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Volume intensified dilution of a ring-closing
metathesis in ethyl acetate by means of a
membrane-assisted process in solvent recycle
Wim Porto-Carrero,a Anna Cupani,a,b Marieke J Veenstra,a,c

Matthieu Dorbec,a Lies Eykensa and Dominic Ormeroda*

Abstract

BACKGROUND: Ring-closing metathesis (RCM) for the synthesis of macrocycles has been used more and more often over recent
years, including some interesting applications on industrial scale. However, like all macrocyclization strategies RCM is plagued
by the traditional issue of low volume efficiency. To-date this is typically addressed in a molecule specific manner with varying
degrees of success. Here we report a process intensification method of metathesis macrocyclization that reduces the solvent
load required for the reaction significantly.

RESULTS: Metathesis macrocylizations were successfully carried out in a solvent volume of upto 82% lower than an equivalent
batch reaction, with only minimal impact upon the reaction outcome. A switch of reaction solvent to ethyl acetate renders the
process more benign and applicable to large scale.

CONCLUSION: A membrane-assisted processing method that relies upon organic solvent nanofiltration permitting an internal
solvent recycling and concumittent in situ product removal. The method is also designed to be applicable to a wide range of
metathesis cyclizations.
© 2019 Society of Chemical Industry

Keywords: organic solvent nanofiltration; membrane filtration; macrocyclization; process intensification; ring closing metathesis

INTRODUCTION
Cyclic molecules containing 12 or more atoms, known as
macrocycles,1 constitute a unique class of compounds that can be
found in natural products,2 drug molecules,3 metal ligands4 and
(chiral) chromatography stationary phases5 to name but a few.
However, the synthesis of macrocycles remains a challenge due
to the competition between cyclization and oligomerization. This
typically results in the requirement for high dilution techniques
that consume large volumes of solvent in the production of a
relatively small quantity of reaction product.

Though there is a plethora6 of methods to synthesize macro-
cycles, ring-closing metathesis (RCM) has become a popular
method7–11 due in part to the high chemoselectivity and func-
tional group tolerance of the catalysts that have been developed
over recent decades.12,13 Furthermore, the inherent reversibility of
olefin metathesis reactions can have important implications on the
outcome of the equilibrium between RCM and cross-metathesis
(CM); the latter leading to acyclic products. Indeed, Fogg and
co-workers reported oligomers as intermediates14 in RCM reac-
tions. However, despite the fact that this equilibrium ring-closing
metathesis (ERCM)15 can potentially be expoited during the syn-
thesis of macrocycles there is often still the necessity to use high
dilution conditions.16,17

Reducing the amount of waste from industrial chemical produc-
tion is of fundamental importance both from an environmental
and an economic point of view. Because 80% to 90%18 of the

reaction mass and a significant portion of energy use can be
directly attributed to solvents, a reduction of the quantites used
can have a significant effect on emissions,19 economics and health
and safety issues related to a chemical macrocyclization process.

Recently we have developed a membrane-assisted process-
ing method to enable reactions that require high dilution to be
performed in significantly reduced solvent volumes.20 This new
membrane-based processing method has been demonstrated
with cyclic peptide formation21 a type of molecule that possess
conformational preorganization22 that tends to be beneficial for
cyclization. Cyclization of molecules that have lower conforma-
tional preorganization where the reactive ends are less likely to be
in the required conformation for cyclization are even more prob-
lematic, resulting in longer reaction times and more secondary
products.
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In this work we address the application of this
membrane-assisted processing method to ruthenium catal-
ysed RCM to yield a macrocyclic compound.23 Organic solvent
nanofiltration (OSN)24 despite being a relatively new separation
technique has already demonstrated its potential in sustainable
industrial processing.25–27 Here OSN is used to effect the in-line
solvent recycling. The performance of the membranes is char-
acterized by their solute rejection and permeance.24 The use of
membranes in RCM reactions has already been reported in the
literature28–36 with the emphasis being placed upon separation of
catalyst from reaction products of very small molecular mass and
in general in post-reaction processing situations. In contrast the
focus of this work is the in-line solvent recycling with the aim of
reducing the solvent volumes required for the macrocyclization.
Incorporation of the membrane within the reaction is not simply
a question of size exclusion to remove organometallics or other
species from the reaction mixture, the presence of the membrane
will have a fundamental effect on issues such as reaction yield
and catalyst stability. Indeed, any release–return mechanism
that may37 or may not38 be operating in the catalytic cycle will
possibly be prevented by permeation of the catalyst released
ligand through the membrane thus, effectively removing it and
disrupting any return.

