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BEARING RIGIDITY AND FORMATION STABILIZATION FOR

MULTIPLE RIGID BODIES IN SE(3)

Liangming Chen1,2, Ming Cao1 and Chuanjiang Li2

1 Faculty of Science and Engineering

University of Groningen, 9747 Groningen, The Netherlands

2 Department of Control Science and Engineering
Harbin Institute of Technology, 150001, China

Abstract. In this work, we first distinguish different notions related to bear-

ing rigidity in graph theory and then further investigate the formation sta-

bilization problem for multiple rigid bodies. Different from many previous
works on formation control using bearing rigidity, we do not require the use

of a shared global coordinate system, which is enabled by extending bearing
rigidity theory to multi-agent frameworks embedded in the three dimensional

special Euclidean group SE(3) and expressing the needed bearing information

in each agent’s local coordinate system. Here, each agent is modeled by a rigid
body with 3 DOFs in translation and 3 DOFs in rotation. One key step in our

approach is to define the bearing rigidity matrix in SE(3) and construct the

necessary and sufficient conditions for infinitesimal bearing rigidity. In the end,
a gradient-based bearing formation control algorithm is proposed to stabilize

formations of multiple rigid bodies in SE(3).

1. Introduction. In the past decades, distance-based rigidity has been extensively
studied both as a mathematical topic in graph theory [2] and an engineering prob-
lem in the application domains such as formations of multi-agent systems [1], me-
chanical structures [20], and biological materials [4]. The concept of rigidity of
frameworks was defined in [3], while a closely related, but more restrictive con-
cept, infinitesimal rigidity, was discussed in [15] using the infinitesimal motions of
the framework. Sometimes, infinitesimal rigidity becomes handy since it can be
checked by examining the rank of the framework’s rigidity matrix. In [19], it was
proved that rigidity and infinitesimal rigidity are equivalent when the configuration
of the framework is generic. The work in [21] investigated how to construct an
infinitesimally and minimally rigid framework based on Laman’s theorem [17] and
Henneberg’s construction [16]. Necessary and sufficient conditions were given in [9]
for a generically and globally rigid graph in the plane. A survey on rigidity graph
theory for modelling autonomous formations has been provided in [1].

2010 Mathematics Subject Classification. Primary: 93D15; Secondary: 93D05.

Key words and phrases. Bearing rigidity, formation stabilization, SE(3).
The first author is supported by China Scholarship Council.
∗ Corresponding author: L. Chen.

257

http://dx.doi.org/10.3934/naco.2019017


258 L. M. CHEN, M. CAO AND C. J. LI

Recently, as the dual of distance-based rigidity, bearing rigidity has been stud-
ied, for which multi-agent frameworks are constrained by the inter-agent bearings,
angles or directions. When the multi-agent framework is implemented as a team of
mobile vehicles and agents are equipped with sensors, there are mainly two differ-
ent types of existing definitions for “bearing” according to how it can be obtained
through sensing. The first is defined to be the angle between the sensing beam
and the x-axis of the corresponding agent’s local coordinate system [10, 6, 5, 7].
The second is represented in a global coordinate system by the unit vector starting
from the corresponding sensing agent’s position along the sensing beam [26, 25].
Correspondingly, there are research results for each of these two definitions and we
give a brief review of some of them as follows.

Eren et al. [10, 11] used the first definition and established direction-based bear-
ing rigidity. They made use of the fact that a bearing constraint can be transformed
into a direction constraint on the direction in which an agent is confined to move
once all agents know the global coordinate system. In [7], by using the first defini-
tion, stiff rigidity with mixed bearing and distance constraints was defined under
the constraint that a global coordinate system was required to be shared. Zhao
et al. [26] established the bearing rigidity using the second definition, in which a
bearing-only formation control algorithm was designed to guarantee almost global
convergence. In a follow-up work [25], translational and scaling formation maneu-
vering control was realized via a bearing-based approach, in which both bearing
information and relative position information were required.

