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Abstract Surface conductance (Gs) is a key parameter in estimating land surface evapotranspiration (ET)
and difficult to determine. Here we proposed an approach for determining Gs according to the stomatal
conductance of sunlit and shaded leaves that is estimated from their respective gross primary production
(GPP) with the Ball‐Berry model. Central to this approach, GPP is separately simulated for sunlit and shaded
leaves with a revised two‐leaf light use efficiency model. We tested the approach at 17 FLUXNET
sites with seven different vegetation types. The revised two‐leaf light use efficiency model outperforms its
predecessor in estimating GPP at most sites. As to Gs estimation, although our proposed algorithm has
higher Akaike information criterion values than has the model estimatingGs using vegetation indices, it was
able to capture Gs variations at all sites, while models estimating Gs using leaf area index and vegetation
indices performed poor at some sites. The proposed algorithm also improves ET estimation, indicated by
lower Akaike information criterion, higher determination coefficient (R2), and lower root mean square error
of simulated daily ET for both calibration and validation data sets. This study demonstrates the usefulness
of differentiating sunlit and shaded leaves in improving canopy conductance and ET estimates.

1. Introduction

Evapotranspiration (ET) is a key exchange process of mass and energy between the atmosphere and land
surface (Chapin et al., 2011; Marshall et al., 2016). It plays a critical role in the terrestrial water cycle, as
the land surface returns approximately 60% of precipitation back to the atmosphere at the global scale
(Knohl et al., 2003; L'vovich et al., 1990). In parallel with global warming, ET has been enhancing in many
regions of the world (Huntington, 2006; Newman et al., 2006). In order to understand the budget and
dynamics of the global water cycle, accurate estimation of ET at different spatiotemporal scales becomes
seriously crucial (Teuling et al., 2009).

Remote sensing offers an effective and convenient way for estimating ET. It embraces two typical
approaches: (i) the vegetation indices (VIs) method, to estimate ET using empirical models driven by VI
and meteorological variables (Glenn et al., 2010, 2011; Marshall et al., 2016); and (ii) the energy‐balance
method, to estimate ET using surface energy balance equations or derived physical models (Allen et al.,
2005; Senay et al., 2007). The Penman‐Monteith (PM) model is one of such physical models and has been
widely applied (Cleugh et al., 2007; Mu et al., 2007; Yebra et al., 2013). It regards the soil‐plant‐atmosphere
continuum as a “big leaf” that exchanges water vapor, momentum, and heat with outside as a whole and
integrates the theories of aerodynamics and energy balance (Leuning et al., 2008; Monteith, 1965; Xin
et al., 2003). Unlike other models, the PM model does not take land surface temperature or its components
as inputs (Leuning et al., 2008) and blends many climate and canopy variables.

Surface conductance (Gs) is a key parameter in the PM model and not directly measurable. It is closely
related to leaf area index (LAI), soil moisture, temperature, atmospheric wetness, and leaf physical proper-
ties. Yebra et al. (2013) and Mu et al. (2007) realized reasonable estimates of ET using Gs empirically quan-
tified from VIs and LAI, respectively. In vegetation‐dominated areas, Gs approximately equals to its major
component, the conductance of canopy (Gc; Kelliher et al., 1995). Gc could be used as a proxy of Gs in calcu-
lating ET under a dry canopy condition (Irmak et al., 2008; Yebra et al., 2013). Previous studies indicated that
Gc could be properly estimated from canopy gross primary production (GPP; Ball et al., 1987; Hu et al., 2009).
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Reliable estimation of GPP is a prerequisite for quantifying Gc. Recent studies suggest that differentiation of
sunlit and shaded leaves is necessary for improving canopy GPP estimation, since these two groups of leaves
have differences in radiation absorption and contributions to canopy carbon assimilation (Norman, 1980;
Sinclair et al., 1976). Dai et al. (2004) proposed that the separation of canopy into sunlit and shaded leaves
could greatly remedy overestimates of CO2 and water vapor fluxes. This strategy was also adopted in the
Community Land Model 4.0 (Dickinson et al., 2006).

The sunlit and shaded leaves separation approach is also vital for estimating Gs and ET (Irmak et al.,
2008; Whitehead et al., 1981). Irmak et al. (2008) empirically estimated Gs as the area‐weighted average
of the sunlit and shaded leaf stomatal conductance (gs), which was mainly driven by the photosynthetic
photon flux density. Zhang et al. (2011) estimated Gs as the summation of the conductance of sunlit and
shaded leaves. The total conductance of sunlit leaves was calculated as the product of gs per unit of leaf
area and total area of these leaves. The total conductance of shaded leaves was calculated through inte-
grating gs of shaded leaves in different layers within the canopy. For both sunlit and shaded leaves, gs
was quantified using the Jarvis model (Jarvis, 1976). In these studies, gs of sunlit and shaded leaves
was empirically estimated. Uncertainties in estimated gs would be definitely propagated into
Gs estimation.

In this study, we used Gc as a proxy of Gs and proposed a new method for estimating Gs from gs of the
sunlit and shaded leaves, which was determined on the basis of their respective GPP simulated with a
revised two‐leaf light use efficiency (TL‐LUE) model. The estimated Gs was then used to calculate ET,
which was validated against measurements at 17 FLUXNET sites with seven different vegetation types.
The improvements of our algorithm in calculating Gs and ET over VI‐based and LAI‐based methods
developed by Yebra et al. (2013) and Mu et al. (2007) were also assessed. The objectives of this study
are (1) to propose a new method for estimating Gs; (2) to validate the proposed Gs algorithm using
Gs derived from tower‐based measurements; and (3) to investigate whether the new Gs algorithm can
improve the simulation of ET.

2. Data and Methods
2.1. Data
2.1.1. FLUXNET Data
The FLUXNET2015 database (http://fluxnet.fluxdata.org/) provides free data sources for model calibration
and validation. We selected 17 sites with data covering at least 6 years (Table 1). At these sites, landscape is
relatively homogenous. Around the flux tower at a radius of 1 km, the area proportion of a dominant land
cover type is above 50%. The dominant land cover types around these towers include cropland (CRO), decid-
uous broadleaf forest (DBF), evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), grassland
(GRA), woody savannas (WS), and savannas (SAV) according to the International Geosphere‐Biosphere
Programme classification scheme (Hansen & Reed, 2000). Half‐hourly observed meteorological data as well
as carbon and water fluxes were used in this study. These data were well preprocessed (Moffat et al., 2007;
Papale et al., 2006).

