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a b s t r a c t 

Among the different dynamical systems which have been considered in psychology, those modeling the 

dynamics of learning and teaching interaction are particularly important. In this paper we consider a well 

known model of proximal development and analyze some of its mathematical properties. The dynamical 

system we study belongs to a class of 2D noninvertible piecewise smooth maps characterized by vanish- 

ing denominators in both components. We determine focal points, among which the origin is particular 

since its prefocal set contains this point itself. We also find fixed points of the map and investigate their 

stability properties. Finally, we consider map dynamics for two sample parameter sets, providing plots of 

basins of attraction for coexisting attractors in the phase plane. We emphasize that in the first example 

there exists a set of initial conditions of non-zero measure, whose orbits asymptotically approach the 

focal point at the origin. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The application of dynamical systems in the social and behav-

oral sciences [1] , developmental psychology [2] although being

 relatively new approach, has provided interesting contributions.

n particular, a promising line of research has examined changing

nteraction between the learner (the child or student) and the

elper (the teacher or tutor). In fact, provided that an adult or

ore competent peer has given a particular form of help, guidance

r collaboration, and that a certain amount of change has occurred

n the learner’s actual level (e. g., it has moved a little bit towards

he objective or goal level in terms of his independent perfor-

ance), the next help, guidance or assistance given must reckon

ith this change, because they must be adaptive to the changed

ctual level of the learner. Hence, the level of help that leads

o optimal change in the learner, must be a different one than

he preceding level of help. And this means that change not only
� Fully documented templates are available in the elsarticle package on http:// 

ww.ctan.org/tex-archive/macros/latex/contrib/elsarticle CTAN. 
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eert). 
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ccurs in the learner, but that it also occurs in the helper, and that

he helper must be capable of adequately adapting the level of

elp according to the actual level of learner. That is to say, there is

ot only developmental or learning change in the person receiving

elp, but there is also change in the level of the help given. Help

hat exceeds the current capabilities of learning and understanding

f the learner or that remains too close to the learner’s current

evel of independent performance, will greatly hamper learning

r development. The helper must therefore find the level of help,

elative to the learner’s current level of independent performance,

hat results in maximal learning given the learner’s possibilities. In

his sense, the process of socially mediated learning is a process

f co-adaptation [3] . 

It is quite natural to formalize developmental processes as

ynamical systems [4,5] given the importance of time in any

sychological process. As a matter of fact, important pioneers

n Mathematical Psychology claimed that “[t]he observation that

sychological processes occur in time is trite” in [6, p.231] . 

In this paper we consider a version of the model of proximal

evelopment presented in [3,4,7,8] . This model is inspired by ideas

nd principles of L. S. Vygotsky [9] , in particular, his well-known

one of proximal development . By definition this zone represents the

ange between a learner’s performance on his/her actual develop-

ental level (where the learner can do without dedicated help) and

https://doi.org/10.1016/j.chaos.2019.06.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2019.06.008&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:ugo.merlone@unito.it
mailto:anastasiia.panchuk@gmail.com
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the level of the learner’s performance under conditions of adequate

help from the teacher, referred to as potential developmental level .

Another keynote concept forming the basis of the model studied

below is the principle of scaffolding . The widespread use of this

term started with an article [10] , in which the authors presented

a model of effective helping that was consistent with the Vygot-

skyan approach, although the article makes no mention of Vygot-

sky’s work. The main idea of the scaffolding principle is as follows:

only those forms of help or assistance that the learner can under-

stand as being functional are actually effective in causing learning to

occur (see [7] for details and a dynamic model). Both mentioned

approaches suggest that the crucial dynamic aspect of the learn-

ing process is the existence of an optimal distance between the

learner’s actual developmental level and the level of performance

with help and assistance (potential developmental level). And this

optimal distance results in an optimal learning effect under the

current help and assistance given. 

The resulting model is represented by a 2D noninvertible piece-

wise smooth map, both components of which have the form of a

rational function. This implies that the map is not defined in the

whole space possessing the set of nondefinition being the locus of

points in which at least one denominator vanishes. Maps of such

kind are called maps with vanishing denominator and have been ex-

tensively investigated by many researchers. See, for instance, the

triology [11–13] and references therein, for a detailed description

of peculiar properties of such maps, related to particular bifurca-

tions and changes in structure of the phase space. One may also

refer to [14,15] , where the authors survey several models coming

from economics, biology and ecology defined by maps with van-

ishing denominator and investigate the global properties of their

dynamics. 

Two distinguishing concepts related to maps with vanishing de-

nominator are notions of a prefocal set and a focal point . Roughly

speaking a prefocal set is a locus of points that is mapped (or of-

ten said “is focalized”) into a single point (focal point) by one of

the map inverses. In a certain sense, the focal point can be consid-

ered as the preimage of the prefocal set with using a particular in-

verse of the map. At the focal point at least one component of the

map takes the form of uncertainty 0/0, and hence, the focal point

can be derived as a root of a 2D system of algebraic equations. If

it is a simple root, the focal point is called simple . 

Presence of focal points and prefocal curves has an important

influence on the global dynamics of the map. There may occur

certain global bifurcations related to contacts of prefocal sets with

invariant sets (such as basin boundaries) or critical curves. Such

bifurcations usually lead to qualitative changes in structure of at-

tracting sets or basins of attraction. In particular, one may observe

creation of basin structures specific to maps with denominator,

called lobes and crescents, sometimes resembling feather fans cen-

tered at focal points. 

For the map investigated in the current paper we determine fo-

cal points and their prefocal sets. We show that among three focal

points only one is simple. Moreover, a focal point at the origin de-

noted SP 0 is rather particular, since its prefocal set coincides with

the set of nondefinition including the point SP 0 itself. In a certain

sense the focal point SP 0 plays a role similar to that of a fixed point

of the map. After analyzing focal points, we examine fixed points

of the map and derive analytic expressions for their computation.

Some fixed points can be obtained in explicit form, while the oth-

ers are identified by finding the roots of certain cubic equations.

We also investigate stability properties of the fixed points and for

some of them derive conditions for their stability in the form of

analytic expressions. Finally, we consider map dynamics for two

sample parameter sets, providing plots of basins of attraction for

coexisting attractors in the phase plane. Noteworthy, in one of the

examples there exists a set of initial conditions of non-zero mea-
ure, whose orbits asymptotically approach the focal point at the

rigin. 

The paper is organized as follows. Section 2 presents a brief

escription of the main concepts, the terms and the model.

ection 3 concerns determining focal points and the associated

refocal sets. In Section 4 we discuss some preliminary analytical

esults concerning the map and find all possible fixed points. In

ection 5 we study their stability and in Section 6 two numerical

xamples of map dynamics are provided. Section 7 concludes. 

. A model of learning and teaching coupling 

When modeling an educational process one usually distin-

uishes three main objects involved: A person to be educated (a

tudent), a person who imparts specific knowledge or skills (a

eacher or tutor), and the final educational goal. Formally speak-

ng, the educational goal can be considered as a stock of informa-

ion and skills K , which is a real positive parameter (as shown be-

ow, it is not restrictive to fix K = 1 ). Moreover, the information

an be ordered according to its level of intricacy and has to be

xpounded complying with this order. For instance, it is useless

o explain methods for solving a system of linear equations to a

erson (e. g., a child) who does not have any idea about neither

umbers nor arithmetic operations. The latter concepts have to be

earned before mastering more complex things. 

Formally speaking, a student can be also represented by a cer-

ain amount of knowledge (information and skills) A that he has

lready picked up, and that can be expressed in perspective to the

ducational goal to be attained, specified by the level K . Now, the

rocess of learning can be considered as a flow from the goal stock,

 , to the individual stock, A , that is, can be modeled by a dynamic

quation over the variable A . The speed of knowledge assimilation

r skill learning depends on a variety of different factors, for in-

tance how much effort the student makes to learn, as well as on

is individual flairs and abilities. However, it suffices to specify this

peed or rate by a single parameter, without reference to the host

f factors that form its psychological basis. Note that this is only

 formal representation of the process, which is not intended to

erve as some sort of picture of the psychological processes that

ake place. Depending on personal capabilities and actual develop-

ental or learning level, A , the teacher must foresee what new in-

ormation or which new performance the student can comprehend,

hat is, the teacher must foresee what the nature of the appropri-

te help will be, at any moment in the teaching-learning process.

hat is to say, the teacher continuously estimates the student’s po-

ential level of development, P . As the student is learning, i. e. is

rogressing towards the educational goal level represented by K ,

he teacher must adapt the complexity of the help and assistance

iven, which in practice means that the level of help and assis-

ance is progressively coming closer to K . The rate with which the

eacher adapts this level of help and assistance given, contingent

pon any progress in the student’s learning, i. e. contingent upon

ny change in the level A , is a teacher-specific parameter. 

