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ABSTRACT

Here, we investigate the sensitivity of nonequilibrium Casimir forces to optical properties at low frequencies via the Drude and plasma
models and the associated effects on the actuation of microelectromechanical systems. The stability and chaotic motion for both autonomous
conservative and nonconservative driven systems were explored assuming good, e.g., Au, and poor, e.g., doped SiC, interacting conductors
having large static conductivity differences. For both material systems, we used the Drude and plasma methods to model the optical properties
at low frequencies, where measurements are not feasible. In fact, for the conservative actuating system, bifurcation and phase space analysis
show that the system motion is strongly influenced by the thermal nonequilibrium effects depending on the modeling of the optical properties
at low frequencies, where also the presence of residual electrostatic forces can also drastically alter the actuating state of the system, depending
strongly on the material conductivity. For nonconservative systems, the Melnikov function approach is used to explore the presence of
chaotic motion rendering predictions of stable actuation or malfunction due to stiction on a long-term time scale rather impossible. In fact,
the thermal effects produce the opposite effect for the emerging chaotic behavior for the Au–Au and SiC–SiC systems if the Drude model
is used to model the low optical frequencies. However, using the plasma model, only for the poor conducting SiC–SiC system, the chance
of chaotic motion is enhanced, while for the good conducting Au–Au system, the chaotic behavior will remain unaffected at relatively short
separations (<2 µm).

Published under license by AIP Publishing. https://doi.org/10.1063/1.5140076

Advancement in microfabrication techniques has driven
significant attention to micro-(MEMS) and nanoelectromechan-
ical (NEMS) systems from both the fundamental science and
technology point of view. In order to analyze in depth the func-
tionality of devices at micrometer/submicrometer separations, it
is vital to consider Casimir forces since they are omnipresent
and inevitably can influence the dynamics of moving compo-
nents. It is of primary importance to understand under what
conditions this force can draw moving elements together into
permanent adhesion, which is termed as stiction. Furthermore,
the occurrence of chaotic behavior is unavoidable, and it can
cause abrupt changes in actuation leading to possible stiction

during the long-term performance of devices. This is strongly
dependent on the magnitude of the Casimir force, in both
equilibrium and non-equilibrium conditions, where the lat-
ter case takes place generally in a system with components
at different temperature. The situation becomes more compli-
cated by the uncertainty in calculating the Casimir force, which
is known for more than 15 years now, due to the extrapo-
lation of the measured optical properties at low frequencies
via the Drude or the plasma (P) models. The latter model
can predict either enhanced or suppressed chaotic behavior
depending strongly also on the conductivity of the interacting
materials.
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I. INTRODUCTION

Nowadays, microelectromechanical systems (MEMS) are
becoming increasingly an important element for various technology
applications such as microswitches, accelerometers, sensors, micro-
phones, etc. Attracting attention to this sort of devices at the
micrometer and submicrometer length scales has driven significant
advancement in microfabrication techniques, which lead to scaling
down of MEMS into submicrometer length scales toward nano-
electromechanical systems (NEMS).1–9 As a result, these processes
lead inevitably to a significant role for the Casimir force on the
actuation dynamics of the devices.1–9 Although electrostatic actua-
tion has been utilized in micro/nanodevices, the electrostatic forces
can be switched off when no potential is applied. However, the
Casimir force is omnipresent, and it can always influence the actu-
ation dynamics of operating devices. This is because MEMS/NEMS
have surface areas large enough and separation gaps small enough
for the Casimir force to play a significant role and under certain con-
ditions to pull mechanical elements together leading to permanent
adhesion, which is known as stiction.2,8,9

The Casimir force was predicted by H. Casimir in 1948 when
he assumed that two perfectly conducting parallel plates are attract-
ing each other due to the perturbation of vacuum fluctuations of
the electromagnetic (EM) field.10 Later on, Lifshitz and co-workers11

considered the general case of real dielectric plates by exploiting the
fluctuation–dissipation theorem, which relates the dissipative prop-
erties of the plates (optical absorption by many microscopic dipoles)
and the resulting EM fluctuations. The Lifshitz theory predicts the
Casimir force between two plates for any material and covers both
the short-range (nonretarded) van der Waals and the long-range
(retarded) Casimir asymptotic regimes, respectively.1–4,10–13 Further-
more, in order to analyze the dynamical behavior of MEMS oper-
ating under ambient conditions between materials with different
conductivities, several studies have shown so far how the optical
properties14–24 and thermal nonequilibrium effects25–28 can influence
their motion. These results allow one to tailor the force by a suit-
able choice of interacting materials at an appropriate temperature,
opening new possibilities for MEMS/NEMS engineering.