Comparison of the cyclization efficiency can be carried out in a
number of ways such as Emac,39 defined as Emac = log10(yield3 ×
concentration) a metric that takes into account the reaction yield
and concentration. Process mass intensity (PMI)40 a mass based
metric, which is defined as the total mass used (in kilograms) in a
process or process step including solvents, divided by the mass of
product (in kilograms). The lower the figure the more efficient the
process. or a holistic approach that has recently been proposed;41

a more comprehensive approach that includes different levels that
reflect the differing levels of development of particular projects. In
this case the emphasis will be on PMI as this encapsulates all mass
based inputs into the process. However, as this does not highlight
areas of concern easily, the holistic approach has also been taken
into consideration.

EXPERIMENTAL SECTION
General
The solvents used in this study were dichloromethane (DCM),
toluene, ethyl acetate (EtOAc) and dimethylformamide (DMF)
all were technical grade purchased from VWR (Oud-Heverlee,
Belgium) and used without prior purification. 1,1-Bi-2-naphthol
(Binol) and 4-bromo-1-butene were purchased from Sigma-Aldrich
(Overijse, Belgium) and used as supplied. Water was reverse osmo-
sis purified water. Metathesis catalysts dichloro(2-isopropoxy
phenylmethylene) (tricyclohexylphosphine)ruthenium(II), [Cas
number: 203714-71-0] (HG-1); dichloro[1,3-bis(2,4,6-trimethylphe
nyl)-2-imidazolidinylidene](3-phenyl-1H-inden-1-ylidene)(tricyclo
hexylphosphine)ruthenium(II), [Cas number: 536724–67-1] (M-2)
and dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]
{[2-(1-methylacetoxy)phenyl]methylene}ruthenium(II) [CAS num-
ber: 1031262-71-1] (M-51) were purchased from Sigma-Aldrich
and used as supplied. The annotations HG-1, M-2 and M-51 refer
to Hoveyda–Grubbs first generation catalyst (HG-1), and M-2 and
M-51 both make reference to the Umicore M series nomenclature
for these catalysts for which Umicore are the original manufactures
of the complexes.

Commercially available membranes selected for this study
were Inopor® ceramic membranes (Inopor, Veilsdorf, Germany),

Starmem membranes (Evonik-Met Ltd, London, UK) and Solsep
membranes (Solsep, Apeldoorn, The Netherlands). Membranes
modified with either alkyl or aromatic groups were Inopor mem-
branes modified in-house to have organic groups on the top layer.
The ceramic membranes used in this study, both commercial and
modified were asymmetric tubular titanium oxide (TiO2) mem-
branes; length 120 mm, outer diameter 10 mm, inner diameter
7 mm and a top layer thickness of approximately 50 nm. Polymeric
membranes were flat sheet. All membrane experiments were car-
ried out in a cross-flow filtration unit made in-house, pressurized
with nitrogen gas. Filtration experiments were performed with
cross-flow velocity of 2 m s−1.

Proton (1H) and carbon-13 (13C) nuclear magnetic resonance
(NMR) spectra were recorded on a Bruker AV 300 spectrometer
(Karlsruhe, Germany). Deuterated chloroform (CDCl3) (Euriso-Top,
Paris, France, 0.03% teramethylsilane (TMS), 99.80% D) was used as
deuterated solvent. The multiplicities of signals were abbreviated
as follows: s: singlet; d: doublet; dd: doublet of doublets; dt:
doublet of triplets; t: triplet; tt: triplet of triplets; ttt: triplet of triplets
of triplets; q: quartet; quint: quintet; sept: septet; m: multiplet; br:
broad signal. The 13C spectra were recorded proton decoupled
unless otherwise noted.

Reactions were analysed on a Waters UPLC (Waters Corporation,
Milford, Massachusetts, USA) with a UV-visible photodiode array
detector, a Waters Acquity BEH C18 column with dimensions
of 2.1 mm× 50 mm, 1.7 μm, and a gradient of methanol and
acetonitrile, Table 1. The column temperature was 40 ∘C.