Tower‐basedGs was derived from observed ET by rearranging the PM equation.We aggregated the half‐hour
meteorological and flux data in daylight hours to daily values. Daylight hours were decided according to the
incoming shortwave radiation (>5 W/m2; Yebra et al., 2013). In order to reduce the uncertainties in the
estimated Gs, days were excluded if there were rainfall in current and previous 2 days. A day without
measured data around noon was also excluded. With an assumption that evaporation only accounts for a
small fraction, ET can be calculated as follows:

λE ¼
εAþ ρCP

γ

� �
DGa

ε þ 1þ Ga
GS

(1)

where λE (W/m2) is the latent heat flux, equivalent to ET; Ga (m/s) is the aerodynamic conductance
changing with wind speed and vegetation height (Monteith & Unsworth, 2013); ε = s/γ, where s (Pa/k)
represents the slope of the saturation vapor pressure versus temperature curve and γ (Pa/k) is the
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psychometric constant; A= Rn− G, where Rn (W/m2) is the net absorbed radiation and G (W/m2) is the soil
heat flux; ρ (kg/m3) is the air density; Cp (J·kg

−1·K−1) is the specific heat capacity of air; and D (Pa) is the
atmospheric pressure.

Rearranging equation (1), Gs is estimated as follows:

GS ¼ λEGa

εA− ε þ 1ð ÞλE þ ρCP
γ

� �
DGa

(2)

In equation (1), Ga is calculated as follows:

Ga ¼ k2U

In z−d
zO

� �
In z−d

zOH

� � (3)

where k (= 0.4) is the von Karman constant, U (m/s) is the wind speed at the measurement height (Z, m), d
(m) is the zero‐plane displacement, ZO (m) is the aerodynamic roughness corresponding to the wind speed
profile, and ZOH (m) corresponding to the temperature profile.

Following Monteith and Unsworth (2013), the last three variables in equation (3) were set as: d = 2h/3,
ZO = 0.123h, and ZOH = 0.0123h, where h (m) is the canopy height (Table 1).
2.1.2. MODIS Data
The C6 version of Moderate Resolution Imaging Spectroradiometer (MODIS) LAI (MCD15A3H) and nadir
bidirectional reflectance distribution function (BRDF)‐adjusted reflectance (MCD43A4) were used here. The
daily 500‐mMCD43A4 has been corrected by the BRDF to the nadir direction, which reduced uncertainties
in calculated normalized difference vegetation index (NDVI; Rouse et al., 1973), enhanced vegetation index
(EVI; Huete et al., 2002), crop factor (Kc; Guerschman et al., 2009; Huete et al., 2002), and albedo (Liang,
2001). NDVI, EVI, and Kc were smoothed using the locally adjusted cubic‐spline capping method (Chen
et al., 2006) to remove the unrealistic short‐term fluctuations caused by clouds and atmospheric noises.
These smoothed variables were used to calculate Gs using the VI‐based algorithm proposed by Yebra et al.
(2013). The 4‐day MODIS LAI was also smoothed using the locally adjusted cubic‐spline capping method.
And it was temporally interpolated into daily values and used to drive the TL‐LUE model and to estimate
Gs using the algorithm of Mu et al. (2007).

Table 1
Summary of Flux Tower Data Used in This Study

Site ID Country Lat. Lon. H (m) Z (m) IGBP Area ratio Reference

US‐Ne1 USA 41.17 −96.48 3 6 CRO 0.98 Verma et al. (2005)
US‐Ne2 USA 41.16 −96.47 3 6 CRO 0.99 Verma et al. (2005)
US‐Ne3 USA 41.18 −96.44 3 6 CRO 0.95 Verma et al. (2005)
DE‐Hai Germany 51.08 10.45 23 44 DBF 0.76 Knohl et al. (2003)
US‐MMS USA 39.32 −86.41 27 48 DBF 0.98 Schmid et al. (2000)
US‐WCr USA 45.81 −90.08 24 30 DBF 0.83 Cook et al. (2004)
AU‐Tum Australia −35.66 148.15 40 70 EBF 1.00 Leuning et al. (2005)
CA‐Qfo Canada 49.69 −74.34 13.8 24 ENF 0.90 Bergeron et al. (2007)
IT‐Lav Italy 45.96 11.28 33 36 ENF 0.83 Fiora and Cescatti (2006)
NL‐Loo Netherlands 52.17 5.74 15.1 26 ENF 0.71 Dolman et al. (2002)
US‐NR1 USA 40.03 −105.55 11.4 21.5 ENF 0.96 Monson et al. (2002)
DE‐Gri Germany 50.95 13.51 1 3 GRA 0.82 Prescher et al. (2010)
US‐Var USA 38.41 −120.95 1 2 GRA 0.60 Ma et al. (2007)
US‐Wkg USA 31.74 −109.94 0.5 6.4 GRA 0.98 Scott (2010)
AU‐How Australia −12.49 131.15 14 23 SAV 0.50 Beringer et al. (2003)
US‐SRM USA 31.82 −110.87 2.5 6.5 WS 0.93 Scott et al. (2009)
US‐Ton USA 38.43 −120.97 10.1 23.4 WS 0.60 Baldocchi et al. (2010)

Note. Lat. and Lon. denote latitudes and longitudes.H and Z are the heights of canopy and measurement, respectively. Area ratio indicates the area proportion of
a dominant land cover type around the flux tower at a radius of 1 km and was determined according to the globeLand30 data sets (Jun et al., 2014).
IGBP = International Geosphere‐Biosphere Programme; CRO = cropland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest;
ENF = evergreen needleleaf forest; GRA = grassland; SAV = savannas; WS = woody savannas.

10.1029/2018JG004675Journal of Geophysical Research: Biogeosciences

LI ET AL. 809



2.2. Gs Models
2.2.1. The Sunlit‐Shaded Gs Model
The Ball‐Berry model (Ball et al., 1987) was originally used for estimating gs according to leaf photosynthesis
rate. It has also been used to estimate Gs in vegetated areas (Hu et al., 2009; Luo et al., 2018; Wu et al., 2016).
In this study, a Gs model estimating Gs from gs of the sunlit and shaded leaves was proposed as follows:

Gs ¼ g1×
GPPshade×hs

Ca
þ g2×

GPPsun×hs
Ca

þ Gs;min (4)

where g1 and g2 are the empirical parameters determining the sensitivity of stomatal conductance to photo-
synthesis rates of sunlit and shaded leaves; GPPsun and GPPshade are the photosynthesis rates of sunlit and
shaded leaves, respectively; hs is the relative humidity on canopy surface and assumed equal to the atmo-
spheric one; Ca is the CO2 concentration in the air; and Gs,min is the surface conductance of soil evaporation
and was set to 0.001 for dry conditions in this study.