According to Hollenstein [16] the dynamical system approach

as emerged as one of the most prevalent and dominant new

pproaches in developmental psychology both in terms of the

umber of proponents and volume of direct empirical tests.

n particular, the interaction between the actual and potential

evelopmental levels has been modeled in [4,17] as a two-

imensional map and has inspired several other contributions:

or example, see [18] for a dynamical system studying second

anguage acquisition and [19,20] for empirical analyses of me-

iated learning experience and the role of zone of proximal

evelopment in terms of peer interaction, respectively. How-

ver, despite its importance, an analysis of the mathematical

roperties of the model proposed in [4] is missing. Below we
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erform the first steps towards understanding the dynamics of the

forementioned model from a theoretical viewpoint. For this we

onsider the two-dimensional map � : (A, P ) ∈ R 

2 → (A 

′ , P ′ ) ∈ R 

2 

efined by 

 

 

 

 

 

A 

′ = A 

[
1 + R a (A, P ) 

(
1 − A 

P 

)]
def = �1 (A, P ) , 

P ′ = P 

[ 
1 + R p (A, P ) 

(
1 − P 

K 

)] 
def = �2 (A, P ) , 

(1) 

here functions R a ( A, P ) and R p ( A, P ) (change rates of the actual

nd the potential developmental levels, respectively) are given by 

 a (A, P ) 
def = R a = r a −

∣∣∣P 

A 

− O a 

∣∣∣b a (1 − A 

K 

)
, (2a) 

 p (A, P ) 
def = R p = r p −

(
P 

A 

− O p 

)
b p 

(
1 − P 

K 

)
. (2b) 

Here parameter r a > 0 denotes the so-called maximum individual

ate of learning that differs among students. The parameter O a > 0

eflects the optimal distance (also individual for a student) between

he actual, A , and the potential, P , developmental levels. If there is

/A = O a , then the growth rate R a attains its maximum ( r a ) and the

earning proceeds the fastest. The value b a is a student-dependent

amping/moderating parameter. For instance, with b a � 1, even if

he current ratio P / A differs considerably from the optimal distance

 a , it does not influence much the learning rate. On the contrary,

or values b a > 1 the student’s degree of comprehension is rather

ensitive to the deviation of P / A from its optimal. 

As for the change rate R p , the argument is different. The

onstant growth factor r p > 0 corresponds to what one may call

 ‘default property’ of a teacher (like teaching manner, training

ethods, character traits, etc.). The actual rate of change of P

an be greater or smaller than this default (or habitual) value r p .

ndeed, optimum of R p cannot be considered as only a teacher-

pecific property but is also influenced by the learner. Namely, the

ate of change R p is optimal if it guarantees that P / A equals O a .

learly, such an optimum cannot be defined uniquely and usually

hanges with changing A and/or P . The meaning of the remaining

wo parameters is as follows. The parameter O p > 0 represents

he teacher’s estimation for the optimal value of the ratio P / A ,

nd hence, also depends on him/her. In general, the value O p 

ay differ from O a , but the closer they are, the more efficient

he educational process is. And b p > 0 is the damping/moderating

arameter, whose influence is similar to that of b a . 

We remark that due to modulus function in the expression for

 a the map (1) is piecewise smooth. 1 Hence, the phase space is

ivided into two regions; namely, D + for that P / A > O a and D − for

hat P / A < O a (see Figs. 1 ). The lines P = O a A and A = 0 constitute

he switching set . Recall that the switching set is a locus of points

here the map changes its definition, that is, on either side of the

witching set the map is defined by different functions. 

Let us consider for sake of shortness the set of all parameters

s a point in a 7-dimensional space 

= (r a , r p , b a , b p , O a , O p , K) ∈ R 

7 
+ (3)

ith R + denoting the positive semi-axis of real numbers. For a cer-

ain representative of the map family (1) we then use the notation

μ. 

Recall that from the application viewpoint, A is the actual de-

elopmental level of the student, P is the potential developmental
1 For the detailed overview of piecewise smooth maps occurring in different ap- 

lications and associated dynamical peculiarities see, for instance, [21,22] and ref- 

rences therein. 

g  

r  

v  

c  

�  
evel, and K is the final educational goal. It follows that the in-

qualities 

 ≤ K, P ≤ K, A ≤ P (4)

onfine the feasible domain D F (outlined green in Fig. 1 ) for the

tates of the system (1) . The boundary of D F is denoted ∂D F . No-

ice that if O a > 1, then the feasible domain D F is divided into two

arts, that is, D F = (D F ∩ D −) ∪ (D F ∩ D + ) (see Fig. 1 (a)). Other-

ise, it is completely contained inside D + (see Fig. 1 (b)). 

The domain D F constitutes quite a limited area in the R 

2 space,

nd moreover, D F is not invariant under �μ. It is important then

o distinguish between feasible orbits, which completely belong

o D F , and nonfeasible ones, which eventually leave the feasible

omain. Although from applied context we have to restrict our

tudies to the orbits located completely inside D F , we consider

arger part of the phase space. The main reason is that, in gen-

ral, dynamic phenomena occurring outside D F may influence also

he feasible part of the phase space. For example, suppose that

ome homoclinic bifurcation occurs outside D F and this changes

he complete structure of basins, including those related to attrac-

ors belonging to D F . In other words, considering orbits that are

ocated outside D F may shed light on the feasible dynamics of

ap (1) . And this way we also obtain a better understanding of the

ap dynamics in cases in which some of the conditions in (4) are

elaxed. 

It seems that conditions (4) must always hold in reality, though

n some cases their violation can be explained in applied context.

et us suppose, for instance, that A > P . It means that the actual

tudent’s developmental level is greater than the potential devel-

pmental level estimated by the teacher, that is, the student al-

eady knows what he is expected to learn. Generally speaking, in

he real learning process this may happen. For instance, if the cur-

ent level of the student’s knowledge is evaluated incorrectly. As a

atter of fact, this may happen when evaluating gifted-children,

s the definition of giftedness has a multifaced-nature [23] and

dentification process is not immediate [24] and often poses some

roblems [25] . In such cases the potential level P has to be up-

ated accordingly (so that P > A is restored) before the student gets

ored by the training. With respect to dynamics of (1) , it means

hat transient states are allowed to fall below the line P = A, but

ventually an orbit must come back in the interior of D F and stay

here forever. Similarly, violation of other inequalities in (4) may

e the result of incorrect decisions made by the teacher. One may

ertainly argue that a qualified and experienced teacher will never

ut the estimated level P greater than the final educational goal

 . However, reality suggests that not all teachers are qualified or

xperienced enough, and hence, it may happen that P > K . As for

 > K , it may mean that the student is rather smart. Theoretically,

n such cases the learning process has to be stopped, since the fi-

al goal has been achieved. Though in reality it might not happen,

s it is well known that evaluating and measuring the potential of

 student, as well as his/her actual mastering level, is a complex

ask that involves using several assessment tools [26,27] . 

An alternative interpretation of the inequalities inverse to (4) ,

amely, A > P, P > K, A > K , is that they represent a case where a

erson has to unlearn something, for instance, a bad or unhealthy

r unwanted habit. This is a sort of situation we find as typical

linical settings, or clinical-educational settings, such as children

ho are overly aggressive, where the goal is to reduce the level of

ggressiveness to normal proportions. 

In the following, as parameter K denotes the final educational

oal represented by the stock of information and skills, it is not

estrictive to normalize K to unity (or assume any other positive

alue). Mathematically it can be achieved by showing topological

onjugacy between any two maps from the family (1) , �μ1 
and

μ , with two different values K 1 and K 2 , respectively, and the

2 
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Fig. 1. Schematic representation of the phase space ( A, P ). Switching set given by P = O a A and A = 0 separates the phase space into regions D − (pink) and D + (blue). Green 

line marks the boundaries of the feasible domain D F . For O a > 1 as in (a) the feasible domain D F has intersections with both D − and D + . For O a ≤ 1 as in (b) D F ⊂ D + . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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other parameters being identical. The related homeomorphism is

given by 

h (A, P ) = 

(
K 1 

K 2 

A, 
K 1 

K 2 

P 

)
, 

so that 

�μ1 
◦ h = h ◦ �μ2 

. 

Without loss of generality we can assume that the set of parame-

ters belongs to the six-dimensional hyperplane μ ∈ R 

6 + × { K = 1 } . 

3. Focal points 

As has been already mentioned in the Introduction, one of the

particular characteristics of the map �μ is that both its compo-

nents assume the form of a rational function. Indeed, (1) can be

rewritten in the following form: 

A 

′ = 

N 1 (A, P ) 

D 1 (A, P ) 
= 

A (| A | P + (r a | A | − | O a A − P | b a (1 − A ))(P − A )) 

| A | P , 

(5a)

P ′ = 

N 2 (A, P ) 

D 2 (A, P ) 
= 

P (A + (r p A − (P − O p A ) b p (1 − P ))(1 − P )) 

A 

. 

