–guided needle biopsy from 38

Figure 1. Flowchart of patients.
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patients and surgically resected specimens from 12 patients.

Studies comparing EGFR mutation status of biopsies and

resection specimens have demonstrated high concordance

between the presence of an EGFR exon 19 deletion or

L858R mutation in the biopsy and surgical resection speci-

men.21-23 Recent guidelines on molecular testing in NSCLC

by College of American Pathologists (CAP)/International

Association for the Study of Lung Cancer/Association recom-

mend that EGFR testing of multiple different areas within a

single tumor is unnecessary.24

Histological examination of hematoxylin and eosin–

stained slides derived from formalin fixed and paraffin

embedded (FFPE) lung samples was performed by expert

pathologists to verify the diagnosis and to assess the ade-

quacy of the tissue for the study. No retrospective slide

review was performed. Tumor tissue was then manually

macrodissected from unstained sections. A Cobas DNA Sam-

ple preparation kit (Roche, Risch-Rotkreuz, Switzerland) was

used to manually isolate DNA from FFPE. DNA was quan-

tified and stored at �4�C. EGFR mutation analysis was per-

formed with the Cobas EGFR mutation test v2 (Roche)

according to the supplier’s instructions. All tests were

performed in a routine diagnostic setting in a CAP/CLIA

compliant laboratory.

Texture Features

Each contour was imported into in-house-developed Matlab

texture-feature software for texture analysis. Texture features

(326) were extracted from the contoured primary tumor on CT

and FDG PET-CT images. These features can be classified into

3 separate sets: (1) first-order statistics (34 features), (2)

volume-based statistics (6 features), and (3) higher order sta-

tistical textural information (286 features).

First-order statistics are calculated fromall voxels in the region

of interest and represent common measurements such as mean

and standard deviation, among others. Volume-based features

quantify the size and shape of the region of interest. Texture

features are a broad spectrumof higher order statistical operations

that characterize the heterogeneity of the region in 3 dimensions.

Not all 326 features were included in the machine learning

models implemented later in this manuscript. Linear discrimi-

nant analysis (LDA) was implemented to reduce the large set of

statistical features to a subset of the most significant features,

by ranking the features in order of their discriminative impor-

tance. This was done in to minimize overfitting problems.

These features (Appendix A) were then used to train a machine

learning algorithm to classify the desired binary groups.

Machine Learning Model

Top ranking texture features were computed in 100 bootstrap

training sets and then incorporated into multivariate logistic

regression (LR) model for prediction of EGFR status and sub-

type of exon deletion using the equation:

Pðyi ¼ 1=xiÞ ¼ exp½gðxiÞ�
1þ exp½gðxiÞ� gðx1Þ ¼ b0 þ

Xp

j¼1

bjxij

for i ¼ 1, 2 . . . . . . . . . ., N.
The first portion of the equation is the LR function which

was simplified by transforming it into a log function by

derivation.

P is the probability of the outcome status, i is the number of

patients, xi is the texture parameter (independent variable),

g(x1) is the dependent variable which determines probability

of the outcome status, b0 is the constant for each texture para-

meter (slope), p is the total number of parameters, and j is the

parameter number.

Logistic regression is often used in small data sets due to

their resistivity to overfitting. Due to the small sample size of

our study, LR minimized overfitting and provided reliable

cross-validated accuracy and area under the curve (AUC). In

our study, LR was implemented to discriminate between 4

binary groups. For each binary group, the data sets were trained

with increasing numbers of texture features, determined by

LDA. The optimal number of features was determined by vary-

ing the number of features included in the LR model until

Figure 2. Representative segmentation images for texture analysis.
Segmented contrast-enhanced axial CT (A) and Axial FDG PET-CT
(B) images of the left upper lobe lung mass in a 65-year-old male.
CT, computed tomography.
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cross-validated accuracy was maximized. Due to the asymme-

try between the positive and negative binary groups, a correc-

tion was required to ensure the models were not biased toward a

certain binary subset. This was corrected by oversampling each

group to equalize the positive and negative subclasses.

