
 

 

 University of Groningen

Robust trajectory tracking for incrementally passive nonlinear systems
Wu, Chengshuai; van der Schaft, Arjan; Chen, Jian

Published in:
Automatica

DOI:
10.1016/j.automatica.2019.05.065

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Wu, C., van der Schaft, A., & Chen, J. (2019). Robust trajectory tracking for incrementally passive nonlinear
systems. Automatica, 107, 595-599. https://doi.org/10.1016/j.automatica.2019.05.065

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1016/j.automatica.2019.05.065
https://research.rug.nl/en/publications/e91fd22d-987a-4600-a488-de3bc2943936
https://doi.org/10.1016/j.automatica.2019.05.065


Automatica 107 (2019) 595–599

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Technical communique

Robust trajectory tracking for incrementally passive nonlinear
systems✩

Chengshuai Wu a,b, Arjan van der Schaft b, Jian Chen a,∗

a State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
b Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 16 September 2018
Received in revised form 19 March 2019
Accepted 23 May 2019
Available online 13 June 2019

Keywords:
Incremental passivity
Trajectory tracking
Robust control
Port-Hamiltonian systems
Asymptotic stability

a b s t r a c t

In this paper, we study the robust trajectory tracking problem for a class of nonlinear systems with
incremental passivity. The velocity of the desired trajectory and parts of the model information are
unknown apart from boundedness assumptions. A velocity observer based method and a sliding mode
controller are proposed while the asymptotic tracking result is guaranteed by a zero-state detectability
condition for both cases. Unlike previous results, the studied systems are not necessarily feedback
linearizable nor in a strict feedback form. The ball and beam system is utilized to illustrate the
implementation of the proposed tracking control laws.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Trajectory tracking has been extensively studied for nonlinear
systems of particular forms, such as chains of n-order integrators
(corresponds to the normal form of the feedback linearizable
nonlinear systems) (Chen, Behal, & Dawson, 2008; Xian, Daw-
son, de Queiroz, & Chen, 2004), and the strict feedback sys-
tems (Brogliato, Ortega, & Lozano, 1995; Lozano & Brogliato,
1992). Recently, trajectory tracking for nonlinear systems is ad-
dressed by using the concept of incremental stability (Reyes-Báez,
van der Schaft, & Jayawardhana, 2016; Yaghmaei & Yazdanpanah,
2017). Incremental stability of nonlinear systems is first studied
in Demidovich (1961) where a condition is given to characterize a
class of nonlinear system known as convergent systems. In Pavlov
and Marconi (2008), the Demidovich condition is weakened to
specify the property of incremental passivity (van der Schaft,
2017, Def. 4.7.1).

The aim of the present work is to study the trajectory tracking
problem for nonlinear systems by exploiting the property of in-
cremental passivity. The nonlinear systems studied in this paper
are assumed to be incrementally passive in the sense of Pavlov
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and Marconi (2008). Furthermore, we consider a robust tracking
problem where the velocity of the desired trajectory as well as
part of the model information is unknown. Two state feedback
tracking controllers (a velocity observer based method and a
sliding mode controller) are proposed resulting in asymptotic
tracking. As a major difference compared to the existing works,
the studied system is underactuated and is not required to be
feedback linearizable.

Notation: For x ∈ Rn, define a vector function

Sgn(x) ≜ [sgn(x1), sgn(x2), . . . , sgn(xn)]T

where xi denotes the ith element of x, and sgn(xi) = 1 if xi > 0,
[−1, 1] if xi = 0, −1 if xi < 0.

2. Problem formulation

Consider the following nonlinear system

ẋ = f (x, t) + Gu (1)

where x ∈ Rn is the state, u ∈ Rm is the control input with n ≥ m.
The mapping f : Rn

× R+ → Rn is uniformly continuous in t
and locally Lipschitz in x(t), and G ∈ Rn×m is a constant matrix of
full rank. Furthermore, f (x, t) satisfies the following Assumption 1
(Pavlov & Marconi, 2008).