However, the angle- or direction-based bearing rigidity has only been defined in
the 2-dimensional Euclidean space [10]. For higher dimensional Euclidean spaces,
i.e., Rn, n ≥ 3, the established angle- and direction-based bearing rigidity does not
work any more [13]. In comparison, the unit-vector bearing rigidity established
in [26] works in an arbitrary dimensional Euclidean space. In [26], the unit-vector
bearing can be obtained under the constraint that each agent has the knowledge of a
global coordinate system; however, in many practical applications, this assumption
is technically hard to be satisfied. For example, for spacecraft formations in deep
space, it is difficult for satellites to get the knowledge of a common global coordinate
system with respect to the earth due to extremely long distance [14]. By expressing
unit-vector bearing in each agent’s local coordinate system, bearing rigidity has been
extended to those multi-agent frameworks that are embedded in the 2 dimensional
special Euclidean group SE(2) = R2×SO(1) [23]. Based on the developed bearing
rigidity in SE(2), a bearing-only formation control algorithm was designed in [24]
for each agent with 2 DOFs in translation and 1 DOF in rotation. In [18], bearing
rigidity has been further extended for multi-agent frameworks embedded in the
three dimensional special Euclidean group SE(3) = R3 × SO(3).

Motivated by the existing results, in this paper we study bearing rigidity for
multi-agent frameworks that are embedded in SE(3), in which each agent is mod-
eled by a rigid body with 3 DOFs in translation and 3 DOFs in rotation. Each agent
can read its bearing measurements according to its local coordinate system. Corre-
spondingly, the bearing rigidity matrix in SE(3) is defined and the necessary and
sufficient conditions for infinitesimal bearing rigidity are also derived. Moreover,
the formation stabilization problem for multiple rigid bodies in SE(3) is studied,
for which the gradient-based bearing formation control algorithm is designed.

The rest of this paper is organized as follows. Section 2 introduces preliminaries.
In Section 3, different definitions for bearing and bearing rigidity are listed for
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comparison. In Section 4, bearing rigidity in SE(3) is defined, which is further
used in Section 5 to develop control strategies for bearing formation stabilization
in SE(3).

2. Preliminaries on rigid body and SE(3). In this paper, each agent is modeled
by a rigid body with 3 DOFs in translation, 3 DOFs in rotation, and so total 6 DOFs.
We label these agents by 1, . . . , n. Agent i’s, i ∈ {1, . . . , n}, position and attitude
(represented by Euler angles) are respectively denoted by vectors in R3

pi = [xi, yi, zi]
T (1)

θi = [αi, βi, γi]
T (2)

in some reference coordinate system of choice. Then agent i’s state is the vector in
R6

xi = [pTi θTi ]T . (3)

To describe agent i’s translational and rotational motions, we introduce the
special Euclidean group SE(3) = R3 × SO(3), in which SO(3) represents the
three dimensional special orthogonal group.

SE(3) = {A|A =

[
R r

01×3 1

]
, R ∈ R3×3, r ∈ R3, RTR = I3,det R = 1} (4)

where R ∈ SO(3) is the rotation matrix which can be determined by the orientation
of agent i’s rigidly attached frame with respect to the reference coordinate system,
det() denotes the determination of a square matrix, and r is the vector from the
reference frame’s origin to agent i’s frame.

To establish the relationship between the rotation matrix R(θi) and the Euler
angles αi, βi, and γi, we rotate the axes in sequence: x − y − z to realize the
orientation change from the reference coordinate system to agent i’s rigidly attached
frame. Then, the rotation matrix R(θi) can be written as

R(θi) = Rz(γi)Ry(βi)Rx(αi) = cos γi sin γi 0
− sin γi cos γi 0

0 0 1

cosβi 0 − sinβi
0 1 0

sinβi 0 cosβi

1 0 0
0 cosαi sinαi
0 − sinαi cosαi

 (5)

where Rz(γi), Ry(βi), Rx(αi) represent the rotation matrices whose rotation axes
are z, y, x and rotation angles are γi, βi, αi, respectively.