In equation (4), GPPshade and GPPsun are simulated using the revised TL‐LUE model. Originally, the
TL‐LUE model was developed by He et al. (2013) on the basis of the MOD17 algorithm. It separates a
canopy into sunlit and shaded leaves. For these two groups of leaves, GPP was individually calculated with
the consideration of their differences in light use efficiency and light absorption. Similar to the MOD17
algorithm, the TL‐LUE model only captures the stress of low temperature on GPP and ignores the adverse
impact of high temperature on carbon fixation by vegetation. In this study, the TL‐LUE model was revised
by integrating a scalar of temperature borrowed from the Terrestrial Ecosystem Model (TEM) model
(Raich et al., 1991), which describes the influences of both low and high temperatures on GPP
(equation (9)). The main algorithms in the revised TL‐LUE model used to calculate canopy GPP are
highlighted as follows (He et al., 2013; Raich et al., 1991):

GPP ¼ GPPsun þ GPPshade (5)

GPPsun ¼ εmsu×APARsun×f VPDð Þ×f Tð Þ (6)

GPPshade ¼ εmsh×APARshade×f VPDð Þ×f Tð Þ (7)

f VPDð Þ ¼
0 VPD≥VPDmax

VPDmax−VPD
VPDmax−VPDmin

VPDmin<VPD<VPDmax

1 VPD≤VPDmin

8>><
>>: (8)

f Tð Þ ¼ T−Tminð Þ T−Tmaxð Þ
T−Tminð Þ T−Tmaxð Þ− T−Topt

� �2 (9)

where εmsu and εmsh are the maximum light use efficiency for sunlit and shaded leaves, respectively;
APARsun and APARshade are the absorbed photosynthetically active radiation (APAR) by sunlit and shaded
leaves, respectively (Chen et al., 1999); VPDmax and VPDmin are the vapor pressure deficit (VPD) values
when GPP achieves the minimum and maximum, respectively, and they were set following Mu et al.
(2007); Tmax, Tmin, and Topt are the maximum, minimum, and optimal temperatures for photosynthesis,
respectively (Raich et al., 1991).

In equation (9), the values of Tmin and Topt might be set according to the response of EVI and GPP to the
mean daylight air temperature (Wang et al., 2016). In this study, Tmin was equal to the average of daylight
air temperature where GPP is close to 0 under the low‐temperature condition. And this parameter was set
to−10 °C when it cannot be determined by GPP. Topt was the maximum turning‐point value of the tempera-
ture variation curve responded by GPP. Tmax was set to 40 °C (Went, 1953). f(T) equals to 0 when the mean
daylight air temperature is lower than Tmin or higher than Tmax (Table 2).

The following equations are used to calculate photosynthetically active radiation (PAR) absorbed by the sun-
lit and shaded leaves (He et al., 2013):
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APARsun ¼ 1−αð Þ× PARdir×
cos β
cos θ

þ PARdir−PARdif ;u
� �

LAI
þ C

� �
×LAIsun (10)

APARshade ¼ 1−αð Þ× PARdif−PARdif ;u
� �

LAI
þ C

� �
×LAIshade (11)

PARdif ¼ PAR× 0:7527þ 3:8453R−16:316R2 þ 18:962R3−7:0802R4
� �

(12)

PARdir ¼ PAR−PARdif (13)

LAIsun ¼ 2× cosθ× 1− exp −0:5×Ω×
LAI
cosθ

� 	� �
(14)

LAIshade ¼ LAI−LAIsun (15)

where α is the canopy albedo and determined according to the MCD43A4 data; PARdir and PARdif are the
direct and diffuse components of incoming PAR, respectively; PARdif,u is the diffuse PAR under the canopy;
R is the clear‐sky index; LAIsun and LAIshade are the area indices of sunlit and shaded leaves, respectively; C
indicates the contribution of multiple scattering of direct radiation per unit leaf area; β is the leaf angle and
was set to 60°; θ is the solar zenith angle; and Ω is the clumping index (Chen et al., 1999; Zhou et al., 2016).
2.2.2. The VI and LAI Based Gs Models
Yebra et al. (2013) proposed an algorithm estimating Gs according to VI:

Gs ¼ a× exp b VI−VIminð Þ½ � (16)

where a and b are the empirical parameters, VI is the vegetation index and vary with vegetation types, and
VImin is the minimum of VI for bare soils.

In equation (16), VI denotes NDVI for CRO, GRA,WS, and SAV. It is EVI for ENF. As to DBF and EBF, Kc is
used. The minimum of NDVI, EVI, and Kc were set as 0.4, 0.1, and 0, respectively.

Mu et al. (2007) developed a model estimating Gs according to LAI, and this algorithm was employed to
generate the MODIS ET product. It is the following:

Table 2
The Parameter Setup of the Revised TL‐LUE Model at Each Site

Site ID IGBP Ω Topt (°C) Tmax (°C) Tmin (°C) VPDmax (kPa) VPDmin (kPa)

US‐Ne1 CRO 0.90 32 40 8 4.10 0.93
US‐Ne2 CRO 0.90 32 40 8 4.10 0.93
US‐Ne3 CRO 0.90 31 40 4 4.10 0.93
DE‐Hai DBF 0.80 19 40 0 4.10 0.93
US‐MMS DBF 0.80 27 40 6 4.10 0.93
US‐WCr DBF 0.80 26 40 2 4.10 0.93
AU‐Tum EBF 0.80 28 40 −10 4.10 0.93
CA‐Qfo ENF 0.60 22 40 −3 4.10 0.93
IT‐Lav ENF 0.60 15 40 −10 4.10 0.93
NL‐Loo ENF 0.60 19 40 −10 4.10 0.93
US‐NR1 ENF 0.60 15 40 −4 4.10 0.93
DE‐Gri GRA 0.90 24 40 −4 4.10 0.93
US‐Var GRA 0.90 17 40 −10 4.10 0.93
US‐Wkg GRA 0.90 24 40 −10 4.10 0.93
AU‐How SAV 0.80 31 40 −10 4.10 0.93
US‐SRM WS 0.80 28 40 −2 4.10 0.93
US‐Ton WS 0.80 16 40 −10 4.10 0.93

Note. TL‐LUE= two‐leaf light use efficiency; IGBP= International Geosphere‐Biosphere Programme; CRO= cropland;
DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; ENF = evergreen needleleaf forest;
GRA = grassland; SAV = savannas; WS = woody savannas.
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Gs ¼ CL×LAI×f VPDð Þ×f Tð Þ þ Gs;min (17)

where CL is an empirical parameter representing the mean surface conductance per unit LAI, f(T) and
f(VPD) are the same as the revised TL‐LUE model, and Gs,min is the minimum Gs for soil evaporation and
set to 0.001.