Assumption 1. There exists a constant positive definite symmet-
ric matrix P ∈ Rn×n, such that the following condition holds for
all x ∈ Rn and all t ≥ 0

P
∂ f
∂x

(x, t) +
∂T f
∂x

(x, t)P ≤ 0. (2)
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0005-1098/© 2019 Elsevier Ltd. All rights reserved.
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As noted in Pavlov and Marconi (2008), Assumption 1 implies
that the system (1) with the output y = GTPx is incrementally
passive.

The control objective is to let the system (1) asymptotically
track a desired trajectory xd(t) ∈ Rn. Here, we assume that xd(t)
is a solution of (1), that is, there exists a ud(t) ∈ Rm that satisfies

ẋd = f (xd, t) + Gud(t). (3)

In addition, it is assumed that x(t), xd(t), G, P are known and
ud(t) is unknown. Note from (3) that the unavailability of ud(t) is
equivalent to unavailability of ẋd(t), which is a scenario often seen
in robotic applications (Nakaoka, Nakazawa, Yokoi, Hirukawa, &
Ikeuchi, 2003; Pao & Speeter, 1989).

Remark 1. To simplify the presentation, the condition (2) is
assumed to hold globally. If it is only satisfied for all x ∈ D ⊂ Rn

and t ≥ 0 with D denoting a compact domain, then a locally
asymptotic tracking result can be achieved with the subsequently
proposed methods provided that D is positively invariant and
xd(t) is contained in D.

Remark 2. The condition (3) is necessary for an asymptotic track-
ing result, and it can be viewed as a target system which gen-
erates the desired trajectories. Compared to the conditions used
in some of the related classic problems such as output track-
ing (Khalil, 2002) and output regulation (Isidori, 2013), (3) is
rather strong since it requires the existence of ud(t). For certain
practical applications, such a desired trajectory satisfying (3) is
straightforward to obtain. For example, in Pao and Speeter (1989),
the desired trajectory for a multi-figured robotic hand is gener-
ated by the human hand because they have the similar kinematic
structure and constraints. Furthermore, if the controlled system
is strictly incrementally passive, i.e., P ∂ f

∂x (x, t) +
∂T f
∂x (x, t)P < −Q

for a constant positive definite matrix Q , then a bounded tracking
result can still be achieved without requiring the condition (3).

To facilitate the argument, we define the tracking error as

z(t) ≜ x(t) − xd(t). (4)

The dynamics of z(t), i.e., the error system, is given in the fol-
lowing theorem, which will be instrumental for the rest of the
paper.

Theorem 1. Suppose Assumption 1 holds. Then the dynamics of
z(t) can be described in a port-Hamiltonian form (van der Schaft
& Jeltsema, 2014) with the new control input u − ud and the
Hamiltonian

H(z) =
1
2
zTPz. (5)

Proof. According to the Mean Value theorem for vector-valued
mappings, we have

f (x, t) − f (xd, t) =

∫ 1

0

∂ f
∂x

(xd(t) + λz, t)dλ · z. (6)

By viewing xd(t) as a time-dependent signal, (6) can be rewritten
as

f (x, t) − f (xd, t) = A(z, t)z (7)

where A(z, t) ≜
∫ 1
0

∂ f
∂x (xd(t) + λz, t)dλ. Then, we define the

following matrices

△(z, t) = A(z, t)P−1, J(z, t) = (△ − △
T )/2

R(z, t) = −(△ + △
T )/2

(8)

with P given in Assumption 1. Based on (1), (3), (7), and (8), we
obtain that

ż = [J(z, t) − R(z, t)]∇H(z) + G(u − ud). (9)

From (8), J(z, t) = −JT (z, t). According to Assumption 1, P is pos-
itive definite, thus, H(z) =