(5b)

Clearly, at points belonging to the set δs 
def = { (A, P ) : A = 0 } ∪

{ (A, P ) : P = 0 } , at least one of the denominators D 1 ( A, P ) or D 2 ( A,

P ) vanishes. Hence, the set δs represents the set of nondefinition

of �μ. Maps of similar kind are called maps with vanishing de-

nominator and have been studied by many researchers (see, e. g.,

[11–15] to cite a few). Particular feature of such maps is possibil-

ity of having focal points and associated prefocal sets/curves . Due

to contact between phase curves and these prefocal sets or a set

of nondefinition, certain bifurcations can occur, which are peculiar

for maps with denominator. 

Recall that a point Q ( A 0 , P 0 ) is called a focal point if 

(i) at least one component of �μ takes the form of uncertainty

zero over zero at Q , that is, N i (A 0 , P 0 ) = D i (A 0 , P 0 ) = 0 for i =
1 or i = 2 ; 
τ
(ii) there exist smooth simple arcs γ ( τ ) with γ (0) = Q such

that lim τ → 0 �μ( γ ( τ )) is finite. 

The set of all such finite values, obtained by taking different

rcs γ ( τ ) through Q , is called the prefocal set δQ . Note that not

very point at which �μ takes the form 0/0 is a focal point. 

Suppose that �i ( A, P ), i = 1 , 2 , takes the form 0/0 at the focal

oint Q . The point Q is called simple if N iA D iP − N iP D iA � = 0 , where

 iA , N iP , D iA and D iP are the respective partial derivatives over A

nd P . Otherwise, Q is called nonsimple . 

For any smooth simple arc γ (τ ) = (γ1 (τ ) , γ2 (τ )) its both com-

onents can be represented as Taylor series: 

1 (τ ) = ξ0 + ξ1 τ + ξ2 τ
2 + . . . , (6a)

2 (τ ) = η0 + η1 τ + η2 τ
2 + . . . (6b)

If a focal point is simple, then there exists a one-to-one cor-

espondence between the slope m = η1 / ξ1 of a curve γ ( τ ) at this

ocal point and the limit point lim τ → 0 �μ( γ ( τ )). In case of a non-

imple focal point this generically does not hold. 

At first, we consider the points with A = 0 and arbitrary P and

onsider arcs γ ( τ ) through this point implying ξ0 = 0 , η0 = P . The

first component) function �1 (0, P ) assumes uncertainty 0/0, while

the second component) �2 (0 , P ) = −P 2 b p (1 − P ) 2 / 0 . If P � = 0, 1,

he limit of �μ( γ ( τ )) with τ → 0 is (−b a P sgn (P ) , ∞ ) , where ∞
eans either + ∞ or −∞ depending on whether limit is taken

rom the left or from the right, respectively. Hence, the point (0,

 ), P � = 0, 1, is not a focal point. 

Let us check whether SP 0 = SP 0 (0 , 0) and SP 1 = SP 1 (0 , 1) are the

ocal points. Note that now also the function �2 (0, P ) assumes un-

ertainty 0/0. For SP 0 , clearly, ξ0 = η0 = 0 . First, we suppose that

1 � = 0 and η1 � = 0. The limit is then lim τ→ 0 �μ(γ (τ )) = (0 , 0) re-

ardless of the arc γ ( τ ). It means that the focal point SP 0 belongs

o its prefocal set δSP 0 
. It also implies that whatever is the slope

 = η1 / ξ1 of γ ( τ ) at SP 0 , the image �μ( γ ( τ )) always intersects

SP 0 
at the same point, namely, SP 0 itself. In a certain sense the fo-

al point SP 0 plays a role similar to that of a fixed point of �μ.

owever, the set δSP 0 
contains also other points. Indeed, if we put

1 = 0 , η1 � = 0 then 

lim 

→ 0 
�μ(γ (τ )) = 

(
0 , −η2 

1 b p 

ξ2 

)
, 
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Fig. 2. The functions P = P I (A ) and P = P II (A ) . The branches P L I (solid orange curve) 

and P L II (solid red curve) reduce R a ( A, P ) to zero, while the branches P R I and P R II 

(dashed curves of respective colors) do not. Green line marks the feasible domain 

D F . The parameters are r a = 0 . 098 , r p = 0 . 09 , b a = b p = 0 . 1 , O a = 0 . 2 , O p = 0 . 11 . 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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hile if η1 = 0 , ξ 1 � = 0 then 

lim 

→ 0 
�μ(γ (τ )) = 

(
±ξ 2 

1 (r a ± O a b a ) 

η2 

, 0 

)
, 

here ‘ + ’ and ‘ − ’ are chosen depending on the signs of A and

(P − O a A ) . Hence, prefocal set 

SP 0 = { (A, P ) : A = 0 } ∪ { (A, P ) : P = 0 } , 
hich coincides with the set of nondefinition δs . Note that, N iA =
 iP = D iP = D 1 A = 0 , i = 1 , 2 , D 2 A = 1 , and therefore, the focal point

P 0 is nonsimple. 

Similarly, we get that the prefocal set of SP 1 is 

SP 1 = { (A, P ) : A = −b a } . 
or SP 1 there holds N iP = D iP = 0 , i = 1 , 2 , and this focal point is

onsimple as well. 

Finally, �1 ( A, P ) also assumes uncertainty 0/0, if A = 1 −
 a / (O a b a ) and P = 0 , while �2 ( A, P ) is finite. The prefocal set of

he focal point SP a = SP a (1 − r a / (O a b a ) , 0) is the line 

SP a = { (A, P ) : P = 0 } ⊂ δs . 

he point SP a is simple provided that r a � = O a b a . If r a = O a b a then

P a ≡ SP 0 . The point SP a belongs to its prefocal set δSP a , similarly to

P 0 . However, there exists only one slope m = η1 / ξ1 for which the

mage �μ( γ ( τ )) intersects δSP a at SP a , since SP a is simple. 

. Fixed points 

The system equations are not only polynomials of the variables

 and P but the latter also appear in denominators, therefore eval-

ating fixed points seems not so trivial at the first sight. Fixed

oints can be defined by solving the following equations: 
 

 

 

A = A 

(
1 + R a ·

(
1 − A 

P 

))
, 

P = P ( 1 + R p · (1 − P ) ) . 

(7) 

his is equivalent to 
 

 

 

f 1 (A, P ) 
def = AR a ·

(
1 − A 

P 

)
= 0 , (8 a )

f 2 (A, P ) 
def = P R p · (1 − P ) = 0 . (8 b )

ach of the equations (8) defines a geometrical locus of points in

he ( A, P )-plane. Every intersection of the two loci of points is a

potential) fixed point of (1) . We use the word ‘potential’ here be-

ause some of intersections may correspond to focal points, as for

nstance, the point SP 0 (0, 0). 

.1. Locus of points f 1 (A, P ) = 0 

From (8a) the function f 1 of the two variables A and P equals

ero when one of the following holds: 

 = A , AR a (A , P ) = 0 . (9)

he values A = 0 are omitted since they correspond to the set of

ondefinition δs as seen above. Let us solve the remaining equation

 a (A, P ) = 0 . Expanding the modulus we get two different equa-

ions: 

P 

A 

− O a = 

r a 

b a (1 − A ) 
and 

P 

A 

− O a = − r a 

b a (1 − A ) 
, 

here one has to require A < 1. This implies the following two

unctions 

 = 

−r a − O a b a + b a O a A 

b a (1 − A ) 
A = 

A 

2 − B I A 

A − 1 

O a 
de f = P I (A ) , (10a) 
 = 

−r a + O a b a − b a O a A 

b a (1 − A ) 
A = 

A 

2 − B II A 

A − 1 

O a 
de f = P II (A ) (10b) 

ith 

 I = 1 + 

r a 

O a b a 
, B II = 1 − r a 

O a b a 
. (11)

n general, both Eqs. (10a) and (10b) define curves in the ( A, P )-

lane consisting of two branches each (one for A < 1 and the other

or A > 1): P L 
I 
, P R 

I 
and P L 

II 
, P R 

II 
(see Fig. 2 ). However, only branches P L 

I 
nd P L 

II 
reduce R a ( A, P ) to zero. 

Note that the curve P = P L I (A ) is strictly increasing and have

wo asymptotes: A = 1 and P = O a A − r a /b a . As for P = P L 
II 
(A ) , it has

 local maximum at 

 = 1 −
√ 

r a 

b a O a 

def = A 

max 
II , P II (A 

max 
II ) = O a · (A 

max 
II ) 2 . (12)

bviously, A 

max 
II 

< 1 for any parameter values. Additionally, if

 a < b a O a then A 

max 
II 

> 0 , otherwise A 

max 
II 

< 0 . The function P =
 

L 
II (A ) also has two asymptotes: A = 1 and P = O a A + r a /b a . 