3. Existing definitions for bearing and bearing rigidity.

3.1. Bearing defined by angle and direction in 2D [10]. As shown in Figure
1, the bearing constraints for agents i and j, denoted by θij and θji respectively, are
the angles between the beam connecting agents i and j and the x -axis of i’s and j’s
local coordinate system respectively in the counterclockwise direction [10].

It was assumed in [13, 12] that in real implementations, the information of the
global coordinate system (xG, yG) can be known by all agents by passing “heading”
information (an angle φi between the x -axis of agent i’s local coordinate system and
the y-axis of the global coordinate system), which is shown in Figure 2 [10]. There-
fore, once all agents know this piece of global information, the bearing information
measured in their local coordinate systems (e.g., θij and θji) can be transformed
into the bearing information measured in the global coordinate system, e.g., Θij

and Θji in Figure 3. Thus, when all agents are able to obtain the information of



260 L. M. CHEN, M. CAO AND C. J. LI

Figure 1 Figure 2 Figure 3

the global coordinate system, a bearing constraint can be written into the form of
a direction constraint [13, 12, 11]. Based on the direction constraints, the bearing
rigidity was established in [12, 11].

Definition 3.1. [12] For a framework1 G2(p) in R2, one embeds a graph G(V, E)
with the vertex set V and edge set E to obtain the position of each i ∈ V as pi ∈ R2.
Then for a different embedded framework G2(q) of G(V, E) with the vertex positions
q = [qT1 , ..., q

T
n ]T , qi ∈ R2, i ∈ V, we call G2(q) a parallel framework associated with

G2(p) if

(pi − pj)⊥ · (qi − qj) = 0,∀(i, j) ∈ E (6)

where ⊥ denotes the perpendicular of the corresponding vector.

Trivial parallel frameworks are the translations and scalings of the original frame-
work. We consider the bearing constraints to be those constrained on the magni-
tudes of θij as shown in Figure 3.

Definition 3.2. [12] (Bearing rigidity in R2) A framework G2(p) with bearing
constraints for θij ,∀(i, j) ∈ E is said to be bearing rigid if all parallel frameworks of
G2(p) are trivially parallel to G2(p). Otherwise it is said to be bearing flexible.

3.2. Bearing defined by unit vectors in a global coordinate system [26].
For an undirected graph G(V, E), let n be its number of vertices and m the number
of edges. The set of neighbors of vertex i is denoted by Ni = {j ∈ V : (i, j) ∈ E}.
The position of each i ∈ V is given in the d-dimensional space as pi ∈ Rd, d ≥ 1. A
framework Gd(p) in Rd is a combination of a graph G(V, E) with the vertex positions
p = [pT1 , ..., p

T
n ]T , pi ∈ Rd,∀i = 1, ..., n. Bearing was defined in [26] by the unit vector

starting from agent i’s position along the sensing beam, i.e.,

gij =
eij
‖eij‖

,∀(i, j) ∈ E , (7)

where eij = pj − pi, and j ∈ Ni. We label all the edges in E by 1, . . . ,m, and let ek
be the vector between the locations of edge k’s two embedded vertices, and define
gk = ek

||ek|| . Then, the bearing function FB : Rdn → Rdm can be defined by

FB(p) = [gT1 , ..., g
T
m]T ∈ Rdm (8)

1In rigidity graph theory, framework is usually defined as the combination of a graph and its
realization in e.g. 2-dimensional Euclidean space (Definition 3.1), d-dimensional Euclidean space

(Section 3.2), SE(2) (Definition 3.6), and SE(3) (Definition 4.1).
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The bearing rigidity matrix is defined by the Jacobian of the bearing function

R(p) =
∂FB(p)

∂p
∈ Rdm×dn (9)

For any nonzero vector x ∈ Rd, define the orthogonal projection Px : Rd → Rd×d
by

Px = Id −
x

‖x‖
xT

‖x‖
, (10)

where Id denotes the d× d identity matrix.
Based on the defined unit-vector bearing and bearing function in the d-dimensional

space, the bearing rigidity was established in [26].