1
2 z

TPz is strictly convex. Furthermore,
(2) implies that

∂ f
∂x

(x, t)P−1
+ P−1 ∂T f

∂x
(x, t) ≤ 0 (10)

which shows that R(z, t) = RT (z, t) ≥ 0. Then, it can be concluded
that (9) is a port-Hamiltonian system, satisfying

Ḣ = −∇
THR(z, t)∇H + ∇

THG(u − ud)

≤ ∇
THG(u − ud)

(11)

which also implies that the system (1) is incrementally passive
with respect to the output y = GTPx. ■

Remark 3. It is worth pointing out that the above analysis cor-
rects a similar statement in Pavlov and Marconi (2008), which
utilizes the equation f (xa, t) − f (xb, t) =

∂ f
∂x (ξ, t)(xa − xb) with ξ

denoting some point lying on the line segment [xa, xb]. However,
this equation only holds when f (·) is a scalar function. For this
reason, Eq. (6) is utilized in our analysis.

Remark 4 (Incremental Passivity Via Feedback). In the scenario
that Assumption 1 is not satisfied, one can consider designing
a feedback that renders the corresponding closed-loop system
incrementally passive. Specifically, if there exists a mapping φ :

Rn
→ Rm such that F (x, t) ≜ f (x, t) + Gφ(x) satisfies P ∂F

∂x (x, t) +

∂T F
∂x (x, t)P ≤ 0, then the control input can be designed as u =

φ(x) + v, with v(t) ∈ Rm being a virtual input, and we can
equivalently consider the tracking problem of the new system
ẋ = F (x, t) + Gv.

From (4), the tracking problem is equivalent to stabilizing the
origin of (9). To motivate and prepare the development in the
next section, we first consider the tracking problem when ud(t)
is known, and the following Assumption 2 is required for an
asymptotic tracking result.

Assumption 2. The system (9) is zero-state detectable (Hill &
Moylan, 1976) with respect to the output

w(z, t) ≜ C(z, t)∇H(z), w ∈ Rn (12)

where C(z, t) ∈ Rn×n satisfies CTC = R(z, t) + GBGT , and B ∈

Rm×m is a constant positive definite symmetric matrix.

Theorem 2. If Assumptions 1 and 2 are satisfied, then the system
(1) in closed-loop with the control input

u = ud − BGT
∇H(z) (13)

asymptotically tracks the desired trajectory xd(t).

The proof of Theorem 2 is omitted here for concision, and it
is based on the condition that f (x, t) is uniformly continuous in t
and locally Lipschitz in x(t), and a direct application of Barbalat’s
lemma (Khalil, 2002, Lemma 8.2).

3. Tracking control design

Based on Theorem 2, this section proposes two robust tracking
controllers for the scenario that ẋd is unknown. In this case, the
term Gud(t) in (9) can be viewed as a matched disturbance since
G is constant.
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3.1. Velocity observer based method

Assumption 3. There exists a constant, diagonal, positive-definite
matrix K0 ∈ Rn×n such that

K0i > ∥ẍdi(t)∥∞ + ∥
...
xdi(t)∥∞, ∀i ∈ {1, . . . , n} (14)

where K0i denotes the ith diagonal element of K0 and xdi(t)
denotes the ith element of the vector xd(t).

Define the following control law

u = (GTG)−1GT ( ˙̂xd − f (xd, t) − x̃d) − BGT
∇H (15)

where x̂d(t) denotes the estimate for xd(t), and x̃d(t) ≜ xd(t) −

x̂d(t) denotes the estimation error for xd(t). Here, note that the
matrix GTG is invertible because G is of full rank. By modifying
the velocity observer designed in Xian, de Queiroz, Dawson and
McIntyre (2004), the online update law for x̂d(t) is designed as
˙̂xd = l + (K1 + In )̃xd (16)

l̇ ∈ K1̃xd + K0Sgn(̃xd) − G(GTG)−TGT
∇H(z) (17)

where K1 ∈ Rn×n is a positive-definite matrix, and In denotes
the identity matrix in Rn. To facilitate the subsequent stability
analysis, a filtered error ed(t) ∈ Rn is defined as

ed(t) ≜ ˙̃xd(t) + x̃d(t). (18)