For convenience, equations (4), (16), and (17) are named as the SS‐Gs, VI‐Gs, and LAI‐Gs models, respec-
tively, hereinafter. Gs estimated by the SS‐Gs, VI‐Gs, and LAI‐Gs models are named as Gs‐SS, Gs‐VI and
Gs‐LAI, respectively. ET estimated using the PM model in conjunction with Gs‐SS, Gs‐VI, and Gs‐LAI are
termed as ET‐SS, ET‐VI, and ET‐LAI, respectively.

2.3. Model Calibration and Validation

In order to evaluate the robustness of our model, the calibration data set contains a normal year, a dry year,
and a wet year at least. And at most sites, over 50% of the data were selected for validation (Table 3). Tower‐
based GPP was used to calibrate εmsu and εmsh in the revised TL‐LUE model. Tower‐based Gs was used to
calibrate g1 and g2 in the proposed Gs model (equation (4)), a and b in the VI‐Gs model (equation (16)),
and CL in the LAI‐Gs model (equation (17)).

In the calibration process, parameters were allowed to vary at prescribed steps and ranges. The best fit
parameter values were determined with the lowest root mean square error (RMSE) of the estimated GPP
and Gs against the tower‐based values. Both εmsu and εmsh varied in the range from 0 to 12 g C/MJ at a step
of 0.1 g C/MJ (Zhou et al., 2016). Both g1 and g2 were in a range of 0–60, varying at steps of 1 (Hu et al., 2009).
The ranges of a and bwere 0–1 mol·m−2·s−1 and 0–10, respectively. They varied at steps of 0.01 mol·m−2·s−1

and 0.1 (Yebra et al., 2013), respectively. CL ranged from 0 to 1 mol·m−2·s−1 with a step of 0.01 mol·m−2·s−1

(Mu et al., 2007).

Three accuracy metrics were employed to assess model performances. The coefficient of determination (R2)
and RMSE were used to evaluate the model performances. The Akaike information criterion (AIC) was used
tomeasure themodel improvements, and the best model has the lowest AIC value (Inouye et al., 1995). They
are calculated as follows:

Table 3
Calibration and Validation Data Sets at All Sites

Site ID

Calibration Validation

Years Days Years Days

US‐Ne1 2002, 2003n, 2008w‐2009, 2012d 1,094 2004–2005, 2007, 2010–2011, 2013 1,183
US‐Ne2 2002, 2003n, 2008w‐2009, 2012d 998 2004–2005, 2007, 2010–2011, 2013 1,185
US‐Ne3 2002, 2003n, 2008w‐2009, 2012d 1,039 2004–2005, 2007, 2010–2011, 2013 1,133
DE‐Hai 2003d, 2004w, 2005n 378 2002, 2007–2009 430
US‐MMS 2002, 2003w, 2004n, 2005, 2012d 904 2007–2014 1,302
US‐WCr 2002, 2003n, 2012d, 2014w 326 2004–2005, 2011, 2013 410
AU‐Tum 2003, 2004n, 2007d, 2010w, 2011 1,025 2002, 2005, 2008–2009, 2012–2013 1,213
CA‐Qfo 2008w, 2009n, 2010d 324 2004–2005, 2007 383
IT‐Lav 2004, 2007d, 2008w, 2009n 566 2010–2014 583
NL‐Loo 2005d, 2007w, 2008n 358 2009–2012 397
US‐NR1 2009n, 2012d, 2013w, 2014 495 2007–2008, 2010–2011 515
DE‐Gri 2012n, 2013w, 2014d 297 2009–2011 281
US‐Var 2002, 2003n, 2004, 2011w, 2014d 1,076 2005, 2007–2010, 2012–2013 1,882
US‐Wkg 2007n, 2008, 2009d, 2010w 1,237 2004–2005, 2011–2013 1,804
AU‐How 2003d, 2010n, 2011w, 2013 682 2007–2008, 2012, 2014 823
US‐SRM 2004, 2005n, 2009d, 2010w, 2011 1,527 2007–2008, 2012–2014 1,471
US‐Ton 2002, 2003n, 2004, 2011w, 2014d 914 2005, 2007–2009, 2010, 2012–2013 1,646
Total 13,240 16,641

Note. Superscripts n, w, and d denote normal, wet, and dry years, respectively, which were categorized according to
monthly air temperature, precipitation, and vapor pressure deficit (supporting information Figures S1–S3). “Days” indi-
cates the number of days with data available for model calibration and validation.
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R2 ¼ ∑n
i¼1 Pi−O

� �2
∑n

i¼1 Oi−O
� �2 (18)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
Pi−Oið Þ2

s
(19)

AIC pð Þ ¼ n log E pð Þ þ 2p (20)

where Pi is the model‐predicted value, Oi is the observed value, Ō is the mean of observed values, n is the
number of observations; p is the order of model; and E(p) is the innovation variance (Inouye et al., 1995;
Zhou et al., 2016).

3. Results
3.1. Performance of the Revised TL‐LUE Model

For the calibration data set, GPP simulated by the revised TL‐LUE model agreed well with the tower‐based
GPP (R2 = 0.81, RMSE = 2.25 g C·m−2·day−1; Figure 1). For the validation data set, the comparison of daily
GPP simulated by the revised TL‐LUE model against tower‐based GPP produced an R2 value of 0.82 and an
RMSE value of 2.13 g C·m−2·day−1 (Figure 1). The validation indicated the revised TL‐LUE model was able
to capture the variations of the daily GPP in different ecosystems. However, the revised TL‐LUE model still
tended to underestimate high GPP values slightly (Figure 1).

Figure 2 shows R2 and RMSE values of daily GPP simulated by the original and revised TL‐LUE models
against tower‐based GPP for both calibration and validation data sets at all sites. The AIC and RMSE values
exhibited similar characteristics (Figures 2 and S4). The revised TL‐LUE model outperformed the original
one at most sites, especially at the CRO, ENF, and GRA sites. At the US‐Ne2 (CRO) and US‐Var (GRA) sites,
the R2 of daily GPP simulated by the revised model increased by 0.07 and 0.14, respectively, while RMSE
decreased by 0.50 and 0.35 g C·m−2·day−1, respectively, and AIC decreased by 501 and 1,232, respectively,
in comparison with the corresponding values of the original model.

Table 4 shows the calibrated εmsu and εmsh values for individual sites. Optimal values of εmsu range from 0.4
to 1.6 g C/MJ, and the values of εmsh range from 1.9 to 7.9 g C/MJ. The latter is almost 4 times higher than the
former. Zhou et al. (2016) and He et al. (2013) reported that the εmsh parameter was about 3.5–4.8 times of
εmsu, which was in accordance with our result. The calibrated values of εmsu and εmsh vary obviously among
different land cover types. They are much higher at crop sites than at other sites.