For sake of shortness, we omit the upper indices L writing sim-

ly P I ( A ) and P II ( A ), except for the cases where it is necessary to

istinguish between the two different branches. 

.2. Locus of points f 2 (A, P ) = 0 

From (8b) the function f 2 equals zero when one of the following

olds: 

 = 0 , P = 1 , R p (A, P ) = 0 , (13)

here the first line P = 0 belongs to the set of nondefinition δs as

iscussed above. The last equation of (13) is equivalent to 

 = 

1 + O p A ±
√ 

(1 − O p A ) 2 − 4 A 

r p 
b p 

2 

def = P ±(A ) , A � = 0 . (14)

Notice that the curves P ± ( A ) are defined only for those values

f A which guarantee positive discriminant 

(1 − O p A ) 2 − 4 A 

r p 

b p 
≥ 0 . 
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Fig. 3. The functions P = P −(A ) (light-blue curve) and P = P + (A ) (dark-blue curve) 

and their asymptotes L 1 and L 2 (dash-dot lines). Green line marks the feasible do- 

main D F . The parameters are r a = 0 . 03 , r p = 0 . 01 , b a = b p = 0 . 1 , O a = 1 . 5 , O p = 3 . 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Solving this inequality gives 

A < A 

L 
lim 

or A > A 

R 
lim 

with 

A 

L 
lim 

= 

b p O p + 2 r p − 2 

√ 

b p O p r p + r 2 p 

b p O 

2 
p 

, (15a)

A 

R 
lim 

= 

b p O p + 2 r p + 2 

√ 

b p O p r p + r 2 p 

b p O 

2 
p 

. (15b)

Both A 

L 
lim 

, A 

R 
lim 

are always positive and may be less or greater

than one. 

Further, each curve P −(A ) and P + (A ) consists of two branches,

one defined for A ≤ A 

L 
lim 

(denoted P L −(A ) and P L + (A ) , resp.) and the

other for A ≥ A 

R 
lim 

( P R −(A ) and P R + (A ) , resp.). Both curves have also
Fig. 4. Loci of points reducing f 1 ( A, P ) (dark-red) and f 2 ( A, P ) (blue) to zero. The param

r p = 0 . 09 , b a = b p = 0 . 1 , O a = 0 . 2 , O p = 0 . 11 . (For interpretation of the references to colou
wo asymptotes (see Fig. 3 ): 

 1 = 

{
(A, P ) : P = 1 + 

r p 

b p O p 

}
, (16)

 2 = 

{
(A, P ) : P = O p A − r p 

b p O p 

}
. (17)

.3. Intersection of the two loci 

Finally we find the fixed points of the map �μ as intersections

f f 1 (A, P ) = 0 (8a) and f 2 (A, P ) = 0 (8b). Fig. 4 show the ( A, P )-

lane with the two corresponding geometrical loci of points. The

urves along each of that f 1 becomes zero are plotted dark-red,

hile the branches reducing f 2 to zero are plotted blue. Left and

ight panels show different parameter sets. 

As one can deduce from the figure, the branches of f 1 (A, P ) =
 and f 2 (A, P ) = 0 cross at several points, whose number may

hange depending on the parameter values. And they always in-

ersect at the point SP 0 (0, 0), which is a focal point. 

The detailed analysis of different intersections is reported in

ppendix A . 

We can see that, the map �μ can have from 2 to 11 coex-

sting fixed points. Namely, the two points F P 1 (1 , 1) = { P = A } ∩
 P ≡ 1 } (the application target fixed point) and F P 2 (A 

−
I , 1 

, 1) = { P =
 I (A ) } ∩ { P ≡ 1 } (with A 

−
I , 1 

given in (A.2) ) always exist, the point

 P 5 (A d , A d ) = { P = A } ∩ { P = P ±(A ) } (with A d defined in (A.11) ) ex-

sts for almost any parameter values except for the set of measure

ero given in (A.24) . The pair F P 3 (A 

−
II , 1 

, 1) and F P 4 (A 

+ 
II , 1 

, 1) (with

 

−
II , 1 

, A 

+ 
II , 1 

given in (A.5) ), being the intersection of P = P II (A ) and

 ≡ 1, appears due to the fold bifurcation at r a = b a (1 −
√ 

O a ) 2 if

 a > 1 and exists for r a < b a (1 −
√ 

O a ) 2 . Finally, existence of the

riples FP 6 , FP 7 , FP 8 (intersections of P = P I (A ) with P = P ±(A ) ) and

P 9 , FP 10 , FP 11 (intersections of P = P II (A ) with P = P ±(A ) ) depends

n the sign of discriminant of the related cubic equation (see

ppendix A , Eqs. (A.16) and (A.17), (A.20) ) and whether the roots

f this equation are less or greater than one. 

. Fixed points stability 

Since the map �μ is piecewise smooth, the Jacobian matrix

or an arbitrary point ( A, P ) is defined differently depending on

hether (A, P ) ∈ D − ( P / A < O a ) or (A, P ) ∈ D + ( P / A > O a ). However,

n particular cases these two matrices coincide. 
eters are (a) r a = 0 . 03 , r p = 0 . 01 , b a = b p = 0 . 1 , O a = 3 , O p = 1 . 5 ; (b) r a = 0 . 098 , 

r in this figure legend, the reader is referred to the web version of this article.) 
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.1. FP 1 

The Jacobian matrix for the fixed point FP 1 is defined as 

(F P 1 ) = 

(
1 − r a r a 

0 1 − r p 

)
(18) 

egardless of whether F P 1 ∈ D − or F P 1 ∈ D + (which depends on

 a ). Eigenvalues of J ( FP 1 ) are ν1 (F P 1 ) = 1 − r a and ν2 (F P 1 ) =
 − r p . The corresponding eigenvectors are v 1 = (1 , 0) and v 2 =

( r a / (r a − r p ) , 1) . Clearly, whenever 0 < r a , r p < 2, the point FP 1 is

symptotically stable. Both eigenvalues are real and r a , r p are

trictly positive. Thus, the only bifurcation due to that FP 1 can lose

ts stability is the flip bifurcation (at r a = 2 or r p = 2 ). 

We remark, that the singularity arises when r a = r p . In this case

here is only one eigenvector v 1 related to the eigenvalue ν1 of

he multiplicity 2. This implies that if the fixed point FP 1 is stable,

amely, r a ∈ (0, 2), then every orbit attracted to FP 1 is asymptoti-

ally tangent to the line P = 1 in the neighborhood of FP 1 . 

.2. FP 2 

The fixed point F P 2 (A 

−
I , 1 

, 1) is always located inside D + , that is,

 /A 

−
I , 1 

> O a . Indeed, 

 = P I (A 

−
I , 1 ) = 

(
A 

−
I , 1 

)2 − B I A 

−
I , 1 

A 

−
I , 1 

− 1 

O a > O a A 

−
I , 1 ⇔ 

(
A 

−
I , 1 

)2 − B I A 

−
I , 1 < 

(
A 

−
I , 1 

)2 − A 

−
I , 1 ⇔ − r a 

b a O a 
A 

−
I , 1 < 0 

nd the latter inequality is always true (recall that 0 < A 

−
I , 1 

< 1 ).

he related Jacobian matrix is then computed as 

(F P 2 ) = 

(
J 11 J 12 

0 1 − r p 

)
, (19)

here 

J 11 = 

(
b a (1 − O a ) + r a 

)
A 

−
I , 1 − b a (1 − O a ) + r a + 1 , 

 12 = −b a O a 

(
A 

−
I , 1 

)3 + (b a O a + r a ) 
(
A 

−
I , 1 

)2 + b a A 

−
I , 1 − b a . (20) 

he eigenvalues of FP 2 are 

1 (F P 2 ) = J 11 , ν2 (F P 2 ) = 1 − r p . (21)

he related eigenvectors are 

 1 = (1 , 0) , v 2 = 

(
J 12 

1 − r p − J 11 

, 1 

)
. (22)

Both eigenvalues of FP 2 are real and the second is also strictly

ess than one. Hence, the only possible bifurcation in the direction

 2 is the flip bifurcation (at r p = 2 ). It can be further shown that

he other eigenvalue is always ν1 = J 11 > 1 . Hence, the point FP 2 
s either the saddle or the unstable node. If it is the saddle, then

t becomes the unstable node when r p = 2 giving rise to a saddle

-cycle with one point located above the line P = 1 and the other

oint below this line. Moreover, this flip bifurcation is the only lo-

al bifurcation that FP 2 can undergo. 