By using ud = (GTG)−1GT (ẋd − f (xd, t)), (3), (9), and (15), the
following extended closed-loop system is obtained

ż =[J − R − GBGT
]∇H − G(GTG)−1GT ed

ėd = − K1ed − K0η(t) + ẍd + G(GTG)−TGT
∇H

(19)

where the variable η(t) ∈ Sgn(̃xd(t)) is introduced to facilitate
the subsequent analysis, which is based on the Filippov’s solution
concept (Filippov, 2013).

Lemma 1. Define a function L(t) ∈ R as

L(t) ≜ eTd (t)[ẍd(t) − K0η(t)]. (20)

Provided Assumption 3 holds, then
∫ t
t0
L(τ )dτ ≤ c with c ≜∑n

i=1 K0i |̃xdi(t0)| − x̃d(t0)T ẍd(t0) being a constant.
The proof of Lemma 1 is omitted here for concision, and it is

based on a similar procedure given in Xian, Dawson et al. (2004,
Appendix A).

Theorem 3. Provided that Assumptions 1–3 are satisfied, then the
control design in (15)–(17) yields asymptotic tracking of xd(t).

Proof. Define a function N(t) ∈ R as

N(t) ≜ c −

∫ t

t0

L(τ )dτ . (21)

According to Lemma 1, N(t) ≥ 0. Therefore, the following non-
negative function can be defined

V (z, ed, t) = H(z) +
1
2
eTded + N(t). (22)

Note that V (t) is positive definite and radially unbounded with
respect to [z, ed,

√
N(t)]T . By using (11)–(13), (19), (21), and ac-

cording to the chain rule for nonsmooth systems (Paden & Sastry,
1987), V̇ (·) exists almost everywhere (a.e.), i.e., for almost all
t ∈ [t0, ∞), and satisfies

V̇ a.e.
= ∇

THż + eTd ėd − L(t) = −wTw − eTdK1ed. (23)

According to LaSalle–Yoshizawa corollary for nonsmooth sys-
tems (Fischer, Kamalapurkar, & Dixon, 2013), (22) and (23) imply
that w(t), ed(t) → 0, as t → ∞. Then the zero-state detectabil-
ity in Assumption 2 implies asymptotic convergence towards the
desired trajectory xd(t). ■

3.2. Sliding mode control

Assumption 4. There exists a constant, diagonal, positive definite
matrix Γ1 ∈ Rm×m such that

Γ1i > ∥udi(t)∥∞, ∀i ∈ {1, . . . ,m} (24)

where Γ1i denotes the ith diagonal element of Γ1 and udi(t)
denotes the ith element of ud(t).

Theorem 4. Suppose Assumptions 1, 2 and 4 hold. The desired
trajectory xd(t) for (1) is asymptotically tracked by the control input

u ∈ −BGT
∇H(z) − Γ1Sgn(GT

∇H(z)). (25)

Proof. From (9) and (25), the z-dynamics is derived as

ż ∈ (J − R − GBGT )∇H − Gud − GΓ1Sgn(GT
∇H). (26)

From (26) and according to the chain rule for nonsmooth sys-
tems (Paden & Sastry, 1987), the derivative of H(z) in (5) exists
almost everywhere (a.e.), and Ḣ(z)

a.e.
∈

˙̃H(z), where ˙̃H(z) denotes
a set satisfying
˙̃H(z) ⊂ − wTw − ∇

THGud − ∇
THGΓ1Sgn(GT

∇H)

≤ − wTw +

n∑
i=1

⏐⏐⏐[∇TH(z)G]i

⏐⏐⏐ (|udi(t)| − Γ1i) .
(27)

From (24), the second term on the right side of (27) is negative.
Therefore, we have ˙̃H(z) ≤ −wTw, which implies that w(t) →

0, as t → ∞ according to LaSalle–Yoshizawa Corollary for
Nonsmooth Systems (Fischer et al., 2013). Hence, the asymptotic
stability of z = 0 follows from the zero-state detectability in
Assumption 2. ■

In contrast to the velocity observer based method, the sliding
mode controller (SMC) in (25) does not require the knowledge of
f (x, t) and Assumption 4 is weaker than Assumption 3. However,
it is worth pointing out that the proposed SMC can result in the
chattering phenomenon.