Analysis of ruthenium (Ru) species was carried out using induc-
tively coupled plasma atomic emission spectroscopy (ICP-AES).
After evaporation of the solvent from the sample, the residue was
digested using aqua regia and diluted with deionized water to the
required concentration range. The samples were then analysed for
metal content.

Thin-layer chromatography (TLC) was carried out on silica gel
plates (Merck F254). Spots were detected with UV light and
revealed with potassium permanganate (KMnO4) or ninhydrin
solutions.

2,2′-Bis(but-3-en-1-yloxy)-1,1′-binaphthalene (1)
Synthesis was adapted from the literature procedure.42

Williamson reaction
A 1 L round bottom flask was charged with Binol (35.4 g,
0.12 mol) and DMF (650 mL). Potassium carbonate (204.7 g,
1.48 mol) was added and the mixture warmed to 80 ∘C for 30 min.
4-Bromo-1-butene (100 g, 0.74 mol) was added dropwise and the
mixture stirred at 80 ∘C for 12 h. After allowing to cool to 23 ∘C
the reaction mixture was filtered and the filtrate added to water
(1000 mL) and the mixture extracted four times with EtOAc. The
combined organic layers were dried over magnesium sulphate
(MgSO4) and the solvent removed under reduced pressure. The
crude residue was recrystallized from ethanol/2-propanol (96:4)
to yield 26.4 g of an off-white solid.

Mitsunobu reaction
In a 250 mL round-bottomed flask are introduced Binol (1.99 g
7 mmol, 1 eq) and 100 mL of toluene. The flask is wrapped in
aluminium foil and heated to 80 ∘C. Diisopropyl azodicarboxylate
(DIAD) (5.5 mL, 28 mmol, 4 eq) was added to the stirred mixture,
followed by triphenylphosphine (7.3187 g, 28 mmol, 4 eq). The
resultant mixture was stirred for approximately 10 min before
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3-buten-1-ol (2.4 mL, 28 mmol, 4 eq) was added to the mixture. The
resulting mixture was stirred at 80 ∘C for 24 h. Solvent was removed
under reduced pressure and the resulting oily mass purified by
flash chromatography. Eluent: n-hexane/diethyl ether 98:2.

1H-NMR (300 MHz, chloroform-d) 𝛿 ppm 2.10–2.18 (m, 4H), 3.97
(q, 4H, J = 9.04, 6.78 Hz), 4.73–4.82 (m, 4H), 5.34–5.48 (m, 2H),
7.28–7.42 (m, 10Har), 7.84–7.95 (dd, 2Har).

13C-NMR (75 MHz, chloroform-d) 𝛿 ppm 153.61, 133.27, 129.81,
128.25, 127.99, 126.75, 124.45, 122.35, 115.03, 113.10, 76.00, 68.90,
28.37, 28.22.

High-resolution mass spectrometry (HRMS) m/z: [MS+H]+ cal-
culated for C28H27O2: 395.2011. Found: 395.2001.

General RCM batch process [8,9,12,13-tetrahyd
rodinaphtho[2,1-b:1′,2′-d][1,6]dioxacyclododecine (2)]
In a 20 mL test tube are introduced (0.0166 g, 0.04 mmol) of
2,2′-bis(but-3-en-1-yloxy)-1,1′-binaphthalene (1) and 5 mL of sol-
vent. From a stock solution of catalyst (HG-1 or M-2) (0.026 mol
L-1) in the solvent of choice was added 0.212 mL (5 mol%) via a
micropipette, under continuous stirring. The reaction was carried
out with stirring at 23 ∘C until considered complete via TLC analysis
eluting with n-hexane/diethyl ether 98:2.