.3. FP 3,4 

Let us show that the fixed points F P 3 (A 

−
II , 1 

, 1) and F P 4 (A 

+ 
II , 1 

, 1)

re always located in D −. Recall that these two points exist when

ither (A.8a) or (A.8b) holds. If (A.8a) is true, then A 

max 
II 

> 0 and 

d P II 
d A 

∣∣∣∣
A =0 

= O a − r a 

b a 
⇒ 1 < 

d P II 
d A 

∣∣∣∣
A =0 

< O a . 
he derivative d P II ( A )/d A clearly decreases to zero on the interval

0 , A 

max 
II 

] and then becomes negative on (A 

max 
II 

, 1) . It means that 

 II (A ) < O a A for 0 < A < 1 ⇒ F P 3 , 4 ∈ D −. 

n the other hand, if (A.8b) holds, then 

d P II 
d A 

∣∣∣∣
A =0 

= O a − r a 

b a 
< −2 

√ 

O a − 1 < 0 . 

his implies that 

 

±
II , 1 < 0 ⇒ F P 3 , 4 ∈ D −. 

The Jacobi matrix for FP 3 is 

(F P 3 ) = 

(
J 11 J 12 

0 1 − r p 

)
, (23)

here 

J 11 = −3 b a O a 

(
A 

−
II , 1 

)2 + (4 b a O a + 2 b a − 2 r a ) A 

−
II , 1 − 2 b a 

−b a O a + r a + 1 , 

 12 = b a O a 

(
A 

−
II , 1 

)3 + (r a − b a O a ) 
(
A 

−
II , 1 

)2 − b a A 

−
II , 1 + b a . (24) 

or obtaining similar expressions for FP 4 one has to replace A 

−
II , 1 

ith A 

+ 
II , 1 

in (24) . The eigenvalues of FP 3 (and similarly of FP 4 ) are

1 (F P 3 ) = J 11 , ν2 (F P 3 ) = 1 − r p . (25)

he related eigenvectors are 

 1 = (1 , 0) , v 2 = 

(
J 12 

1 − r p − J 11 

, 1 

)
. (26)

Let us check which bifurcations can appear in the direction v 1 .

or that we make certain transformations in the expression for

 11 : 

 11 − 1 = 

(
B II + 

1 

O a 
− 2 

)√ (
B II + 

1 

O a 

)2 

− 4 

O a 
−
(

B II + 

1 

O a 

)2 

− 4 

O a 
. 

he latter equals zero if 
 

 

 

(
B II + 

1 

O a 

)2 

− 4 

O a 
= 0 , (

B II + 

1 

O a 
− 2 

)2 

= 

(
B II + 

1 

O a 

)2 

− 4 

O a 
, 

⇔ 

⎡ 

⎣ 

r a 

b a 
= 

(
1 ± √ 

O a 

)2 
, 

r a 

b a O a 
= 0 . 

otice that for r a / b a = (1 −
√ 

O a ) 
2 with 0 < O a < 1 the branch P =

 

L 
II 
(A ) is tangent to the line P = 1 , and hence, the points FP 3,4 do

ot exist. Consequently, 

1 (F P 3 ) = J 11 = 1 ⇔ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

{ 

r a 

b a 
= 

(
1 − √ 

O a 

)2 
, 

O a > 1 , 

r a 

b a 
= 

(
1 + 

√ 

O a 

)2 
. 

(27)

hen (27) holds, the point FP 3 (together with FP 4 ) appears due to

he fold bifurcation. Moreover, for 
 r a 

b a 
< 

(
1 − √ 

O a 

)2 
, 

O a > 1 

or 
r a 

b a 
> 

(
1 + 

√ 

O a 

)2 

he eigenvalues are 

1 (F P 3 ) < 1 and ν1 (F P 4 ) > 1 . 

f additionally r p < 2, then FP 3 is the stable node, while FP 4 is the

addle. Otherwise, FP 3 is the saddle and FP 4 is the unstable node.

t can be also shown that there is always ν1 (F P 3 ) > −1 . Thus, FP 3 
annot undergo a flip bifurcation in the v 1 direction. 

The second eigenvalue for both points is always ν2 < 1, and the

nly possible bifurcation in the direction v 2 is the flip bifurcation

at r p = 2 ). Notice that this bifurcation occurs for both points si-

ultaneously. 
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Fig. 5. Phase space of �μ1 
revealing basins of different attractors. (a) Light-blue region corresponds to initial values whose orbits are attracted to the fixed point; violet 

region corresponds to the basin of O 8 ; orange points constitute the basin of O 35 ; gray color is related to divergent orbits. The rectangles mark the areas shown enlarged in 

the panels b and c. (b), (c) Basins of attraction of the stable nodes FP 1 (pink) and FP 3 (brown) and the focal point SP 0 (yellow). The other colors have the same meaning as 

in (a). Parameters are r a = 0 . 03 , r p = 0 . 01 , b a = 0 . 1 , b p = 0 . 1 , O a = 3 , O p = 1 . 5 . (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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5.4. FP 5 

As for the fixed point FP 5 ( A d , A d ), it is located inside D − ( D + )
if O a > 1 ( O a < 1). In both cases its Jacobi matrix has in general all

four non-zero elements: 

J ±(F P 5 ) = 

⎛ 

⎜ ⎝ 

1 − r a ± r p b a (O a − 1) 

b p (O p − 1) 
r a ∓ r p b a (O a − 1) 

b p (O p − 1) 
r 2 p 

b p (O p − 1) 2 
1 + r p + 

r 2 p (O p − 2) 

b p (O p − 1) 2 

⎞ 

⎟ ⎠ 

. 

(28)

The eigenvalues of J ± ( FP 5 ) may be complex numbers. It happens

when 

(
2 − r a ± r p b a (O a − 1) 

b p (O p − 1) 
+ r p + 

r 2 p (O p − 2) 

b p (O p − 1) 2 

)2 

− 4 det J ±(F P 5 ) < 0 .

(29)

In such a case it is possible for this point to undergo a Neimark-

Sacker bifurcation. However, the left-hand side of (29) is too cum-

bersome to study analytically how different parameters influence

its sign. 
.5. FP i , i = 6 , 11 

The expressions for FP i , i = 6 , 11 , are also too complicated to

tudy their stability properties analytically. 

. Sample dynamics 

This section presents two examples of phase plane of the map

μ for different parameter sets. Both examples show the complex-

ty of the dynamics and, even when restricting the phase plane to

alues relevant for the application, coexistence of different attrac-

ors. 

.1. Example 1 

Let us fix the parameter point μ1 with r a = 0 . 03 , r p = 0 . 01 , b a =
 p = 0 . 1 , O a = 3 , O p = 1 . 5 . For such parameter values, the appli-

ation target fixed point FP 1 is a stable node (see Section 5.1 ).

ig. 5 (a) shows a phase plane of the map �μ1 
, where different

olors correspond to attractors of different period or divergence.

amely, some orbits are attracted to a fixed point (light-blue re-

ion), some to an 8-cycle O 8 (violet region), some converge to a

5-cycle O 35 (orange region), while the others are divergent (gray

egion). The cycles O 8 and O 35 are located outside the feasible

omain D F . Hence, the orbits having initial conditions inside the
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Fig. 6. Phase space of �μ2 
revealing basins of four different attractors: the sta- 

ble node FP 1 (light-blue), the stable node FP 5 (brown), the chaotic attractor Q ⊂
{ (A, P) : P = 1 } (orange), and the closed curve 
 (pink). Gray region is related 

to divergent orbits. Parameters are r a = 0 . 098 , r p = 0 . 09 , b a = 0 . 1 , b p = 0 . 1 , O a = 

0 . 2 , O p = 0 . 11 . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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espective regions are nonfeasible and should be excluded from

onsideration in the applied context. 

Let us consider the orbits convergent to the fixed point in more

etail. We notice that for the mentioned parameter values there

xist seven fixed points: FP i , i = 1 , . . . , 6 , and i = 9 . All these fixed

oints, except for FP 5 , belong to the feasible domain (to its interior

r its boundary ∂D F ). The points FP 1 and FP 3 are stable nodes, the

oints FP 2 , FP 4 , FP 5 , and FP 9 are saddles, the point FP 6 is an unsta-

le node. In Fig. 5 (b) basins of attraction of FP 1 and FP 3 are shown

y pink and brown colors, respectively, and some of their bound-

ries are marked by blue curves, which are stable sets of the four

addles. 

The intersection of the basin of attraction of the application tar-

et point FP 1 and the feasible domain D F is relatively small for the

hosen parameter values. However, from the form of the imme-

iate basin of FP 1 one can conclude that for the learning process

o be effective, the initial value of the actual developmental level A

ust be sufficiently high regardless of the initial potential develop-

ental level P . As has been already mentioned in Section 2 , evalua-

ion of the current learner’s knowledge level is a complicated task

ften requiring time and usage of multiple techniques. Therefore,

n reality it can sometimes happen that the potential developmen-

al level is estimated incorrectly and there is P < A . Though if initial

 is large enough, the orbit eventually enters the feasible domain

 F converging to the desired point FP 1 . In Fig. 5 (b) two orbits with

ifferent initial conditions, one being outside and the other one lo-

ated inside D F , are shown by cyan and black lines, respectively. 