Remark 5. For chattering suppression of SMC, Corless and Leit-
mann (1981) simply propose to replace the signum function
with a smooth approximation. However, it is worth pointing out
that this replacement may destabilize the closed-loop system
in our case since wTw in (27) is only ensured to be positive
semi-definite with respect to z(t). If the controlled system is
strictly incrementally passive, this approximation method can be
applied with a deterioration in the control performance, that is,
it only ensures bounded tracking rather than asymptotic track-
ing. Furthermore, other advanced methods for chattering sup-
pression can be considered for better control performance. For
example, Galias and Yu (2007) propose an Euler’s discretization
method which yields only numerical chattering, and Acary and
Brogliato (2010) show that an implicit Euler time-discretization
leads to a chattering-free stabilization.

Remark 6. It is well-known that higher-order SMC is effec-
tive for chattering avoidance. However, a standard second-order
SMC (Fridman & Levant, 1996) is not applicable for the studied
tracking problem, because it depends on a variable structure term
Sgn(ṡ + αs) with α being a positive constant, and s = GT

∇H
in this case. Note that ṡ(t) is not available since it is related
to the unknown ẋd(t). To avoid this problem, an alternative
second-order SMC (Bartolini, Ferrara, & Usai, 1998) can be defined
as

u̇ ∈ −(GTPG)−1Γ2(x, t)Sgn(s) (28)
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Fig. 1. Tracking results of the ball position.

where Γ2(x, t) ∈ Rm×m is a diagonal positive definite matrix
satisfying Γ2i(x, t) ≥ ∥[GTP(ḟ (x, t) − ẍd)]i∥, ∀i ∈ {1, . . . ,m}, x ∈

Rn, t ≥ 0. This inequality shows that ẍd(t) ∈ L∞ is a necessary
condition for the existence of Γ2(x, t). Note that the controller
(28) only ensures that s(t) → 0 in a finite time. Therefore, the
zero-state detectability from the output s(t) is required for an
asymptotic full state tracking result.

4. Example: The ball and beam system

In this section, we apply the proposed controllers developed in
Section 3 to the ball and beam system, which is not feedback lin-
earizable as pointed out in Hauser, Sastry, and Kokotovic (1992).
Its dynamics is given by

ẋ =

⎡⎢⎢⎢⎣
x2

M(x1x24−g sin x3)
Jb/R2+M

x4
−

M(2x1x2x4+gx1 cos x3)
Mx21+J+Jb

⎤⎥⎥⎥⎦
  

f (x)

+

⎡⎢⎣ 0
0
0
1

⎤⎥⎦
  

G

u. (29)

where x = [x1, x2, x3, x4]T ≜ [r, ṙ, θ, θ̇ ], and u ≜
τb

Mx21+J+Jb
. Here,

θ denotes the beam angle, r is the ball position, J is the beam’s
moment of inertia, and τb is the torque applied to the beam. M ,
R, and Jb denote the mass, radius, and moment of inertia of the
ball, respectively. g denotes the acceleration of gravity. Here, we
utilize the same model parameters as in Hauser et al. (1992):
J = 0.02 kg m2, M = 0.05 kg, Jb = 2×10−6 kg m2, R = 0.01 m,
and g = 9.81 m/s2.