Receiver Operating Characteristic Analysis
and Leave-One-Out Cross-Validation

Receiver operating characteristic (ROC) curves were produced

for each texture feature threshold. The AUC of an ROC curve

was used to evaluate quality and performance of the derived

machine learning model. However, this method often cannot

detect overfitting, especially in small data sets. When overfit-

ting occurs, the model classifies the training data set well but

cannot be applied to new data sets. Therefore, to minimize

overfitting, the leave-one-out cross-validation (LOOCV)

approach was performed to train the models. The LOOCV

model analyzes the data with one less than the total patient

population. Then, the patient left out of the training group is

tested with the fitted model to determine whether it can accu-

rately classify the patient into the correct binary class. This is

completed for all patients in the data set, ‘‘leaving one out’’

for each iteration. The accuracy was then calculated consid-

ering results from all iterations. This accuracy tests the var-

iance in the model by assessing overfitting. This was the

primary statistic used when determining a texture feature

dimensionality threshold.

Multiple Methodology Points and STARD Guidelines

The study was designed to meet the ‘‘Standards for Reporting

Diagnostic Accuracy Studies’’ (STARD) guidelines. Multiple

statistics were generated in the current work (sensitivity, spe-

cificity, accuracy, and AUC) to assess the performance of tex-

ture image analysis technique. The tests were compared with a

reference standard (needle biopsy/surgical resection) to assess

performance. The reference standard has been described in the

paragraph on standardization of molecular testing. The perfor-

mance statistics were optimized using a test positivity cutoff by

completing an ROC analysis. In addition, the performance sta-

tistics were assessed using a cross-validation technique that has

been used in the literature and complies with the STARD stan-

dards.25 Confidence intervals for each performance statistic

were reported to display the associated uncertainty in the anal-

ysis. A DeLong AUC comparative test was completed between

the 2 techniques attempted in the current study, which was used

to determine whether the results from the 2 techniques were

statistically distinct.26

Results

A total of 50 patients, 32 males and 18 females, with NSCLC

who met the selection criteria, were included in the analysis.

Twenty-one patients had an EGFR mutation. For 29 patients,

no EGFR mutation was identified in EGFR and was classified

as wild type. Among the EGFR mutation-positive cases, 11

cases had an exon 19 deletion and 10 cases had an exon 21

mutation. Patient characteristics are summarized in Table 1.

The patients were divided into 4 binary groups, 2 binary

groups (1 each for CT and for FDG PET-CT) to determine

EGFR-mutant and wild types and other 2 binary groups (one

each for CT and for FDG PET-CT) to differentiate between

exon 19-deleted and exon 21-mutated EGFR using texture fea-

tures and machine learning models.

Linear discrimination analysis was used to rank each tex-

ture feature individually in terms of its discriminatory impor-

tance. The top 10 most distinctive texture features for EGFR

mutant versus wild-type binary groups are listed in Table 2,

Table 1. Patient Characteristics.

Factor Number Percentage

Sex
Male 32 64%
Female 18 35%
Smoking
Current smoker 10 20%
Former smoker 25 50%
Nonsmoker 15 30%
EGFR mutation
Negative 29 58%
Positive 21 42%
Exon 19 deletion 11 52%
Exon 21 mutation 10 48%

Abbreviation: EGFR, epidermal growth factor receptor.

Table 2. Top 10 Selected Features for EGFR-Mutant and Wild-Type
Groups.

Texture
Features Top-Ranked Features

CT Texture
Features

NGTDM_600_Complexity
GLRL_Saggital_30_ShortRunEmphasis
GLRL_Saggital_30_ShortRunHighGrayLevelEmphasis
GLRL_Saggital_120_ShortRunHighGrayLevelEmphasis
GLRL_Coronal_120_ShortRunHighGrayLevelEmphasis
GLRL_Coronal_30_ShortRunEmphasis
GLRL_Saggital_120_ShortRunEmphasis
GLRL_Axial_30_ShortRunEmphasis
GLRL_Coronal_120_ShortRunEmphasis
FirstOrder_HistogramBin2