Figure 1. Daily GPP (g C·m−2·day−1) estimated by the revised TL‐LUE model: (a) for the calibration data set and (b) for
the validation data set. GPP = gross primary production; TL‐LUE = two‐leaf light use efficiency; RMSE = root mean
square error; CRO = cropland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; ENF = evergreen
needleleaf forest; GRA = grassland; SAV = savannas; WS = woody savannas.
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3.2. Calibration and Validation of Gs Models

The calibrated parameters of three Gs models were shown in Table 5. Performances of these models vary
with the vegetation types. For the calibration data set, R2 of Gs‐SS against tower‐based Gs was higher than
that ofGs‐VI andGs‐LAI at most sites, with an average increase of 0.06 in R2. The VI‐Gs model had the lowest

Figure 2. The R2 and RMSE (g C·m−2·day−1) values of the daily GPP estimated by the original and revised TL‐LUEmod-
els against the tower‐based GPP for both calibration and validation data sets at all sites. Sites were rearranged in the
decreasing order of the improvements on R2 values by the revised TL‐LUE model. RMSE = root mean square error;
GPP = gross primary production; TL‐LUE = two‐leaf light use efficiency.

Table 4
Calibrated Parameters for the Original and Revised TL‐LUE Models

Site ID IGBP

Revised TL‐LUE model Original TL‐LUE model

εmsh εmsu R2 RMSE AIC εmsh εmsu R2 RMSE AIC

US‐Ne1 CRO 7.9 1.6 0.87 2.99 11,362 6.5 1.3 0.82 3.55 12,051
US‐Ne2 CRO 7.9 1.6 0.76 4.11 12,107 6 1.2 0.69 4.62 12,608
US‐Ne3 CRO 6.5 1.3 0.80 3.16 11,117 6 1.2 0.77 3.35 11,444
DE‐Hai DBF 2.9 0.6 0.81 2.36 3,802 2.8 0.6 0.81 2.35 3,784
US‐MMS DBF 2.6 0.6 0.76 2.60 9,885 2.4 0.5 0.73 2.79 10,310
US‐WCr DBF 2.4 0.5 0.81 2.40 3,362 2.4 0.5 0.81 2.42 3,326
AU‐Tum EBF 2 0.6 0.45 2.04 9,554 1.6 0.5 0.46 2.04 9,767
CA‐Qfo ENF 2.3 0.5 0.87 0.89 1,802 2.2 0.5 0.87 0.89 1,778
IT‐Lav ENF 3 0.7 0.62 2.82 5,246 2.8 0.8 0.60 3.30 5,643
NL‐Loo ENF 2.4 0.7 0.78 1.47 2,711 2.4 0.7 0.74 1.65 2,909
US‐NR1 ENF 2.2 0.5 0.81 1.27 3,286 2 0.6 0.79 1.30 3,374
DE‐Gri GRA 2.2 1 0.59 2.84 2,695 1.7 1.6 0.54 3.19 2,856
US‐Var GRA 1.9 0.4 0.71 1.50 10,819 2.4 0.5 0.56 1.86 12,051
US‐Wkg GRA 3.4 0.7 0.70 0.68 6,095 3.1 0.7 0.73 0.65 5,791
AU‐How SAV 2.7 1 0.71 1.14 4,706 2.8 1 0.68 1.19 4,896
US‐SRM WS 3.9 0.8 0.46 0.79 6,858 3.4 0.7 0.44 0.80 6,976
US‐Ton WS 2.4 0.5 0.66 1.27 8,745 2.4 0.5 0.63 1.31 8,342

Note. All correlations are significant at the level of 0.01. TL‐LUE = two‐leaf light use efficiency; IGBP = International Geosphere‐Biosphere Programme;
CRO = cropland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; ENF = evergreen needleleaf forest; GRA = grassland;
SAV = savannas; WS = woody savannas; RMSE = root mean square error; AIC = Akaike information criterion.
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AIC values at all sites with the exception of the WS site. It performed better than the SS‐Gs and LAI‐Gs mod-
els at the AU‐How site (R2 = 0.77, RMSE = 0.07 mol·m−2·s−1, and AIC = −1,653) and the US‐Var site
(R2 = 0.62, RMSE = 0.12 mol·m−2·s−1, and AIC = −1,554).

Table 6 shows accuracy metrics of simulated Gs for the validation data set. Although the proposed SS‐Gs

model had higher AIC values than had the VI‐Gs model, R2 of Gs‐SS was higher than the 0.05 significance
level at all sites. The R2 values of Gs‐VI and Gs‐LAI were lower than the 0.05 significance level at the
DE‐Hai and NL‐Loo sites, indicating the outperformance of the SS‐Gs model over the LAI‐Gs and VI‐Gs mod-
els in capturing daily variations of Gs at different sites. Figure 3 shows the comparison of Gs estimated by
threemodels with tower‐basedGs at nine representative sites with different vegetation types.Gs‐VI exhibited
much smaller seasonal variations in comparison with tower‐based Gs at the US‐Ne1, CA‐Qfo, NL‐Loo,
DE‐Hai, AU‐Tum, and IT‐Lav sites. The VI‐Gs model systematically overestimated low Gs values and under-
estimated high Gs values at these sites.

The discrepancy between the estimatedGs by three models and the tower‐basedGs might be attributed to the
following reasons: (1) There are uncertainties in Gs derived from tower‐based observations. As not measur-
able, Gs was derived from tower‐based observations of latent heat flux and meteorological data in this study.
The uncertainties in tower‐based observations and algorithm used to derive Gs would be definitely propa-
gated into estimated Gs. (2) Models assume that Gc can be used as the proxy of Gs, which might be invalid
under conditions of low canopy coverage. (3) The LAI‐Gs and SS‐Gs models estimate Gs according to LAI
and GPP, while the tower‐based Gs was derived from measured latent heat flux by inverting the PM model.
In nongrowing seasons, LAI and GPP were close to 0 at some sites. Accordingly, estimated Gs was very low,
close toGs,min. However,Gs derived from the tower‐based observationsmight be still high owing to relatively
high measured latent heat flux contributed by evaporation from snow on the ground surface and from
wet soils.

Calibrated parameters in the LAI‐Gs, VI‐Gs, and SS‐Gs models are shown in Table 5. The values of CL in the
LAI‐Gs model range from 0.08 to 0.41. The values of a and b in the VI‐Gs model range from 0.04 to 0.4 and
from 0.01 to 7.12, respectively. The calibrated g1 and g2 in the SS‐Gs model vary from 15 to 44 and 4 to 32,
respectively. The difference between g1 and g2 was small for the CRO and SAV sites and large for the EBF
and most ENF sites.