General RCM with membrane assisted processing
To a filtration apparatus fitted with a membrane, preconditioned
if required (some membranes are supplied by the manufactures
containing a preservative within the membrane, these preserva-
tives need to be removed prior to use, typically with the process
solvent to be used), was added 400 mL of EtOAc and circulated
through the system at atmospheric pressure until the internal tem-
perature was 23 ∘C. The filtration loop was brought under pressure
(10 bar ceramic membranes 20 bar for polymeric membranes) and
the membrane flux continually monitored. Connected to the fil-
tration unit via a pump and set up to perform constant volume
diafiltration was 200 mL stirred EtOAc at 23 ∘C; this is the diafiltra-
tion solution. Permeate from the membrane was added directly to
the diafiltration solution. To the diafiltration solution was added via
a syringe pump a solution of HG-1 in DCM (0.026 mol L-1) and via a
Dosimat a solution of 1 in EtOAc (1.2 mol L-1). The addition speed
and concentration were so that 5 mol% of catalyst was added
when the substrate was added. Regular sampling of the filtration
loop contents (retentate), the diafiltration solution (mix), and the
membrane permeate outlet (permeate) was performed for anal-
ysis. TLC of the samples was performed in cyclohexane/acetone
(98:2).

1H-NMR (500 MHz, chloroform-d) 𝛿 ppm 7.92 (d, J = 8.9 Hz, 2H),
7.84 (dd, J = 7.8, 0.9 Hz, 2H), 7.41 (d, J = 9.1 Hz, 2H), 7.29 (ddd,
J = 8.1, 6.7, 1.3 Hz, 2H), 7.20 (ddd, J = 8.1, 6.7, 1.3 Hz, 2H), 7.12 (ddt,
J = 8.5, 1.4, 0.7 Hz, 2H), 5.11–5.04 (m, 2H), 4.44 (ddd, J = 11.6, 4.9,
3.9 Hz, 2H), 4.05 (ddd, J = 11.6, 10.3, 4.4 Hz, 2H), 2.50 (ddd, J = 18.8,
14.7, 5.2 Hz, 2H), 2.20–2.07 (m, 2H).

Table 1. Ultra-performance liquid chromatography (UPLC) solvent
gradient

Mobile phase composition

Time (min) Methanol (%) Acetonitrile (%)

0 70 30
3 0 100
10 0 100
10.1 70 30
13 70 30

Flow rate: 0.5 mL min−1.

13C-NMR (126 MHz, CDCl3) 𝛿 ppm 152.04, 134.64, 128.88, 128.67,
127.75, 126.11, 125.44, 123.33, 120.50, 114.91, 66.29, 46.09, 30.91.

HRMS m/z: [MS+H]+ calculated for C26H23O2: 367.1698. Found:
367.1695.

RESULTS AND DISCUSSION
Reaction subtrate and cyclization reaction
To demonstrate the membrane-assisted processing method, a
cyclization precursor that is rapidly and easily synthesized is
required. To fulfil these requirements the Binol derivative 1 was
chosen, synthesis of which can be carried out either by Mitsunobu
reaction of Binol with 3-buten-1-ol or via a Williamson ether syn-
thesis with Binol and 4-bromo-1-butene. RCM on this material will
yield a 12 membered macrocycle (Scheme 1).

Using the Mitsunobu route isolated yield of 1 was 85%
however, chromatography was required to isolate the pure
material. In contrast with the Williamson ether synthesis pure
1 was isolated via a crystallization process though in moderate
unoptimized yield of 54%. Batchwise cyclization of 1 to 8,9,12,
13-tetrahydrodinaphtho[2,1-b:1′,2′-d][1,6]dioxacyclododecine
(2) under RCM conditions was initially carried out at room tem-
perature in DCM using either Hoveyda–Grubbs first generation
catalyst (HG-1) or the second generation indenylidene catalyst
from the Umicore portfolio sold as the Umicore M-2. The reactions
were also carried out at a number of different concentrations, with
respect to cyclization precursor 1 in order to establish the optimal
reaction concentration, results are shown in Fig. 1.

Clearly the Hoveyda–Grubbs type catalyst was the more per-
formant in this reaction, the differences in cyclization efficiency
resulting from differences in precatalyst initiation. Whereas, phos-
phine bearing precatalysts such as the M-2 generally initiate via
a dissociative mechanism, thus allowing the possibility that at
low concentration secondary unproductive reactions may occur,
the Hoveyda–Grubbs type catalyst initiate through a mechanism
with a greater degree of interchange character.43 Highest reac-
tion yields and selectivity were achieved at concentrations of
0.01 mol L–1 (100 L mol–1) with respect to 1. However, though