As for the orbits whose initial points are located in the yel-

ow region, they asymptotically approach the focal point SP 0 . Recall

rom Section 3 that SP 0 belongs to its prefocal set δSP 0 
. Moreover, if

oefficients ξ 1 and η1 in Taylor series (6) are different from zero,

he image of the respective arc γ ( τ ) intersects δSP 0 
exactly at SP 0 

egardless of the slope m = η1 / ξ1 . And hence, SP 0 may play a role

imilar to that of an attracting fixed point. The basin of attraction

f SP 0 contains elements characteristic for maps with denomina-

or, as one can see in Fig. 5 (c). In particular, let us consider the

art of this basin with three vertices in the points Q 1 , Q 2 and SP 0 ,

enoted as B 0 . The points Q 1 and Q 2 are the intersections of the

espective basin boundaries with the prefocal set δSP 1 
, and hence,

re both focalized into SP 1 by one of the inverses of �μ1 
. Due to

his there exists a crescent between the two focal points, SP 0 and

P 1 , denoted as B 

−1 
0 , 1 

in Fig. 5 (c), such that �μ1 
(B 

−1 
0 , 1 

) = B 0 . Clearly

here also exist an infinite sequence of preimages of B 

−1 
0 , 1 

, each hav-

ng a form of crescent between SP 0 and a respective preimage of

P 1 . For instance, one can notice the region B 

−2 
0 , 1 , 1 

between SP 0 and

P −1 
1 , 1 

, where �μ1 
(SP −1 

1 , 1 
) = SP 1 and �μ1 

(B 

−2 
0 , 1 , 1 

) = B 

−1 
0 , 1 

. 

For further details on characteristic basin structures occurring

or maps with vanishing denominator see [11–13] . 

.2. Example 2 

In this example we fix the parameter point μ2 with r a = 0 . 098 ,

 p = 0 . 09 , b a = b p = 0 . 1 , O a = 0 . 2 , O p = 0 . 11 . All in all, there are

even fixed points: two stable nodes FP 1 and FP 5 , four saddles FP 2 ,

P 7,8,9 , and an unstable node FP 6 . In addition, there are two non-

eriodic invariant sets. Fig. 6 shows basins of different attractors

n the ( A, P ) phase plane. Blue points correspond to initial condi-

ions whose orbits are attracted to FP 1 , the basin of FP 5 (which is

onfeasible though) is plotted brown, orange region is related to

he chaotic attractor Q located at the line P = 1 , and the points

olored pink have orbits ending up at the invariant closed curve 


shown violet). Grey region corresponds to divergence. 

We remark further that the basin of FP 1 is separated from the

thers by the stable set of the saddle FP 2 . Note that in comparison

ith the previous example, for the current parameter set the part
f basin of FP 1 located inside the feasible domain D F is essentially

arger. However, the initial actual developmental level A again must

ot fall below a certain value in order to achieve the final educa-

ional goal K = 1 . In case when the initial A is too small, or the

riginal evaluation of the current learner’s knowledge level is too

ar from the reality, that is, initial P is too far below the initial A ,

he learning is not effective. Indeed, such an orbit either eventually

eaves the feasible domain D F or is attracted to an invariant curve

. This curve 
 can be interpreted as a cyclic learning process in

hich the student achieving a certain developmental level gives

p (for instance, gets bored of the subject) and gradually loses the

kills acquired. At some point he/she starts fighting the educational

oal anew, but eventually gives up again. 

Note also that the focal points SP 0 and SP 1 are involved as well

nto formation of the basin structures, typical for maps with van-

shing denominator, such as lobes and crescents. For example, the

asin of Q consists of multiple lobes issuing from SP 0 , forming a

tructure which resembles a fan centered at SP 0 . And the parts of

he basin of infinity (divergent orbits) located between these lobes

ave form of crescents. 

Finally, the points FP 7,8,9 are located in the third quadrant of

he plane and fall outside both, the feasible domain D F and the

rea plotted in Fig. 6 . 

. Conclusion 

Models of education, such as the model described in this arti-

le, often imply processes of co-adaptation between a helper and

 learner. That is, they imply a coupling of systems over time. The

etails of this coupling are described in the theoretical assump-

ions of the underlying model, such as a model of the zone of

roximal development, a model of scaffolding, or one that com-

ines both. In the current article, we have investigated a mathe-

atical formalization of the latter type of model in the form of a

D difference equation system. The resulting map is noninvertible,

iecewise smooth and both its components assume the form of ra-

ional functions. This implies that in the phase space there exists a

et of nondefinition, where at least one of denominators vanishes.
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It is not surprising that the map dynamics turns out to be rather

complex and interesting. 

In the current work we have made the first step in studying the

mathematical model described and analyzed some of its proper-

ties. In particular, we have derived analytic expressions for finding

fixed points of the map and obtained conditions for their stabil-

ity. We have also determined focal points, at which at least one of

the map components assumes the uncertainty zero over zero, and

computed the related prefocal sets. Noteworthy, the focal point at

the origin denoted SP 0 is rather peculiar, since its prefocal set coin-

cides with the set of nondefinition. Moreover, there exist a family

of smooth curves γ m 

( τ ) passing through SP 0 with a slope m , such

that the image of γ m 

( τ ) intersects the related prefocal set δSP 0 
at

the point SP 0 itself, regardless the value of m . This implies that SP 0 
can play a role similar to that of a fixed point. 

Finally, we have also examined the phase plane of the map

for two different parameter sets. In both cases we have observed

coexistence of several attractors, as well as complex basin struc-

tures having multiple lobes and crescents, which is a specific fea-

ture of maps with vanishing denominator. Another intriguing phe-

nomenon has been revealed in the first example, where one of the

attractors was the focal point at the origin. 

It is important to note that the discovered structure and com-

plexity [28] directly result from the map dynamics themselves.

That is to say, the complexity is a genuine result of the nature of

the processes that the model describes. Complexity [29] must not

be added to the model, for instance, by invoking a host of addi-

tional variables, the dynamics of which are not controlled by the

educational model as such and which thus serve as independent

or error variables. The notion that such complexity is added from

outside is quite typical of standard models in the educational sci-

ences, for instance, regression models or structural equation mod-

els. Intuitively, or based on verbal reasoning alone, models that im-

ply some sort of interaction between the participants in an educa-

tional process, are implicitly believed to be relatively simple, with

the desired educational result, plus or minus random variation, as

the standard outcome. However, if such models are expressed in

the form of difference equation systems describing changes in their

relevant variables, a thorough study of their map dynamics reveals

their hidden intrinsic complexity. Recently, several works have dis-

cussed application of dynamical system approach to developmen-

tal processes and related contributions and challenges, see [16,30–

33] . Our analysis supports the idea “that cognition and develop-

ment take place, not in the head, but in the interactions between

the mind and the environment” [31, p. 282] and provides a step to

move away from the metatheoretical aspects of the dynamical sys-

tem approach in developmental psychology (discussed in [34] ) to-

wards meeting the demands of those asking for quantitative rigor

[31] . 

It goes without saying that the study of the map dynamics of

a particular educational model is an investigation into the prop-

erties of the model, that is to say, an investigation into the range

of possible observations one could make if the model provides a

correct description of reality. But even if the model is correct, it

still provides a rather radical idealization and simplification of that

same reality. For instance, the model we have studied in this arti-

cle is a deterministic model, but it is highly unlikely that real ed-

ucational interactions of the type described by the model are in-

deed deterministic. It might be interesting to study how the map

dynamics behave if it is subject to stochastic influences, perturba-

tions or shocks from outside. 

Finally, the model presented here is but one of a family of

models of learning and development based on principles of co-

adaptation between a developing or learning person and material

or social environment that continuously adapts to this person’s

developing or learning needs. We have tried to formulate a model
hat is as general as possible, in terms of its underlying theo-

etical assumptions. Nevertheless, future research could focus on

ariations and further specifications of this general model, and

nvestigate whether the resulting map dynamics have certain

roperties in common that are not only interesting from a math-

matical and theoretical point of view, but that might also offer

ew insights into empirical data on learning and development. 

ppendix A. Determining fixed points as intersections of the 

wo loci 

1. Intersection of f 1 = 0 and P ≡ 1 

• P = A with P ≡ 1: First of all, there is always a fixed point FP 1 (1,

1), which is the desired target state from application viewpoint.