Definition 3.3. [26] Consider two frameworks Gd(p) and Gd(p′) with the same
graph G(V, E). They are said to be bearing equivalent if

Ppi−pj (p′i − p′j) = 0,∀(i, j) ∈ E . (11)

Definition 3.4. [26] Consider two frameworks Gd(p) and Gd(p′) with the same
graph G(V, E). They are said to be bearing congruent if

Ppi−pj (p′i − p′j) = 0,∀i, j ∈ V. (12)

Definition 3.5. (Bearing rigidity in Rd) A framework Gd(p) is bearing rigid if there
exists a constant ε > 0 such that any framework Gd(p′) that is bearing equivalent
to Gd(p) and satisfies ‖p′ − p‖ < ε is also bearing congruent to Gd(p).
3.3. Bearing defined by unit vectors in SE(2) [23, 24]. As has been introduced
in the preliminaries, SE(2) = R2×SO(1) is the two dimensional Special Euclidean
Group, which involves 2 DOFs in translation and 1 DOF in rotation. We denote
agent i’s state by the vectors in R3

xi = [pTi θi]
T . (13)

A configuration in SE(2) is denoted by x = [xT1 , ..., x
T
n ]T ∈ R3n. Note that the

configuration defined in this subsection consists of both positions and attitudes,
which is different from the discussion in subsections 3.1 and 3.2.

Definition 3.6. An SE(2) framework G2(x) is composed of a graph G(V, E) and a
configuration with x = [xT1 , ..., x

T
n ]T .

Then, the bearing vector bij ∈ R2 between agents i and j can be described in
agent i’s local coordinate system

bij =

[
cos θi sin θi
− sin θi cos θi

]
pj − pi
||pj − pi||

= T (θi)
pj − pi
||pj − pi||

(14)

where T (θi) is the rotation matrix determined by the orientation of agent i’s rigidly
attached frame with respect to the reference coordinate system. Then, the bearing
function in SE(2) is

bG(x) = diag{ T (θi)

||pj − pi||
}Hp (15)

where H = H̄ ⊗ I2 ∈ R2m×2n and H̄ ∈ Rm×n is the incidence matrix of the graph
G(V, E), in which [H]ki = 1 if vertex i is the head of edge k, [H]ki = −1 if vertex i is
the tail of edge k, and [H]ki = 0 otherwise. Since the graph G(V, E) is undirected, it
is irrelevant how the directions of the edges are defined in H̄. diag{· · · } stands for
the block-diagonal matrix. Here x = [xT1 , ..., x

T
n ]T ∈ R3n, p = [pT1 , ..., p

T
n ]T ∈ R2n,

and θ = [θ1, ..., θn]T ∈ Rn.
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Definition 3.7. (Bearing rigidity in SE(2)) For an SE(2) framework G2(x) with
the graph G(V, E) and the configuration x = [xT1 , ..., x

T
n ]T , the framework G2(x) is

bearing rigid in SE(2) if there exists a neighborhood S of x such that

b−1K (bK(x)) ∩ S = b−1G (bG(x)) ∩ S (16)

where K represents the complete graph with the vertex set V.

The set of infinitesimal motions is characterized by the null-space of the Jacobian
of the relative bearing vector bG(x) with respect to the configuration x.

Definition 3.8. An SE(2) framework G2(x) is infinitesimally bearing rigid if
D[BG(x)] = D[BK(x)], where D[·] denotes the null-space of a matrix, and BG(x) =[
BG(p) BG(θ)

]
, BK(x) =

[
BK(p) BK(θ)

]
, BG(p) = ∂bG(x)

∂p , and BG(θ) = ∂bG(x)
∂θ .