OH

OH

O

O O

O

1 2

RCM

Br

HO

Ph3P, DIAD, Toluene, 80°C

or: K2CO3, DMF,85°C

Scheme 1. Synthesis of 2,2′-bis(but-3-en-1-yloxy)-1,1′-binaphthalene (1) and ring-closing metathesis (RCM) cyclization reaction.
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Figure 1. Ring-closing metathesis (RCM) of 2,2′-bis(but-3-en-1-yloxy)-1,1′-binaphthalene (1) to yield (Z)-8,9,12,13-tetrahydrodinaphtho[2,1-b:1′ ,2′-d]
[1,6]dioxacyclododecine (2) with Hoveyda–Grubbs first generation catalyst (HG-1) and the second generation catalyst Umicore M-2 at varying
concentration, with respect to 1. Reaction was carried out in a Schlenk tube under an inert atmosphere at room temperature, with 2.5 mol% catalyst.
Structures of catalysts used in this work are shown above figure.
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Figure 2. Comparison of conversion of starting material 1 and yield of 2 after 16 h with Hoveyda–Grubbs first generation catalyst (HG-1) at increasing
initial concentrations of 1. The reactions are tested in ethyl acetate, at room temperature, with 2.5% mol catalyst.

DCM is a solvent often used for RCM reactions, it is classed as
hazardous44,45 and as such is likely to be problematic if scale-up
is required. Recently metathesis reactions in solvents that are
less hazardous has been demonstrated,46 as such the cycliza-
tion in EtOAc at various concentrations under analogous condi-
tions as used previously in DCM was evaluated (Fig. 2). Again high

conversion of 1 and yield of 2 can be achieved in these batchwise
reactions at concentrations at or below 0.01 mol L–1 (100 L mol–1),
with respect to 1. Though the plot of yield versus concentration
gives a qualitative notion of the required reaction concentration
in order to obtain a more quantitative maximal concentration of
the reaction, the effective molaritry47,48 was estimated using the
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Figure 3. Plot of kinetic effective molarity [EM(Kin)] for the cyclization of 1 to 2 using HG-1 as catalyst in ethyl acetate.

method described by Farina et al.49 Treatment of 2 with up to
10 mol% of the Hoveyda–Grubbs first generation catalyst did not
result in ring opening or further impurity formation thus kinetic
effective molarity was used which is the ratio of the rate constant
of the first-order reaction (cyclization) to the rate constant of the
second-order reaction (oligomerization). The effective molarity is
the concentration of 1 at which cyclization and oligomer forma-
tion are approximately equal and can be derived from the slope
of the plot of [%RCM]/[%oligomers] versus 1/[diene] (Fig. 3). The
effective molarity was thus, estimated to be 0.044 mol L-1 at room
temperature and 0.063 mol L-1 at 50 ∘C. In practice this means the
reaction needs to remain well below this concentration in order to
obtain high yield of 2.

The similarity of reaction yields achieved in EtOAc as compared
to DCM, and its greater amenability to scale-up resulted in this
solvent being preferred for reactions in the membrane assisted
set up.

Membrane process and membrane requirements
The membranes primary role in this processing method is to allow
internal solvent recycling which imposes a certain membrane per-
formance. Key parameters to characterize the filtration properties
of a membrane are flux and rejection.

The flux J is defined as the volume V of solvent (or of a solution)
permeating through a membrane of area A in a defined time
interval t (Eqn (1)).

J = V
At

(1)

This value normalized for the transmembrane pressure ΔP
applied is defined as permeance L (Eqn (2))

L = J
ΔP

(2)

Given a standard set of conditions (temperature, pressure, sol-
vent, concentration) the rejection of a given species in solution
is defined as the ratio between its concentration in the perme-
ate (Cp) and in the retentate (Cr) and it is calculated as follows
(Eqn (3)):

Rejection (%) =
(

1 −
Cp
Cr

)
× 100 (3)

separation
vessel

mixer/reaction
tank

solution 2

membrane

solution 1

2
gas

V-1

V-2

N

P-1

P-2

1 in solvent Catalyst in
solvent

Reaction
mixture
(solution A)

Scheme 2. Reaction set-up for macrocyclization via ring-closing metathe-
sis (RCM) with internal solvent recycling. The area within the shaded box
is under pressure during operation. P-1 is a diafiltration pump; P-2 a cir-
culation pump. During the cyclization V-1 would be open and V-2 closed,
allowing total return of the permeate.