Remark 7. To the best of our knowledge, most of the existing
tracking controllers for the ball and beam system address an
output tracking problem, i.e., tracking a desired trajectory of the
ball position (Hauser et al., 1992; Hirschorn, 2002), in which
bounded tracking results are achieved. As a contrast, a state track-
ing problem is studied in this work, and the proposed controllers
ensure a locally asymptotic tracking result for the ball and beam
system under the condition that ẋd(t) is unknown.

Since Assumption 1 is not satisfied in this case, we invoke the
incremental passivity via feedback given in Remark 4. Specifically,
the mapping φ(x) is designed as

φ(x) =
M(2x1x2x4 + gx1 cos x3)

Mx21 + J + Jb
+

24(Jb/R2
+ M)x1

Mg

+
50(Jb/R2

+ M)x2
Mg

− 35x3 − 10x4.

It is verified that the condition P ∂F
∂x (x) +

∂T F
∂x (x)P < 0 with the

constant positive definite symmetric matrix

P =

⎡⎢⎣ 3.6087 2.1779 −4.2801 −0.292
2.1779 3.1127 −6.9958 −0.4454

−4.2801 −6.9958 25.5017 1.4720
−0.292 −0.4454 1.4720 0.3972

⎤⎥⎦
holds for |x1| ≤ 3 m, x2 ∈ R, |x3| ≤ 0.65 rad, |x4| ≤ 0.19 rad/s.
That is, the closed-loop system with u = φ(x) is locally strictly
incrementally passive, and thus, C(z, t) in (12) is of full rank and
Assumption 2 holds. Assumptions 3 and 4 can be satisfied by
appropriately selecting the desired trajectory xd(t). After verifying
all the assumptions, the explicit form of the proposed controllers
is given as

• Proposed velocity observer based controller

u = (GTG)−1GT ( ˙̂xd − f (xd, t) − x̃d)

+ φ(x) − φ(xd) − BGTP(x − xd)
(30)

where ˙̂xd is obtained from (16)–(17).

• Proposed first-order SMC

u ∈ φ(x) − BGTP(x − xd) − Γ1Sgn(GTP(x − xd)). (31)

In the simulation, the desired bounded trajectories are gener-
ated by a target system ẋd = f (xd)+Gud(t) where ẋd(t) is assumed
to be unknown for the control design. Therefore, it is similar to
a synchronization problem, i.e., letting the controlled ball and
beam system track another one. The control parameters are: K0 =

K1 = 2I4, B = 0, Γ1 = 40. According to Remark 5, the term
sgn(s) in (31) is replaced by the smooth approximation tanh(103s)
in order to facilitate the simulation analysis since the ball and
beam system with u = φ(x) is locally strictly incrementally
passive. For the comparison purpose, simulations are also con-
ducted by applying the second-order SMC discussed in Remark 6
and an approximate input–output linearization controller given
by Hauser et al. (1992, Eq. (3.1) and (3.3)). Since Hauser et al.
(1992) study an output tracking problem, the controller relies on
the information of yd(t) = x1d, ẏd(t) = x2d, and the unknown
y(i)d (t), i = 2, 3, 4, which are estimated from ẏd(t) = x2d by a high-
gain observer in this case. The simulation results with the initial
conditions x(0) = [1, 0, 0.5, 0] are given in Figs. 1 and 2. Note
that the proposed SMC has a small steady-state tracking error
due to using the smooth approximation. Compared to the other
three methods, the proposed velocity observer controller achieves
a better control performance in terms of the tracking error and
the control energy.
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Fig. 2. Control inputs of the different methods.

5. Conclusions

In this paper, we investigate the trajectory tracking problem
for nonlinear systems by exploiting the property of incremental
passivity. For a desired trajectory with unknown velocity, we
propose two robust control designs (a velocity observer based
method and a sliding mode controller). Both controllers ensure
an asymptotic tracking result provided a condition of zero-state
detectability holds. The main contribution is related to a new
framework of robust tracking control for underactuated nonlinear
systems that are not necessarily feedback linearizable.
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