Table 5
Calibrated Parameters and Accuracy Metrics of Three Gs Models for the Calibration Data Set

Site ID IGBP

LAI‐Gs VI‐Gs SS‐Gs

CL R2 RMSE AIC a b R2 RMSE AIC g1 g2 R2 RMSE AIC

US‐Ne1 CRO 0.36 0.07** 0.46 1,412 0.4 0.9 0.03** 0.39 1,044 15 12 0.07** 0.48 1,480
US‐Ne2 CRO 0.41 0.08** 0.45 1,236 0.4 1 0.03** 0.39 942 16 13 0.10** 0.46 1,283
US‐Ne3 CRO 0.38 0.12** 0.37 869 0.31 1.84 0.10** 0.32 602 18 14 0.15** 0.37 895
DE‐Hai DBF 0.13 0.04** 0.34 242 0.2 1.31 0.04** 0.27 88 21 14 0.13** 0.30 169
US‐MMS DBF 0.08 0.36** 0.20 −378 0.13 1.68 0.26** 0.19 −422 18 14 0.39** 0.20 −320
US‐WCr DBF 0.13 0.44** 0.28 91 0.04 4.07 0.28** 0.28 95 27 22 0.44** 0.28 106
AU‐Tum EBF 0.15 0.01 0.33 560 0.14 2.21 0.07** 0.27 190 44 9 0.07** 0.29 369
CA‐Qfo ENF 0.14 0.02* 0.29 124 0.26 0.07 0.01 0.22 −72 27 10 0.01 0.29 121
IT‐Lav ENF 0.13 0.06** 0.28 183 0.28 1.37 0.04** 0.23 −27 17 4 0.17** 0.25 35
NL‐Loo ENF 0.14 0.02** 0.28 117 0.4 0.01 0.01 0.26 44 29 6 0.02** 0.29 129
US‐NR1 ENF 0.13 0.04** 0.20 −172 0.11 4.38 0.03** 0.17 −323 29 26 0.19** 0.18 −306
DE‐Gri GRA 0.09 0.03** 0.18 −180 0.14 2.03 0.11** 0.12 −413 19 8 0.06** 0.16 −248
US‐Var GRA 0.21 0.34** 0.15 −997 0.07 6.27 0.62** 0.12 −1,554 43 13 0.58** 0.12 −1,477
US‐Wkg GRA 0.2 0.12** 0.06 −3,407 0.1 3.89 0.08** 0.06 −3,458 20 19 0.20** 0.06 −3,388
AU‐How SAV 0.27 0.67** 0.09 −1,346 0.06 7.12 0.77** 0.07 −1,653 19 18 0.65** 0.09 −1,358
US‐SRM WS 0.3 0.17** 0.06 −4,433 0.12 5.34 0.09** 0.06 −4,335 33 32 0.30** 0.05 −4,547
US‐Ton WS 0.16 0.31** 0.12 −1,336 0.07 5.67 0.41** 0.11 −1,506 30 7 0.44** 0.10 −1,535

Note. “LAI‐Gs,” “VI‐Gs,” and “SS‐Gs” denote Gs models proposed by Mu et al. (2007), Yebra et al. (2013), and this study, respectively. IGBP = International
Geosphere‐Biosphere Programme; CRO = cropland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; ENF = evergreen needleleaf forest;
GRA = grassland; SAV = savannas; WS = woody savannas; RMSE = root mean square error; AIC = Akaike information criterion.
**Significant at the 0.01 level. *Significant at the 0.05 level.
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3.3. ET Estimation

ET was simulated using the PM model in conjunction with Gs‐SS, Gs‐VI, and Gs‐LAI. The comparison of
simulated daily ET against observations indicated that the PM model along with Gs‐SS, Gs‐VI, and Gs‐LAI
was able to capture variations of daily ET (Table 7). All three accuracymetrics indicated that the SS‐Gs model
outperforms the LAI‐Gs and VI‐Gs models in simulating ET. R2, RMSE, and AIC of ET‐SS against observa-
tions averaged 0.75, 0.63 mm/day, and 1,462 for the calibration data set and 0.75, 0.65 mm/day, and 1,842 for
the validation data set. The average R2, RMSE, and AIC of ET‐LAI were 0.71, 0.73 mm/day, and 1,621 for the
calibration data set and 0.72, 0.74 mm/day, and 2,060 for the validation data set. The corresponding values of
ET‐VI were 0.65, 0.81 mm/day, and 1,808 for the calibration data set and 0.67, 0.79 mm/day, and 2,229 for
the validation data set.

Figure 4 shows the simulated and observed daily ET for the calibration and validation data sets at all sites.
Overall, the PM model could accurately simulate the observed daily ET, but it tended to overestimate ET at
the CRO, EBF, and ENF sites usingGs‐LAI andGs‐VI. The seasonal variations of the simulated and observed
daily ET in validation years at the nine representative sites are shown in Figure 5. The PMmodel was able to
capture the seasonality of the observed daily ET. However, it also tended to overestimate high ET in middle
growing seasons withGs‐LAI andGs‐VI. The overestimation of ET inmiddle growing seasons was well reme-
died with Gs‐SS. Similar feature was also observed at the other eight sites (Figure S6).

4. Discussion
4.1. Improvement of the TL‐LUE Model

The improvement of the revised TL‐LUE model in simulating GPP was achieved by replacing the tempera-
ture scalar. In the original model, only the impact of low temperature on GPP is explicitly included, while the
impact of high temperature is ignored (Running et al., 2000). As reported by many previous studies (Raich
et al., 1991;Wang et al., 2016), both extremely high and low temperatures might restrain photosynthesis. The
original model partially accounts for the influence of high temperature through the scalar of VPD. Although
high temperature is mostly associated with high VPD, it is not always the case. Thus, the original model
might overestimate GPP under high temperature. Integrating a scalar of temperature as used in the TEM