To summarize the above existing definitions for bearing and bearing rigidity, we
give the following table:

Definitions for bearing Measurement variable Rigidity
Angle in 2D space θij Parallel bearing rigidity

Unit vector in a global frame
pj−pi
||pj−pi|| Bearing rigidity in Rd

Unit vector in SE(2) T (θi)
pj−pi
||pj−pi|| Bearing rigidity in SE(2)

Table 1. Comparison of different definitions for bearing and bear-
ing rigidity.

4. Bearing rigidity in SE(3). In the following section, we provide our new def-
inition of bearing rigidity which relies only on the local information of each agent
in the framework.

4.1. Definition of bearing in SE(3). In this section, we define the bearing to
be the unit vector in the three dimensional Special Euclidean group SE(3). Each
agent is modeled by a rigid body with 3 DOFs in translation and 3 DOFs in rotation.
Let pi ∈ R3 denote the agent i’ position from the reference frame’s origin to agent
i’s rigidly attached frame’s origin. R(θi) ∈ SO(3) is the rotation matrix which
describes the relative orientation of the agent i’s frame with respect to the reference
frame.

Then, for the sensing beam between agents i and j, the relative bearing bij sensed
in agent i’s local coordinate frame can be described by.

bij = R(θi)b
G
ij = Rz(γi)Ry(βi)Rx(αi)

pj − pi
‖pj − pi‖

∈ S2 (17)

where S2 represents the 2D manifold on the unit sphere in R3, and bGij is the unit
vector of the sensing beam expressed in the global coordinate frame. Note that the
local bearing information bij can be measured in agent i’s local coordinate frame
via onboard cameras [22]. Write (17) in its column vector form

bG(x) = diag{ R(θi)

‖pj − pi‖
}Hp (18)

where H = H̄ ⊗ I3 ∈ R3m×3n.
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4.2. Definition of bearing rigidity matrix in SE(3). Denote p = [pT1 , ..., p
T
n ]T ∈

R3n, θ = [θT1 , ..., θ
T
n ]T ∈ R3n, x = [xT1 , ..., x

T
n ]T ∈ R6n, and bG = [bT1 , ..., b

T
m]T ∈ R3m,

where bk represents the bearing measurement on the kth directed edge in the graph
G(V, E). The bearing rigidity matrix is defined by the Jacobian of the relative
bearing vector bG(x) with respect to the configuration x. Since each agent has 3
DOFs in translation and 3 DOFs in rotation, we define the bearing translational
rigidity matrix BG(p) ∈ R3m×3n and bearing rotational rigidity matrix BG(θ) ∈
R3m×3n by

BG(p) =
∂bG(x)

∂p
(19)

BG(θ) =
∂bG(x)

∂θ
(20)

Using (17) and (19), one has

∂bij
∂pi

= −R(θi)
g(bGij)

||pj − pi||
= −g(bij)R(θi)

||pj − pi||
(21)

∂bij
∂pj

= R(θi)
g(bGij)

||pj − pi||
=
g(bij)R(θi)

||pj − pi||
(22)

where g(bij) = I3 −
bijb

T
ij

‖bij‖2 .

Combining (17) and (20), one obtains

∂bij
∂θi

= [
∂bij
∂αi

,
∂bij
∂βi

,
∂bij
∂γi

]

= [Rz(γi)Ry(βi)
∂Rx(αi)

∂αi
bGij , Rz(γi)

∂Ry(βi)

∂βi
Rx(αi)b

G
ij ,
∂Rz(γi)

∂γi
Ry(βi)Rx(αi)b

G
ij ]

= [Rz(γi)Ry(βi)
∂Rx(αi)

∂αi
, Rz(γi)

∂Ry(βi)

∂βi
Rx(αi),

∂Rz(γi)

∂γi
Ry(βi)Rx(αi)](I3 ⊗ bGij)

= Rr(θi)(I3 ⊗ bGij) (23)