The experimental set up for the reactions is shown in Scheme 2.
Concentrated solutions of catalyst and starting material 1 are
mixed, diluted and reacted within the mixer/reaction tank. Only
a small volume of the reaction mixture at low concentration
(0.01 mol L–1) is formed in this vessel; but if the reaction is to pro-
ceed this requires continual replenishment during the process. The
contents of this tank are added to the filtration system via constant
volume diafiltration the rate of which is controlled by the mem-
brane permeance (constant volume diafiltration is the addition of
solvent, or in this case reaction solution, to the filtration unit at a
rate equal to the rate at which solvent is removed via permeation
through the membrane. thus, solvent volumes within the filtration
unit remain the same). This diafiltration addition of the contents of
the reactor tank occurs in a semi-continuous manner. The cycliza-
tion occurs in a significantly reduced solvent volume as com-
pared to a standard batch reaction because during the reaction
V-2 is closed and V-1 open, the solvent permeating through the
membrane is therefore, recycled back into the mixer/reaction tank

wileyonlinelibrary.com/jctb © 2019 Society of Chemical Industry J Chem Technol Biotechnol 2019; 94: 2990–2998
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Table 2. Membrane characteristics

Entry Membrane Type MWCOa Supplier

1 0.9 nm TiO2 Ceramic 450b Inopor
2 1.0 nm C8 TiO2 Ceramic 1500c Vito
3 1.0 nm phenyl TiO2 Ceramic 1500c Vito
4 0.9 nm C8 TiO2 Ceramic 600d Vito
5 0.9 nm phenyl TiO2 Ceramic 600d Vito
6 0.9 nm C8H4F13 TiO2 Ceramic 600d Vito
7 Starmem-122 Polymeric 220b Evonik
8 Solsep-10206 Polymeric ∼300b Solsep
9 Solsep-10306 Polymeric 1000b Solsep

a MWCO = molecular weight cut-off (molecular weight cut-off is defined as the molecular weight of a reference solute corresponding to a 90%
rejection for a given membrane and a given solvent).
b Information from supplier.
c Based on the rejection of polyethylene glycols in water.
d Based on the rejection of styrenes in acetone.

where it is used to further regenerate the low concentration reac-
tion solution. For internal solvent recycling, the solution perme-
ating through the membrane should be essencially solvent. Thus,
high rejection of 1, 2 and all organometallic species is required.
High rejection of 2 is desirable as this will allow it to accumulate
in the separation vessel away from the site of reaction, proctecting
it from possible further unwanted reactions. Though ideally all of
1 would have been consumed prior to the reaction mixture com-
ing in contact with the membrane, its rejection is expected to be
very similar to that of 2. Thus if rejection of 1 and 2 are very simi-
lar, residence time of 1 in the mixer/reaction tank (Scheme 2) will
also be relevent. It should also be noted that although in principle
it would be possible to load the catalyst in the separation vessel so
that the dilute solution of 1 only comes in contact with the cata-
lyst within the pressurized filtration loop, shaded area Scheme 2,
and thus, cyclization occurs within the filtration loop. The experi-
ment was not carried out in this manner as this could have a signif-
icant and negative effect on the rate of cyclization. If the reaction
was to be carried out within the filtration loop the RCM secondary
product ethene, a catalyst poison, can only escape the system via
permeation through the membrane and with the system under
pressure more ethene will be dissolved in solution. The negative
effect of ethene within the pressurized system has already been
demonstrated.28

The membranes included in this work and their characteristics
are listed in Table 2 and comprise a selection of the commercial
ceramic (Inopor) and polymeric (Solsep and Starmem) membranes
that have previously proved to be stable in organic solvents. Also
included are a series of ceramic membranes with the surface
modified, in-house, with organic groups.50–52

Membrane evaluation and choice
As previously stated high rejection of the organometallic species
within the reaction was desired. However, screening experiments
to identify a membrane capable of giving high rejection of the
pre-catalyst would be of little use as the catalytic species under
reaction conditions has very different structure and mass to the
pre-catalyst.53 Therefore, rejection of the organometallic species
were established directly under the conditions of cyclization of 1
within the reaction set-up shown in Scheme 2.