PET-CT
Texture
Features

NGTDM_600_Complexity
GLRL_Saggital_30_ShortRunEmphasis
GLRL_Saggital_30_ShortRunHighGrayLevelEmphasis
GLRL_Saggital_120_ShortRunHighGrayLevelEmphasis
GLRL_Coronal_120_ShortRunHighGrayLevelEmphasis
GLRL_Coronal_30_ShortRunEmphasis
GLRL_Saggital_120_ShortRunEmphasis
GLRL_Axial_30_ShortRunEmphasis
GLRL_Coronal_120_ShortRunEmphasis
FirstOrder_HistogramBin2

Abbreviations: CT, computed tomography; EGFR, epidermal growth factor
receptor.
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while the top 4 most distinctive texture features mutation on

exon 19 deleted versus exon 21-mutated EGFR mutant

patients are listed in Table 3. As detailed in the methodology,

the maximum number of texture features included was deter-

mined by maximizing cross-validated accuracy. This value

was not the same for each binary group or each machine

learning model. To make one-to-one comparisons, the aver-

age threshold was determined for all models/binary groups.

This threshold was 10 + 2 texture features for EGFR and 4

+ 1 texture features for mutation-specific subsets, where the

error was determined from the standard deviation of all

thresholds averaged. This standard deviation was converted

into uncertainty when reporting AUCs and cross-validated

accuracies.

Logistic regression was used as a machine learning model to

discriminate between the various binary groups. For the EFGR

mutant versus wild type, AUC of the model derived from FDG

PET-CT texture features measured 0.8713 + 0.05, slightly

more than 0.8307 + 0.07 for the model derived from CT

texture features (Figures 3 and 4). We then proceeded to

Table 3. Top 4 Selected Features for Exon 19-Deleted and Exon 21-
Mutated EGFR.

Texture Features Top-Ranked Features

CT Texture Features GLCM_coronal_NL60_corrm_m
GLCM_saggital_NL60_corrm_m
GLCM_saggital_NL60_contr_m
GLCM_coronal_NL60_contr_m

PET-CT Texture Features LBP_Hist4_5
LBP_Mean_5
LBP_Hist6_3
LBP_Hist5_5

Abbreviations: CT, computed tomography; EGFR, epidermal growth factor
receptor.

Figure 3. EGFR mutation status using PET-CT Texture features. A, Tabulated results for the prediction of EGFR mutations with texture
features derived from PET-CT images. B, Corresponding receiver operator characteristic curve. C, Final multivariable logistic regression (PET-
CT) model for EGFR status. Blue dots correspond to EGFR mutation-negative status, while red dots imply EGFR mutation-positive status. Error
bars represent the standard deviation of the multivariable model response for each patient over all 100 bootstrap samples, on a 95% confidence
interval. EGFR indicates epidermal growth factor receptor. CT, computed tomography; EGFR, epidermal growth factor receptor.
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analyze radiomics features of the specific mutations within the

EGFR mutant group. In this subgroup also, AUC of the model

derived from FDG PET-CT texture features measured 0.860+
0.07 and was higher than to 0.750+ 0.04 for the model derived

from CT texture features (Figures 5 and 6). Thus, texture fea-

tures derived from FDG PET-CT imaging had higher AUC

compared to CT, both for identification of EGFR mutation and

for differentiating between the mutations in exon 19 and 21. A

DeLong AUC test was also completed to compare the AUCs of

2 ROC analyses and determine whether one is statistically

better than the other.26 This analysis determined the differences

between PET/CT and CT results were not significant (P > .05).

However, the trend pointing toward PET/CT is promising but

was limited by the small data set to statistically determine

whether PET/CT is better than CT. For both PET/CT and CT

cases, the AUCs calculated indicate the methodology achieves

high diagnostic accuracy.