• P = P I (A ) with P ≡ 1: Solving 

P I (A ) = 

A 

2 − B I A 

A − 1 

O a = 1 , (A.1)

where B I is defined in (11) , gives two solutions 

A 

±
I , 1 = 

1 

2 

( 

B I + 

1 

O a 
±
√ (

B I + 

1 

O a 

)2 

− 4 

O a 

) 

. (A.2)

They are real whenever the discriminant � is not negative: 

� = 

(
B I + 

1 

O a 

)2 

− 4 

O a 
≥ 0 . 

Adding the term ±4 r a / b a O 

2 
a to the left-hand side of the last in-

equality gives 

1 + 

r 2 a 

b 2 a O 

2 
a 

+ 

1 

O 

2 
a 

+ 

2 r a 

b a O a 
+ 

2 

O a 
+ 

2 r a 

b a O 

2 
a 

± 4 r a 

b a O 

2 
a 

= 

(
1 + 

r a 

b a O a 
− 1 

O a 

)2 

+ 

4 r a 

b a O 

2 
a 

≥ 0 . 

The latter always holds since r a > 0, b a > 0. Moreover, the in-

equality is always strict. It means that the two solutions A 

±
I , 1 

are always real and 

A 

−
I , 1 < 1 , A 

+ 
I , 1 > 1 . 

Clearly A 

−
I , 1 

is the intersection point of P = P L 
I 
(A ) and P = 1 ,

while A 

+ 
I , 1 

is the intersection of P = P R I (A ) and P = 1 . Hence,

only A 

−
I , 1 

is related to the fixed point, since only branch P L 
I 

re-

duces R a ( A, P ) to zero. We additionally remark that A 

−
I , 1 

> 0 be-

cause P = P I (A ) is increasing and 

P I (0) = 0 , lim 

A → 1 −
P I (A ) = ∞ . 

Let us denote 

F P 2 = F P 2 (A 

−
I , 1 , 1) . (A.3)

Clearly, F P 2 ∈ D F , or more precisely, F P 2 ∈ ∂D F . 
• P = P II (A ) with P ≡ 1: Similarly, from 

P II (A ) = 

A 

2 − B II A 

A − 1 

O a = 1 , (A.4)

where B is given in (11) two following solutions are obtained:
II 
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A 

±
II , 1 = 

1 

2 

( 

B II + 

1 

O a 
±
√ (

B II + 

1 

O a 

)2 

− 4 

O a 

) 

. (A.5) 

Let us denote 

F P 3 = F P 3 (A 

−
II , 1 , 1) , F P 4 = F P 4 (A 

+ 
II , 1 , 1) . (A.6)

Again, the solutions A 

±
II , 1 

are real whenever the discriminant 

� = 

(
B II + 

1 

O a 

)2 

− 4 

O a 
≥ 0 , 

but in contrast to the case of P I (A ) = 1 , now the opposite in-

equality ( �< 0) is possible. This happens when (
1 −

√ 

O a 

)2 

< 

r a 

b a 
< 

(
1 + 

√ 

O a 

)2 

. (A.7) 

For the related parameter values both A 

±
II , 1 

are complex, and

FP 3,4 do not exist. When � is positive, A 

±
II , 1 

are distinct real

numbers. However, it does not immediately imply that the

fixed points FP 3,4 exist. Indeed, recall that the expression

(10b) defines two branches: P L 
II 
(A ) for A < 1 and P R 

II 
(A ) for A > 1,

but the right branch P R II does not reduce f 1 ( A, P ) to zero. For-

mally, if A 

±
II , 1 

> 1 , then the points FP 3,4 are intersections of

P = P R 
II 
(A ) and P = 1 , but they are not fixed points of �μ. In

case where A 

±
II , 1 

< 1 the fixed points FP 3,4 are intersections of

P = P L 
II 
(A ) and P = 1 . 

To derive the region of parameter values for that the points

FP 3,4 exist, we recall that P II ( A ) has a local maximum 

max 
A 

P II (A ) = 

(√ 

r a 

b a 
−
√ 

O a 

)2 

de f = P max 
II 

attained at A 

max 
II 

given in (12) . Then we have to require that 

(1) the opposite to (A.7) holds ( �> 0) and 

(2) P max 
II 

> 1 . 

The condition (1) is nothing else but 

r a 

b a 
< 

(
1 −

√ 

O a 

)2 

or 
r a 

b a 
> 

(
1 + 

√ 

O a 

)2 

. 

The condition (2) is equivalent to ⎡ 

⎢ ⎢ ⎣ 

√ 

r a 

b a 
< 

√ 

O a − 1 , √ 

r a 

b a 
> 

√ 

O a + 1 

⇔ 

⎡ 

⎢ ⎢ ⎣ 

{ 

r a 

b a 
< ( 

√ 

O a − 1) 2 , 

O a > 1 , 

r a 

b a 
> ( 

√ 

O a + 1) 2 . 

Combining both conditions together implies { 

r a 

b a 
< 

(
1 − √ 

O a 

)2 
, 

O a > 1 . 
(A.8a) 

or 

r a 

b a 
> 

(
1 + 

√ 

O a 

)2 

(A.8b) 

Notice that if (A.8a) holds, the point of maximum A 

max 
II 

> 0 ,

while for the parameters satisfying (A.8b) there is A 

max 
II 

< 0 . In

case of equality { 

r a 

b a 
= 

(
1 − √ 

O a 

)2 
, 

O a > 1 . 
or 

r a 

b a 
= 

(
1 + 

√ 

O a 

)2 

(A.9) 

the curve P = P L 
II 
(A ) is tangent to the line P = 1 , and the two

fixed points coincide FP 3 ≡ FP 4 . As shown in Section 5.3 , this is
exactly the condition for the fold bifurcation. 
2. Intersection of f 1 = 0 and P = P −(A ) 

• P = A with P = P −(A ) : Solving 

P −(A ) = 

1 + O p A −
√ 

(1 − O p A ) 2 − 4 A 

r p 
b p 

2 

= A (A.10)

is equivalent to 

1 + O p A − 2 A = 

√ 

(1 − O p A ) 2 − 4 A 

r p 

b p 
. 

This gives two solutions 

A 0 = 0 and A d = 1 + 

r p 

b p (O p − 1) 
. (A.11)

The solution A 0 (corresponding to the focal point SP 0 ) always

exists, while A d exists only provided that 

�| A d = (1 − O p A d ) 
2 − 4 A d 

r p 

b p 
≥ 0 , (A.12) 

1 + O p A d − 2 A d ≥ 0 . (A.13) 

The first inequality (A.12) can be rewritten as 

�| A d = 

(
O p − 2 

O p − 1 

· r p 

b p 
+ O p − 1 

)2 

≥ 0 , 

which is always true. The second inequality (A.13) is equivalent

to ⎧ ⎪ ⎨ 

⎪ ⎩ 

O p − 2 

O p − 1 

< 0 , 

r p ≤ b p (O p − 1) 2 

2 − O p 

or 

⎧ ⎪ ⎨ 

⎪ ⎩ 

O p − 2 

O p − 1 

> 0 , 

r p ≥ b p (O p − 1) 2 

2 − O p 

or O p = 2 . 

(A.14) 

Notice that if O p < 1, the value A d is the intersection point of

P = A and P = P L −(A ) , while if O p > 1, it is the intersection point

of P = A and P = P R −(A ) . Finally, 

lim 

O p → 1 −
A d = −∞ , lim 

O p → 1+ 
A d = ∞ . 

Let us emphasize the particular case when the equality r p =
b p (O p −1) 2 

2 −O p 
holds. It immediately implies that 0 < O p < 2, since for

O p ≥ 2 the value of r p either falls outside the considered region

for parameters or is infinite (for O p = 2 ). Moreover, 

1. for 0 < O p < 1 the solution of (A.10) is A d = A 

L 
lim 

(defined in

(15a) ), 

2. for 1 < O p < 2 the solution of (A.10) is A d = A 

R 
lim 

(defined in

(15b) ), 

Let us denote F P 5 = F P 5 (A d , A d ) . 

• P = P I (A ) with P = P −(A ) : The equality 

P I (A ) = P −(A ) ⇔ 

1 + O p A − 2 

(
− r a 

b a 
− O a + O a A 

)
A 

A − 1 

= 

√ 

(1 − O p A ) 2 − 4 A 

r p 

b p 

(A.15) 

immediately separates into A = A 0 = 0 and the cubic polyno-

mial of A : 

a 1 A 

3 + a 2 A 

2 + a 3 A + a 4 = 0 (A.16)

with 

a 1 = O a (O a − O p ) , 

a 2 = 

r p 

b p 
+ 2 O a (O p − O a ) + O p − O a + 

r a 

b a 
(O p − 2 O a ) , 
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D

�

E  
a 3 = O a (O a − O p ) + 2(O a − O p ) + 

r a 

b a 
(2 O a − O p ) 

+ 

r a 

b a 

(
1 + 

r a 

b a 

)
− 2 

r p 

b p 
, 

a 4 = O p − O a + 

r p 

b p 
− r a 

b a 
. (A.17)

The polynomial (A.16) with coefficients as in (A.17) always

has three roots denoted as A 

1 
I , cub 

, A 

2 
I , cub 

, A 

3 
I , cub 

. Among them

there can be at least one real root and at most three real

roots. Suppose that A 

1 
I , cub 

is always real. Although A 

i 
I , cub 

, i =
1 , 2 , 3 , can be obtained in explicit form by Cardano formulae

(see Appendix B ), the expressions are quite complicated, which

hampers analytic investigation of the related fixed points. 