In a series of small-scale experiments the membrane perfor-
mance with respect to permeance, and rejection of catalyst,

cyclization precursor 1 and cyclic product 2 was determined for
a number of membranes in DCM, EtOAc and toluene as solvents
(Table 3). High catalyst rejection can only be achieved in EtOAc
as solvent, the most performant membranes in this solvent being
the Starmem-122 and Solsep-10206, entries 8 and 13 Table 3. Both
membranes have similar rejection profiles of 1, 2 and catalyst but
the Starmem membrane having significantly higher permeance.
Differences in rejection of 1 and 2 were minimal and not unex-
pected as for there to be a notable difference in rejection of these
two molecules there would have to be a significant difference in
either molecular mass or solubility parameters, neither of which
are present in these two molecules.

Noteworthy within these results is though the solutes remain
the same on changing the solvent the rejection profile, even when
using the same type of membrane, can change dramatically. This is
most notable within the ceramic membranes due to compatability
issues as some of the polymeric membranes were not used in some
of the solvents; ceramic membranes in contrast are typically chem-
ically more stable than the polymeric equivalents. The changes in
the rejection profiles on changing the solvent are explicable by
taking Spiegler–Kedem theory into consideration. A theory that
decribes solute transport through a membrane as the result of two
phenomena. One due to diffusion and is influenced by the solubil-
ity effects of solvent and membrane. The other convection which
is related to pore size and molecular volume. The Spiegler–Kedem
model can be further solved to give solute rejection and this rejec-
tion is a function of the reflection coefficient (𝜎), dependent on the
ratio of solute size and the membrane pore size, and the ratio of the
solvent flux and solute permeability by diffusion.54,55 If the ratio of
solvent flux and solute permeability is large (≥ 10) the solute rejec-
tion approaches a limiting value equal to the reflection coefficient
and thus, solute transport is dominated by convection and is due
to size exclusion (i.e. the membranes action is more sieve like). Con-
versely, if the ratio of solvent flux and solute permeability is small
then diffusion dominates solute transport and the membrane
shows far more solvent like characteristics. Simply looking at cat-
alyst rejection in Table 3, entry 2 the membranes action is solvent
like, there is significant interaction between the catalyst, either in
an active form or resting state, and the membrane resulting in low
rejection. In contrast with the same catalyst and membrane but an
alternative solvent (Table 3, entry 6) the membrane–catalyst inter-
action is dominated by size exclusion interactions.
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Table 3. Membrane screening results

Entry Solvent Catalyst Membrane Rejection 1 (%) Rejection 2 (%) Rejection catalyst (%) Av. Permeance (Lm−2h−1bar−1)

1 DCM HG-1 0.9 nm TiO2 58 60 63 0.50
2 DCM HG-1 1.0 nm phenyl 29 24 14 0.89
3 DCM M-2 1.0 nm phenyl 44 63 45 0.50
4 DCM HG-1 1.0 nm C8 49 54 6 0.60
5 Toluene HG-1 1.0 nm C8 69 67 56 0.16
6 EtOAc HG-1 1.0 nm phenyl 43 41 76 5.40
7 EtOAc HG-1 0.9 nm TiO2 21 16 36 0.50
8 EtOAc HG-1 Starmem-122 88 93 97 13.3
9 EtOAc M-51 Starmem-122 86 89 94 8.36
10 EtOAc HG-1 0.9 nm C8H4F13 TiO2 34 37 81 3.0
11 EtOAc HG-1 0.9 nm phenyl TiO2 64 64 86 2.6
12 EtOAc HG-1 0.9 nm C8 TiO2 68 68 82 0.69
13 EtOAc HG-1 Solsep-10206 92 86 96 1.7
14 EtOAc HG-1 Solsep-10306 93 72 90 2.1
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Figure 4. Membrane permeance for a number of membranes on small-scale cyclization reactions in ethyl acetate with HG-1 as catalyst.

The permeance data quoted in Table 3 is the average perme-
ance during the whole process, often permeance changes during
a process, particularly so if the membrane is susceptible to com-
paction or fouling. A more detailed view of the permeance in
EtOAc with ceramic as well as polymeric membranes is shown in
Fig. 4. All membranes display a drop in permeance, with the Solsep
membrane having the most stable of all. Despite reductions in
permeance the Starmem membrane has a significantly higher
permeance than the other membranes.