Table 6
Accuracy Metrics of Three Gs Models for the Validation Data Set

Site ID IGBP

LAI‐Gs VI‐Gs SS‐Gs

R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC

US‐Ne1 CRO 0.10** 0.47 1,582 0.05** 0.40 1,198 0.10** 0.50 1,697
US‐Ne2 CRO 0.04** 0.52 1,796 0.01** 0.45 1,453 0.05** 0.55 1,904
US‐Ne3 CRO 0.18** 0.35 855 0.13** 0.31 569 0.17** 0.37 966
DE‐Hai DBF 0.01 0.39 405 0.02** 0.30 183 0.03** 0.36 352
US‐MMS DBF 0.47** 0.15 −1,277 0.35** 0.13 −1,625 0.48** 0.16 −1,097
US‐WCr DBF 0.56** 0.33 262 0.43** 0.36 321 0.51** 0.35 294
AU‐Tum EBF 0.01** 0.32 658 0.03** 0.27 257 0.05** 0.30 518
CA‐Qfo ENF 0.03** 0.31 185 0.01* 0.22 −52 0.01* 0.31 183
IT‐Lav ENF 0.03** 0.31 265 0.02** 0.27 110 0.11** 0.28 160
NL‐Loo ENF 0.02** 0.32 210 0.01 0.29 147 0.10** 0.29 131
US‐NR1 ENF 0.02** 0.20 −179 0.05** 0.16 −397 0.14** 0.18 −286
DE‐Gri GRA 0.09** 0.12 −405 0.14** 0.09 −539 0.14** 0.10 −476
US‐Var GRA 0.44** 0.14 −2,138 0.68** 0.10 −3,159 0.63** 0.11 −2,922
US‐Wkg GRA 0.31** 0.05 −5,751 0.23** 0.05 −5,542 0.42** 0.05 −5,826
AU‐How SAV 0.65** 0.09 −1,586 0.70** 0.07 −1,959 0.59** 0.09 −1,613
US‐SRM WS 0.36** 0.05 −4,651 0.25** 0.05 −4,459 0.47** 0.05 −4,480
US‐Ton WS 0.42** 0.10 −2,855 0.51** 0.09 −3,162 0.55** 0.09 −3,266

Note. IGBP = International Geosphere‐Biosphere Programme; CRO = cropland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest;
ENF = evergreen needleleaf forest; GRA = grassland; SAV = savannas; WS = woody savannas; RMSE = root mean square error; AIC = Akaike information
criterion.
**Significant at the 0.01 level. *Significant at the 0.05 level.
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model (Raich et al., 1991), the revised TL‐LUE model captures the impacts of both low and high
temperatures on GPP.

4.2. Ability of Different Models to Estimate Canopy Conductance and ET

Overall, the three models can be used for estimating Gs from remote sensing data, but their performances
differ substantially. The LAI‐Gs and VI‐Gs models estimate Gs from LAI and VIs, respectively. Leaf stomata
is parallelly distributed, and Gs increases with the increase of canopy coverage, which can be indicated by
LAI or VIs. These two models are able to capture the overall seasonal trajectory and spatial variations of
Gs. However, the VI‐Gsmodel is unable to capture the short‐term variations of theGs caused by environmen-
tal factors, such as temperature, radiation, and VPD. And VIs are associated with both greenness and canopy
coverage whose changes usually fall behind environmental factors, especially for forests (Sims et al., 2014).
As to the LAI‐Gs model, though containing the temperature and VPD factors, it ignores the effect of solar
radiation on leaf stomata and the importance of separating sunlit and shaded leaves, resulting in uncertain-
ties in simulated Gs and ET.

Figure 3. Comparison of the daily Gs (mol·m−2·s−1) estimated by three Gs models against the corresponding values derived from tower‐based observations for the
validation data set. Only data at nine representative sites are shown here, and for data at the remaining eight sites, see Figure S5.
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Different from the LAI‐Gs and VI‐Gs models, the SS‐Gs model
estimates Gs according to the GPP of sunlit and shaded leaves,
which is affected by LAI and environmental factors, including
temperature, VPD, and PAR. Therefore, the impacts of LAI
and environmental factors on Gs were effectively captured.
Sunlit and shaded leaves have different exposure to sunlight
and have different gs, especially for forests with deep canopy.
The SS‐Gs model captures such difference of sunlit and shaded
leaves. As a consequence, it was able to improve the estimation
of Gs in growing seasons, especially at forest sites in comparison
with the LAI‐Gs and VI‐Gs models (Figures S7 and S8).

With Gs estimated by the SS‐Gs model proposed in this study,
the PM model was able to improve the simulation of daily ET
under most circumstances. The improvement on ET estimation
was more evident in growing seasons and at forest sites (Figures
S9 and S10). Both the LAI‐Gs and VI‐Gs models overestimated
Gs at forest sites, resulting in the simulated ET being much
higher than the observations. The overestimation of ET was
well constrained by using Gs‐SS in the PM model.

4.3. Sensitivity of ET to Gs

Tables 5–7 show that R2 values of Gs estimation are commonly
lower than those for ET estimation. For example, at the
NL‐Loo site, the R2 values of estimated Gs and ET were close
to 0.02 and 0.75, respectively, for the calibration data set. To
explore the reason inducing such a large difference, the
sensitivity of tower‐based ET to parameters in the PM model
was analyzed using a global sensitivity analysis method named
Fourier amplitude sensitivity test (Cannavó, 2012; Saltelli et al.,
1999). The global sensitivity analysis results show that Gs is the
key parameter affecting ET, second only to Rn (Table 8). The
average sensitive indices of Rn and Gs were 49% and 30%,
respectively. The impacts of other variables on ET are relatively
small. To identify whether the ET estimation could be improved
by incorporating SS‐Gs into the PM model, the days with Gs‐SS
closer to tower‐based Gs than with Gs‐LAI and Gs‐VI were
selected. Figure 6 shows that on almost 99% of these days, the
estimation of ET was improved.

In order to further answer the question why the agreement
between tower‐based Gs and Gs‐SS was much poor than the
agreement between the observed ET and ET‐SS (Tables 5–7),
data were divided into 10 groups according to the observed ET
at each site. For all groups, the ranges of observed ET are equal
and statistical metrics were calculated for the difference
between Gs‐SS and tower‐based Gs. As shown in Figure 7, large
departures (red crosses) of estimated Gs from tower‐based ones
mostly occurred under the conditions of low ET (Figures 7 and
S11). In some cases of low observed ET, tower‐based Gs values
were large, possibly owing to the uncertainties in calculated
Ga. At the same time, estimated Gs was very low, even equal
to 0, resulting from very low estimated GPP. Therefore, even if
the difference between estimated and tower‐based Gs wasT
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obvious, the divergence of estimated ET from tower observation was relatively small. These situations
mainly occurred in nongrowing seasons. The dismatch between low tower‐observed ET and high tower‐
based Gs is the main reason why a poor daily conductance fit can still induce a good daily ET fit.