Discussion

In our study, quantitative texture features were extracted from

CT and FDG PET-CT images from NSCLC were analyzed and

correlated with EGFR mutation status. Additional prediction

models were developed, one each for FDG PET-CT and CT to

distinguish between EGFR mutations in exons 19 and 21. Tex-

ture features derived from FDG PET-CT imaging had higher

AUC compared to those derived from CT for identification and

distinction of the EGFR mutations. It can be argued that this

difference may be related to better tumor segmentation on FDG

PET-CT scans as the FDG avid areas are confined to the bulk of

the tumor. In addition, on CT images, despite all efforts to

accurately contour the lesions, some extra-tumoral tissue con-

sisting of consolidated/atelectatic lung may have been segmen-

ted out along with the tumor.

Several studies have previously demonstrated the potential

ability of morphological imaging characteristics to detect

Figure 4. EGFR mutation status using CT Texture features. A, Tabulated results for the prediction of EGFR mutations with texture features
derived from CT images. B, Corresponding receiver operator characteristic curve. C, Final multivariable logistic regression (CT) model for
EGFR status. Blue dots correspond to EGFR mutation-negative status, while red dots imply EGFR mutation-positive status. Error bars represent
the standard deviation of the multivariable model response for each patient over all 100 bootstrap samples, on a 95% confidence interval. CT,
computed tomography; EGFR, epidermal growth factor receptor.
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the presence/absence of clinically significant mutations from

CT27-32 and FDGPET-CT images.33 Chen et al showed that

conventional CT features, including emphysema, degree of

primary tumor lobulation, lymph node size, and status facili-

tated in predicting the presence of EGFRmutations in advanced

pulmonary adenocarcinoma.28 Similarly, a systematic review

andmeta-analysis ofCTmorphology and clinical characteristics

that predict the risk of EGFRmutation in NSCLC corroborated

that the presence of ground glass opacity (GGO), air broncho-

gram, pleural retraction, and vascular convergence were signif-

icant risk factors of EGFRmutation in NSCLC.32 These studies

only addressed qualitative semantic features that correlate with

the presence of an EGFR mutation. The process of semantic

feature annotation is operator-dependent with significant inter-

observer variability. Furthermore, features to quantify tumoral

heterogeneity were not considered.

To the best of our knowledge, our study is the first to com-

pare radiomics features extracted from CT and FGD PET-CT

images for the identification of specific EGFR mutations in

NSCLC. This study was designed to build models from texture

features to predict EGFR mutation status as well as differen-

tiating mutations in exons 19 and 21. Another feature is that our

cohort is composed of a heterogeneous population from North

America compared to homogenous population from South East

Asia in prior studies.34-36 We also emphasized on robustness,

stability, and reproducibility of the textural features and pre-

diction models by employing LDA, LOOCV, and multivariate

LR. The measurement of radiomic features over the entire

tumor volume represents better tumor heterogeneity and is

more accurate in comparison to single image with largest

cross-sectional area.37 Therefore, we sampled the entire

cross-section of the tumor in multiple slices (3D), compared

to contouring only the largest cross-sectional area of the lesion

on single slice (2D) in the other studies.36

Evidence for a strong correlation between texture analysis

and driver mutation in NSCLC, including EGFR, is lim-

ited.16,34-36,38-42 Modest performance was demonstrated by

combining clinical and radiomic features as risk factors for

Figure 5. Comparison of imitations in EGFR exon 19 and 21 in EGFR mutant-positive patients using PET-CT Texture features. A, Tabulated
results for the prediction of mutations in EGFR exon 19 and 21with texture features derived from PET-CT images. B, Corresponding receiver
operator characteristic curve. C, Final multivariable logistic regression (PET-CT) model for point mutations in EGFR exon 19 and 21 in EGFR
mutant-positive patients. Blue dots correspond to mutation on EGFR exon 21, while red dots imply deletions in EGFR exon 19. Error bars
represent the standard deviation of the multivariable model response for each patient over all 100 bootstrap samples, on a 95% confidence
interval. CT, computed tomography; EGFR, epidermal growth factor receptor.
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EGFR mutation status and subtypes by Mei et al with AUC of