We also remark that for raising to the square both sides of

(A.15) one has to guarantee that 

1 + O p A − 2 

(
− r a 

b a 
− O a + O a A 

)
A 

A − 1 

≥ 0 . (A.18)

Thus, every A 

i 
I , cub 

also has to satisfy (A.18) . 

Let us denote F P 6 = F P 6 (A 

1 
I , cub 

, P 1 
I , cub 

) , F P 7 = F P 7 (A 

2 
I , cub 

, P 2 
I , cub 

) ,

F P 8 = F P 8 (A 

3 
I , cub 

, P 3 
I , cub 

) . The terms P i 
I , cub 

, i = 1 , 2 , 3 , are values

of P I ( A ) at the points A 

i 
I , cub 

. Note that even if the cubic

Eq. (A.16) always has at least one real root A 

1 
I , cub 

, it does not

imply that FP 6 always exists. Indeed, if A 

1 
I , cub 

> 1 , then the point

(A 

1 
I , cub 

, P 1 
I , cub 

) is the intersection of P = P R I (A ) and P = P −(A ) ,

and hence, it is not a fixed point of �μ, since only branch P L 
II 

reduces R a ( A, P ) to zero. 

• P = P II (A ) with P = P −(A ) : Similarly to the previous case, the

equality 

P II (A ) = P −(A ) ⇔ 

1 + O p A − 2 

(
r a 

b a 
− O a + O a A 

)
A 

A − 1 

= 

√ 

(1 − O p A ) 2 − 4 A 

r p 

b p 
(A.19)

immediately separates into A = A 0 = 0 and the cubic polyno-

mial of the form (A.16) but with coefficients slightly different

from (A.17) : 

a 1 = O a (O a − O p ) , 

a 2 = 

r p 

b p 
+ 2 O a (O p − O a ) + O p − O a + 

r a 

b a 
(2 O a − O p ) , 

a 3 = O a (O a − O p ) + 2(O a − O p ) + 

r a 

b a 
(O p − 2 O a ) 

+ 

r a 

b a 

(
r a 

b a 
− 1 

)
− 2 

r p 

b p 
, 

a 4 = O p − O a + 

r p 

b p 
+ 

r a 

b a 
. (A.20)

The roots of the polynomial again can be obtained by Car-

dano formulae (see Appendix B ) and are referred to as A 

i 
II , cub 

,

i = 1 , 2 , 3 , with supposing that A 

1 
II , cub 

is always real. The related

fixed points are denoted as F P 9 = F P 9 (A 

1 
II , cub 

, P 1 
II , cub 

) , F P 10 =
F P 10 (A 

2 
II , cub 

, P 2 
II , cub 

) , F P 11 = F P 11 (A 

3 
II , cub 

, P 3 
II , cub 

) . 

Similarly to the previous case, every solution A 

i 
II , cub 

, i = 1 , 2 , 3 ,

of the cubic Eq. (A.16) with coefficients as in (A.20) has to sat-

isfy the inequality 

1 + O p A − 2 

(
r a 

b a 
− O a + O a A 

)
A 

A − 1 

≥ 0 . (A.21)

so that to guarantee validity of raising to square (A.19) . Again

the fixed point FP 9 exists provided that A 

1 
II , cub 

< 1 by the same
reason as for FP 6 . c
3. Intersection of f 1 = 0 and P = P + (A ) 

• P = A with P = P + (A ) : Solving 

P + (A ) = 

1 + O p A + 

√ 

(1 − O p A ) 2 − 4 A 

r p 
b p 

2 

= A 

gives the only solution A = A d defined in (A.11) . Though A d has

to satisfy 

2 A d − 1 − O p A d > 0 , (A.22)

which is different from (A.13) . The inequality (A.22) is equiva-

lent to ⎧ ⎪ ⎨ 

⎪ ⎩ 

2 − O p 

b p (O p − 1) 
< 0 , 

r p ≤ b p (O p − 1) 2 

2 − O p 

or 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 − O p 

b p (O p − 1) 
> 0 , 

r p ≥ b p (O p − 1) 2 

2 − O p 
. 

(A.23)

Notice that the first inequalities in (A.23) have opposite signs to

those of (A.14) . This means that the two conditions (A.23) and

(A.14) are in some sense complementary. Hence, the fixed point

FP 5 exists for any parameter values, except for the set {
μ : r p = 

b p (O p − 1) 2 

2 − O p 
, O p ≥ 2 

}
∪ { μ : O p = 1 } . (A.24)

However, FP 5 is located on either P = P −(A ) or P = P + (A ) , which

depends on the parameters. 

• P = P I (A ) with P = P + (A ) : The intersection points of P I ( A ) with

P + (A ) are obtained from the cubic Eq. (A.16) with coefficients

defined in (A.17) (the same equation as for the intersection of

P I ( A ) with P −(A ) ). The only difference is that now every solu-

tion of (A.16) has to satisfy the inequality 

1 + O p A − 2 

(
− r a 

b a 
− O a + O a A 

)
A 

A − 1 

≤ 0 (A.25)

(opposite sign to that in (A.18) ). The same fixed points FP 6,7,8 

are obtained. Thus, the points FP 6,7,8 are defined as intersections

of P I ( A ) with P −(A ) if (A.18) holds or as intersections of P I ( A )

with P + (A ) if (A.25) is true. 

• P = P II (A ) with P = P + (A ) : Similarly, equating P II ( A ) to P + (A ) im-

plies the same cubic polynomial as equating P II ( A ) to P −(A ) giv-

ing the roots A 

i 
II , cub 

, i = 1 , 2 , 3 . However, now they have to sat-

isfy inequality opposite to (A.21) , that is, 

1 + O p A − 2 

(
r a 

b a 
− O a + O a A 

)
A 

A − 1 

≤ 0 . (A.26)

Consequently, depending on whether (A.21) or (A.26) holds, the

fixed points FP 9,10,11 are intersections of P II ( A ) with P −(A ) or

P II ( A ) with P + (A ) , respectively. 

ppendix B. Solving cubic equation: Cardano’s formulae 

Reduce (A.16) to the canonical form 

 

3 + pz + q = 0 (B.1)

ith 

p = 

3 a 1 a 3 − a 2 2 

3 a 2 
1 

, q = 

2 a 3 2 − 9 a 1 a 2 a 3 + 27 a 2 1 a 4 

27 a 3 
1 

, z = A + 

a 2 
3 a 1 

. 

(B.2)

epending on the sign of the discriminant 

= 

q 2 

4 

+ 

p 3 

27 

q. (B.1) can have different number of real roots and also complex

onjugate roots. 
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If �< 0, there are 3 real roots 

 i = 2 

√ 

− p 

3 

cos 

(
φ + 2 π(i − 1) 

3 

)
, i = 1 , 2 , 3 , 

ith 

= arctan 

(
− 2 

q 

√ −�
)

if q < 0 , 

= arctan 

(
− 2 

q 

√ −�
)

+ π if q > 0 , 

= 

π
2 

if q = 0 . 

f �> 0 there is 1 real root and 2 complex conjugate ones 

 1 = − 3 

√ 

q 
2 

−
√ 

� − 3 

√ 

q 
2 

+ 

√ 

�, 

 2 = 

1 
2 

(
3 

√ 

q 
2 

−
√ 

� + 

3 

√ 

q 
2 

+ 

√ 

�

)
+i 

√ 

3 
2 

(
3 

√ 

q 
2 

−
√ 

� − 3 

√ 

q 
2 

+ 

√ 

�

)
,

 3 = 

1 
2 

(
3 

√ 

q 
2 

−
√ 

�+ 

3 

√ 

q 
2 

+ 

√ 

�

)
− i 

√ 

3 
2 

(
3 

√ 

q 
2 

−
√ 

� − 3 

√ 

q 
2 

+ 

√ 

�

)
.

f � = 0 there are 2 real roots 

 1 = −2 

3 

√ 

q 

2 

, z 2 = 

3 

√ 

q 

2 

. 

he roots of the original Eq. (A.16) are obtained by 

 i = z i −
a 2 

3 a 1 
, i = 1 , 2 , 3 . 
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