∂bij
∂θj

= [
∂bij
∂αj

,
∂bij
∂βj

,
∂bij
∂γj

] = 0 (24)

where Rr(θi) ∈ R3×9 is an auxiliary partial derivative rotational matrix, and ⊗
represents the Kronecker product [8]. According to the above partial derivative of
the bearing bij with respect to position pi and attitude θi, one gets

BG(p) = diag{
R(θi)g(bGij)

‖pj − pi‖
}H (25)

BG(θ) = diag{Rr(θi)(I3 ⊗ bGij)}E (26)

where E = Ē ⊗ I3 ∈ R3m×3n and Ē ∈ Rm×n is defined according to the rule that
[E]ki = 1 if vertex i is the head of edge k, and [E]ki = 0 otherwise. The bearing
translational rigidity matrix BG(p) and bearing translational rigidity matrix BG(θ)
will be used to check the infinitesimally bearing rigidity in SE(3).

Now we give the definition for SE(3) frameworks.

Definition 4.1. An SE(3) framework is denoted by G3(x), where G = (V, E) is
a directed graph, and x = [xT1 , ..., x

T
n ]T ∈ R6n is a configuration of n agents in

SE(3), in which each agent is modeled by a rigid body with 3 DOFs in translation
described by pi ∈ R3 and 3 DOFs in rotation described by θi ∈ R3.
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4.3. Definition of bearing rigidity in SE(3). We will give the definitions for
bearing rigidity, and infinitesimal bearing rigidity in this subsection.

Definition 4.2. (Bearing rigidity in SE(3)) An SE(3) framework G3(x) is bearing
rigid in SE(3) if there exists a neighborhood S in SE(3) of x such that

b−1G (bG(x)) ∩ S = b−1K (bK(x)) ∩ S (27)

where K represents the complete graph with the vertex set V.

The set b−1G (bG(x)) ⊂ SE(3)n contains x and all its possible transformations

induced by the graph G. Thus, b−1G (bG(x))− b−1K (bK(x)) is the set of all the possible
transformations of x constrained by G that are not admissible by K[18].

The set of infinitesimal motions is characterized by the null-space of the Jacobian
of the relative bearing vector bG(x) with respect to the configuration x.

Definition 4.3. An SE(3) framework G3(x) is infinitesimally bearing rigid in
SE(3) if D[BG(x)] = D[BK(x)], where BG(x) =

[
BG(p) BG(θ)

]
, and

BK(x) =
[
BK(p) BK(θ)

]
.

Proposition 1. An SE(3) framework G3(x) is infinitesimally bearing rigid if and
only if Rank[BG(x)] = 6n− 7.

Proof. The trivial infinitesimal bearing rigid motions for an SE(3) framework in-
clude three categories, namely translation with 3 DOFs, rotation with 3 DOFs, and
scaling with 1 DOF. Thus, the rank of the bearing rigidity matrix for an infinites-
imal bearing rigid framework is the total degrees of freedom, i.e., 6n, minus the
degrees of freedom of trivial infinitesimal bearing rigid motions, i.e., 7.

5. Bearing formation stabilization in SE(3).

5.1. Control algorithm design. In this section, we aim at designing a bearing
formation control algorithm for multi-agent frameworks such that all agents can
converge to the desired positions that satisfy all the bearing constraints.

The dynamics of each rigid body in SE(3) include the position dynamics and
attitude dynamics [24], which can be described by

ṗi = R(θi)
T vbi (28)

θ̇i = Rgb (θi)ω
b
i (29)

where vbi and ωbi are the position and attitude control inputs to be designed, Rgb (θi)
is rigid body i’s rotation kinematic matrix which can be written as

Rgb (θi) =

 cos γi/ cosβi − sin γi/ cosβi 0
sin γi cos γi 0

− cos γi sinβi/ cosβi sin γi sinβi/ cosβi 1

 (30)