0.664 for EGFRmutation and 0.655 and 0.675 for exons 19 and

21 mutations, respectively.34 In a retrospective study, combina-

tion of clinical history, standard imaging features, and radiomics

with multivariable LR, and ROC analysis were utilized to predict

histology and EGFR status.37 Entropy and kurtosis were found to

be the 2 most important radiomic features in distinguishing

EGFR mutant from wild type. Comparison of the predictive

performance of radiomics signature and CT morphological fea-

tures for EGFR status by Tu et al demonstrated better perfor-

mance for predicting EGFR mutant NSCLC than combined

clinical and morphological features.40 The CT and FDG-PET-

CET texture features assessed in our study were found to have an

improved AUC for the detection of an EGFRmutation (0.83 and

0.87, respectively) and improved AUC for the detection of the

type of EGFRmutations (0.75 and 0.86, respectively) compared

to the previous studies. The non-semantic textures features pre-

sented here improves the potential to predict the presence of an

EGFR mutation by image analysis.

The limitations of our study include the retrospective nature

of the analysis leading to patient selection bias and the rela-

tively small sample size. Bootstrapping and other techniques

were used to simulate different distributions of patient samples

to overcome this shortcoming. However, stability and reprodu-

cibility of the textual features in our study need to be corrobo-

rated using a large prospective patient cohort in a multicenter

study. Multi-class training of texture features was also not

possible, so the analysis was limited to binary outcomes. As

the study was retrospective in nature, imaging protocols were

not standardized for all the patients resulting in different acqui-

sition and reconstruction parameters. Extraction of texture

would be significantly improved if a uniform data set is

acquired. Although manual segmentation can be reliable, its

reproducibility is questionable with available segmentation

tools. However, automated segmentation software with high

repeatability also has limitations in delineating margins in

lesions with GGO. Finally, the genetic profiling was limited

to the EGFR mutation and we did not analyze texture features

Figure 6. Comparison of point mutations in EGFR exon 19 and 21 in EGFR mutant-positive patients using CT Texture features. A, Tabulated
results for the prediction of point mutations in EGFR exon 19 and 21 in EGFR mutant-positive patients with texture features derived from CT
images. B, Corresponding receiver operator characteristic curve. C, Final multivariable logistic regression (computed tomography) model for
point mutations in EGFR exon 19 and 21 in EGFR mutant-positive patients. Blue dots correspond to mutation in EGFR exon 21, while red dots
imply EGFR exon 19 deletion. Error bars represent the standard deviation of the multivariable model response for each patient over all 100
bootstrap samples, on a 95% confidence interval. CT, computed tomography; EGFR, epidermal growth factor receptor.
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of other lung adenocarcinoma mutations, such as ALK and

KRAS mutations.

Conclusion

In conclusion, the radiomics signature extracted from diagnostic

CT and PET-CT images has potential as an imaging biomarker

for noninvasively predicting EGFR mutations in NSCLC.

Radiomic features from PET-CT imaging were more effective

compared to CT imaging, both for identification of EGFRmuta-

tion and for differentiating between exon 19 and 21 mutations.

However, an integrated model derived from CT morphological

features, radiomics signature, and clinical data from a large pro-

spective multicenter trial will be required to validate our findings

and to embed this methodology in routine diagnostic care.

Appendix A

Definitions

GLCM (Gray-Level Co-Occurrence Matrix)

The GLCM functions characterize the texture of an

image by calculating how often pairs of pixel with spe-

cific values and in a specified spatial relationship occur in

an image,

GLRLM (Gray-Level Run Length Matrix)

The GLRLM quantifies gray level runs, which are defined

as the length in number of pixels, of consecutive pixels that

have the same gray level value.

NGTDM (Neighborhood Gray-Tone Difference Matrix)

A Neighboring Gray Tone Difference Matrix quantifies the

difference between a gray value and the average gray value of

its neighbors within distance.

LBP (Local Binary Pattern)

Local binary pattern is a type of visual descriptor for clas-

sification in computer vision. Local binary pattern measures

the homogeneity of texture by determining the number of tran-

sitions from intensities higher than each central pixel to inten-

sities lower than that central pixel.
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