The rejection profile in EtOAc and the stable permeance of the
Solsep membrane made this the preferred membrane for the
further development of the reaction system.

Increasing the reaction efficiency
The principle behind this system is the reaction is carried out at
the ideal (low) concentration identified in the earlier experiments,
in this case 0.01 mol L–1 (100 L mol–1). This concentration has
been identified based on the yield versus concentration data
(Fig. 2) and the effective molarity (Fig. 3). It should also be noted
that although the effective molarity of the reaction is higher at
50 ∘C than at 23 ∘C, catalyst degradation was also faster and in

the membrane-assisted process this did not lead to increased
yield of the macrocycle thus all experiments to increase process
intensification where carried out at 23 ∘C.

For reaction in this type of system only a small volume of
this solution is prepared and must be continually regenerated
throughout the process, this occurs in the mixer/reaction tank
(Scheme 2). In the reaction set up shown in Scheme 2 the rate
of addition from the reactor/mixer tank into the membrane unit
is being controlled by the rate of membrane permeation. This
is done via the sensors that record the membrane permeation
being linked to the control unit of the diafiltration pump (P-1)
and thus membrane performance will have a direct influence on
residence time of the substrate 1 in the reaction vessel. Membrane
performance during this scale up showed it took about 100 min
for an equivalent volume of solvent to permeate the membrane
as was used in the reaction/mixer vessel, this time can easily be
adjusted by changes to the trans membrane pressure or mem-
brane surface area. The batchwise reactions showed that at the
reaction concentration and temperature chosen complete con-
version was achieved after 300 min. However, a batch reaction is
somewhat different from this reaction set-up as in a batch reaction
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Table 4. Scale-up reaction performance

etatecalyhtEtnevloS
1-GHtsylataC

Starting material 1 4.93)lomm(
Yield 2 96)%(

086)Lm(emulovtnevloslatoT
Solvent volume for an equivalent
batch reaction (0.01 mol L–1, mL)

3950

Kinetic effective molarity (mol L-1) 0.044
Systemmolarity (mol L-1 850.0)
Solvent reduction compared to
batch reaction (%)

82

Process mass intensity (PMI) batch
reaction

270

PMI membrane assisted process 97

the concentration of 1 will decrease with time and so does the
reaction rate. This membrane assisted set up has similarities to a
continuous stirred tank reactor (CSTR).

The cyclization was carried out in the membrane unit on a multi
gram scale where the total solvent used for the whole system
including all addition solutions and the solvent required in the
OSN unit was equivalent to the solvent volume used if the reaction
was carried out in a batch reactor at a concentration of 0.058 mol
L–1 (denoted later as system molarity), far above the effective
molarity. Despite this the yield of cyclic product was 69%, a batch
reaction at the same concentration would give less than 50% yield
of cyclic product. Significant improvement in mass intensity was
also noted, as was the reduction in solvent used in this system
considerably lower than that of a batch reaction. The colours at the
end of the rows in Table 4 are based on the holistic approach to
evaluate a reaction as described by McElroy et al.41 As this is proof
of concept it was subjected to the first pass evaluation in which
parameters such as yield, conversion, selectivity, mass intensity,
types of solvents used and quantities, the use of catalysts and
whether critical elements are used are included. Areas of concern
are the yield which ideally would be improved and whereas the
use of a catalysed reaction results in a green flag for that, the fact
that the catalyst is ruthenium based will result in a red flag due
to ruthenium being considered a critical element. Mass intensity
of an equivalent batch reaction with an intial concentration of 1
of 0.01 mol L–1 and the mass intensity of the membrane-assisted
process are both listed in the table to highlight the
improvement.

CONCLUSIONS
Using the method described here it is possible to perform
metathesis macrocylizations in a solvent volume of upto 82%
lower than an equivalent batch reaction, with only minimal
impact upon the reaction outcome. A switch of reaction solvent to
EtOAc renders the process more benign and applicable on a large
scale. Furthermore, the membrane-assisted process described
here is intended to be a solution to the need for high dilution
in RCM macrocyclizations. Reactions carried out in this manner
can be performed in standard reaction vessels as the equipment
required to perform nanofiltrations is a stand alone apparatus that
connects to reactors via standard hosing. Further investigations
aimed at addressing the areas of concern as highlighted in the
reaction performance evaluation are currently on-going.
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