Our bearing formation control objective is

lim
t→∞

(bij(t)− b∗ij) = 0,∀(i, j) ∈ E (31)

where b∗ij is the desired bearing between agent i and agent j which is described
in agent i’s local coordinate system. We assume that the SE(3) framework is
infinitesimally bearing rigid. Then, there will be a realization of b∗ij ,∀(i, j) ∈ E in
the SE(3) framework.
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To achieve the control objective, we use the gradient-based control. First, we
define the potential function

J(x) = 1/2‖bG − b∗G‖2. (32)

Taking the partial derivative of the potential function along the position and
attitude yields the position and attitude control inputs:

ṗ = diag{R(θi)
T }vb = −k∇pJ(x) = −k{BG(p)}T (bG − b∗G) (33)

θ̇ = diag{Rgb (θi)}ω
b = −k∇θJ(x) = −k{BG(θ)}T (bG − b∗G) (34)

where k is a positive constant. Applying the above computation to each agent yields

ṗi = R(θi)
T vbi = −k

∑
(i,j)∈E

[g(bij)R(θi)]
T

||pj − pi||
(bij−b∗ij)+k

∑
(j,i)∈E

[g(bji)R(θj)]
T

||pi − pj ||
(bji−b∗ji)

(35)

θ̇i = Rgb (θi)ω
b
i = −k

∑
(i,j)∈E

[Rr(θi)(I3 ⊗ bGij)]T (bij − b∗ij) (36)

Because the distance information is unavailable, we modify the above bearing
formation control algorithm to

vbi = −k{
∑

(i,j)∈E

g(bij)
T (bij − b∗ij)−

∑
(j,i)∈E

R(θi)R(θj)
T g(bji)

T (bji − b∗ji)} (37)

ωbi = −k{Rgb (θi)}
−1

∑
(i,j)∈E

[Rr(θi)(I3 ⊗ bGij)]T (bij − b∗ij) (38)

5.2. Stability analysis. To show the stability, we define the Lyapunov candidate
function

V = 1/2‖bG − b∗G‖2 (39)

where bG = [bT1 , ..., b
T
m]T ∈ R3m, and b∗G = [b∗T1 , ..., b∗Tm ]T ∈ R3m.

Taking the derivative of the Lyapunov candidate function V1 yields

V̇ = (bG − b∗G)T (
∂bG
∂p

ṗ+
∂bG
∂θ

θ̇) = −k(bG − b∗G)TQ(bG − b∗G) (40)

where Q = BG(p)diag(‖pj − pi‖)BTG (p) + BG(θ)BG(θ)T . When Q is positive semi-

definite, one can get V̇ ≤ 0[24]. It follows that V (t) is bounded, i.e., ‖bij − b∗ij‖ is

bounded. According to (37), one has that ‖vbi ‖ is bounded, which implies that ‖pi‖ is
always bounded. It follows then that the closed-loop system is asymptotically stable.
In addition, according to [24], one knows that when the framework is infinitesimally
bearing rigid, the desired local bearing constraints are realizable. According to
[23], one gets that the relative rotation information R(θi)R(θj)

T in the position
control input (37) can be estimated by using the local bearing information bij . This
completes the proof of the asymptotic stability of the closed-loop system.
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6. Conclusions and future work. In this work, the existing definitions for bear-
ing rigidity are compared and the bearing rigidity and formation stabilization are
further studied for multi-agent frameworks embedded in the three dimensional
special Euclidean group SE(3). Each agent obtains the bearing measurements
in its local coordinate system. The bearing rigidity matrix in SE(3) is defined and
the necessary and sufficient conditions for the infinitesimal bearing rigidity are con-
structed. Each agent is characterized by a rigid body with 3 DOFs in translation
and 3 DOFs in rotation. Moreover, a gradient-based bearing formation control al-
gorithm is designed to stabilize the formations of multiple rigid bodies in SE(3).
In the proposed bearing attitude formation control algorithm, Rr(θi) and Rgb (θi)
are used, which in our future work, will be estimated using estimators or taken as
uncertainties for the controller to be adaptive for.
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