4.4. Limitations of the SS‐Gs Model

Similar to the LAI‐Gs and VI‐Gs models, the SS‐Gs model takes Gc as the proxy of Gs. This treatment is rea-
sonable when the canopy coverage is high and the soil surface is dry. However, under conditions of low
canopy coverage and wet soil surface, soil evaporation might account for a large proportion of ET, and
Gsoil might make a considerable contribution toGs (Kelliher et al., 1995; Waring & Running, 2010). This lim-
itation of the currently proposed SS‐Gs model can be remedied by including a Gsoil term or using dual‐source

Figure 4. Comparison of the estimated daily ET (mm/day) against tower‐based ET for the (a) calibration and (b) valida-
tion data sets: (a1 and b1) for ET‐LAI; (a2 and b2) for ET‐VI; and (a3 and b3) for ET‐SS. ET = evapotranspiration;
RMSE = root mean square error; CRO = cropland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest;
ENF = evergreen needleleaf forest; GRA = grassland; SAV = savannas; WS = woody savannas.
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models of PM to estimate evaporation and transpiration separately (Mu
et al., 2007; Sun et al., 2013). Of course, Gsoil changes with the wetness
of land surface. The inclusion of this term in the SS‐Gs model will
require calibrating more parameters and estimating soil wetness.

The tight coupling of water and carbon cycles is the prerequisite of the
SS‐Gs model. Previous studies indicated that water stress might induce
breakdown of carbon‐water relations (Damour et al., 2010; Nelson et al.,
2018). The applicability of the SS‐Gs model under different conditions of
water stress needs further investigation. In addition, accurately estimating
GPP of sunlit and shaded leaves is the foundation of the SS‐Gs model.
However, parameters εmsh and εmsu are crucial for simulating GPP by
the TL‐LUE model, and they vary substantially among different vegeta-
tion types. Even within one vegetation type, their spatial and temporal
variations are still large. This issue might be solved by the photochemical
reflectance index, which could appropriately track the variations
(Middleton et al., 2016; Zhou et al., 2017). But for the parameters g1 and
g2 of the SS‐Gs model (equation (4)), they exhibit considerable variations
as indicated by the calibration outputs. How to capture the spatial varia-
tions of g1 and g2 is a big challenge for the SS‐Gs model when applied over
large regions.

Figure 5. Daily variations of the simulated and observed evapotranspiration (ET; mm/day) for the validation data set at nine representative sites. Data for the
remaining eight sites can be found in Figure S6.

Table 8
Sensitive Indices (%) of the Penman‐Monteith Model for Different Input
Variables at Each Site

Site ID T VPD Rn G Ga Gs

US‐Ne1 2.03 0.08 53.59 1.67 0.01 28.01
US‐Ne2 1.84 0.09 55.60 1.82 0.02 25.78
US‐Ne3 1.75 0.09 57.88 2.02 0.02 22.84
DE‐Hai 4.92 0.07 53.59 0.20 1.55 27.85
US‐MMS 8.12 0.05 44.88 0.27 1.24 30.53
US‐WCr 0.28 0.05 43.31 0.02 0.06 43.59
AU‐Tum 3.88 0.06 49.36 0.08 1.10 34.25
CA‐Qfo 11.19 0.04 38.89 0.05 0.64 34.57
IT‐Lav 3.94 0.06 50.41 0.10 0.47 32.97
NL‐Loo 6.00 0.08 56.07 0.06 2.08 24.28
US‐NR1 1.73 0.05 40.55 0.03 0.31 45.75
DE‐Gri 8.59 0.05 49.53 0.62 3.79 18.50
US‐Var 6.07 0.06 55.00 0.89 1.82 24.07
US‐Wkg 11.31 0.04 41.07 2.53 3.84 23.90
AU‐How 2.68 0.05 45.68 0.90 4.22 37.74
US‐SRM 8.15 0.05 38.32 0.98 5.18 30.38
US‐Ton 4.74 0.05 53.14 0.60 2.36 25.61
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Figure 7. Difference between the estimated and tower‐based Gs (mol·m−2·s−1) in different ranges of tower‐observed evapotranspiration (ET; mm/day) at nine
representative sites. The red crosses represent outliers. Negative y values mean the Gs estimates were lower than tower‐based ones, and vice versa. Data for the
remaining eight sites are shown in Figure S11.

Figure 6. The number of days with Gs (mol·m−2·s−1) and evapotranspiration (ET; mm/day) estimates improved by the
SS‐Gs model at each site. “Gs num” is the number of days with Gs‐SS closer to tower‐based Gs than with Gs‐LAI and
Gs‐VI. Among these days, the number of days with ET estimates improved is shown as “ET num.” The percentage
numbers above vertical bars represent ratios of “ET num” to the corresponding “Gs num.”
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It should be kept in mind there are uncertainties in the current validation process. As is known, canopyGs is
not directly measurable. In this study, Gs used for validating the LAI‐Gs, VI‐Gs, and SS‐Gs models was
inverted from tower‐based latent heat flux and meteorological data using equation (2). Most variables in this
equation can be calculated using classical formula or measured. However, when Ga was estimated using
equation (3), it ignores the influence of the stability of atmosphere on the transfer of water vapor. This
simplification might induce uncertainties in estimated Ga and consequently in Gs.

5. Conclusions

In this study, we proposed an algorithm for estimating Gs, a key parameter in the PMmodel. This algorithm
accounts for the difference in stomatal conductance of sunlit and shade leaves in canopies and their contri-
butions to Gs and further ET estimates. In this algorithm, the Ball‐Berry model is used to link stomatal con-
ductance of sunlit and shade leaves with their respective GPP, which is estimated using a revised TL‐LUE
model. We tested the algorithm with at least 6 years in situ flux data from 17 FLUXNET sites covering seven
different vegetation types. Following conclusions could be drawn:

1. By accounting for the adverse impact of both low and high temperatures on GPP, the revised TL‐LUE
model improves GPP simulation, especially at the crop and forest sites.

2. The proposed SS‐Gs model was able to estimate daily Gs well, outperforming the VI‐Gs and LAI‐Gs

models in growing seasons, especially at the forest sites.
3. ET estimation is substantially improved withGs estimated using the proposed SS‐Gs model. ET estimated

using the proposed SS‐Gs model shows good agreement with tower‐based ET for all vegetation types,
while ET estimated using the VI‐Gs and LAI‐Gs models was divergent from observations for the crop
and forest sites.

There are some remaining issues regarding the further examination and improvement of the proposed SS‐Gs

model, such as validating across more ecosystems under different conditions of canopy coverage and land
surface wetness, considering spatiotemporal variations of the model parameters, and bettering the agree-
ment between estimated Gs and observed ones under different circumstances. Nevertheless, this study
explored an effective and applicable algorithm for improving Gs estimation, which is potentially applicable
at regional and global scales.
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