Moreover, it has been shown that the low optical frequency
range, which is not accessible by experimental measurements,14–24

is playing a significant role for an effective stable operation of
devices.3,4,29–31 In fact, Casimir force measurements have revealed
deviations from force predictions of dissipative models (e.g., the
Drude model),3,4,30 which lead to finite absorption at frequen-
cies ω> 0 and singular absorption ∼1/ω for ω → 0 (static limit).
On the other hand, the plasma (P) model,3,4,30 which can also be
thought as having infinite absorption at the frequency ω∼ 0, and
zero anywhere else, allowed calculations of the Casimir force that
described the measured force data more precisely at separations
above 160 nm.3,4,30,31 Recently, we have shown that for systems at
thermal equilibrium, the choice of the Drude or plasma models
to describe the optical properties at low optical frequencies (far-
infrared and below) in the range where any measured optical data
are not available leads to remarkably different results regarding the
stability and emerging chaotic motion of MEMS.29,31

However, it is still remains unexplored how the optical prop-
erties in the low frequency range can affect the actuation of

devices towards chaotic motion under the influence of thermal non-
equilibrium Casimir forces taking into account the conductivity of
interacting materials, and possible residual electrostatic interactions
due to uncompensated contact potentials. This topic will be explored
here for both good and poor conductive materials that are used in
microdevices and can lead to irreversible adhesion of moving parts
due to stiction on a long-term during operation. In fact, the design of
these devices can always be quite challenging due to the occurrence
of chaotic behavior, which causes abrupt changes in their dynami-
cal behavior resulting in device malfunction. As a result, the present
study will provide essential knowledge for the design of actuating
devices operating under nonequilibrium conditions and add new
functionalities to MEMS/NEMS architectures taking into account
detailed modeling of material optical properties.

II. MATERIAL SYSTEMS AND DEVICE ACTUATION

For our purpose, we have chosen gold (Au) and highly doped
silicon carbide (SiC) in order to cover a wide range of materials with
different optical properties and associated conductivities. Au is used
due to its high conduction ratio ω2/

p ωτ|Au1600 eV19 and its frequent
use in devices, while as a poor conductor, we used nitrogen doped
SiC with a conductivity ratio of ω2/

p ωτ|SiC = 0.4 eV.24 Notably, SiC is
also suitable for operation in harsh environments and an important
system that is compatible with Si-based technologies. Both materials
were optically characterized with the same ellipsometric equipment
[J. A. Woollam Co., Inc., ellipsometers VUV-VASE (0.5–9.34 eV)
and IR-VASE (0.03–0.5 eV)].19,24 Details for the Drude and plasma
models and the frequency dependent dielectric functions of the
materials in our study are shown in Appendix A. The correspond-
ing dielectric functions at imaginary frequencies ε(iξ), which are the
necessary inputs for calculating the contribution of the zero-point
fluctuations (T = 0) on the Casimir force via the Lifshitz theory, are
calculated as explained in Appendix A.19,24,31

In order to understand the influence of the nonequilibrium
Casimir force on MEMS actuation, we have considered in Fig. 1
a typical microswitch, which is a well-known essential device. It

FIG. 1. Schematic of the model actuating system under consideration.
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is constructed from two electrodes of which one is fixed, and the
other is suspended by a mechanical spring governed by Hooke’s
law.32 The elastic restoring force Fres − k(d − z) of the spring with
stiffness k counterbalances both the attractive Casimir and electro-
static forces. After applying a bias voltage V between the planar
electrodes and/or due to the uncompensated contact potentials of
the material coatings, an electrostatic force Felec is produced,

Felec(z) =
ε0AV2

2z2
, (1)

where ε0 is the permittivity of vacuum between the plates. Further-
more, it is possible to express the nonequilibrium Casimir force FCas

between the plates as

FCas(T1, T2, z) = F0(z) + F
neq

th (T1, T2, z), (2)

where the contribution of the zero-point fluctuations (T = 0) F0(z)
is separated from the thermal part F

neq

th (T1, T2, z) due to thermal
fluctuations. F0(z) has been calculated via the Lifshitz theory using
the dielectric functions at imaginary frequencies ε(iξ) for both the
Drude and plasma models (see Appendix A for the extrapolations
of the measured optical data via the Drude and plasma models).
The chosen materials (Au and SiC) show significant optical contrast
for the dielectric function at imaginary frequencies ε(iξ) at frequen-
cies of ξ < 1 eV, which will manifest in Casimir force variations for
nanoscale separations c/2ξ> 10 nm.

According to Ref. 25, the thermal force between the two bod-
ies in both configurations in and out of thermal equilibrium can be
presented as

F
neq

th (T1, T2, z) = F
neq

th (T1, 0, z) + F
neq

th (0, T2, z). (3)

The first and the second term at the right side of Eq. (3) describe
the bodies at temperature T1 and T2, respectively. This part for each
body can be written as

F
neq

th (T, z) = F
neq PW

th (T, z) + F
neq EW

th (T, z). (4)

Equations (2)–(4) can be presented using the Lifshitz formula
in real frequencies as a sum of contributions from propagating
and evanescent waves. The propagating waves satisfy the condi-
tion ck⊥ < ω, (k⊥ is the in-plane wave vector), which is valid for
real photons. They propagate both in the vacuum gap and inside
the bodies. The corresponding out of plane wave vector k0 is real.
Evanescent waves satisfy the condition ω ≤ ck⊥, and they may prop-
agate only along the boundary planes. The electromagnetic field of
an evanescent wave decreases exponentially with the distance from
the interface between the vacuum gap and the interacting bodies,
and the corresponding out of plane wave vector k0 is imaginary.

In this study, our main goal is to investigate the influence
of optical properties at low frequencies on the dynamical actua-
tion of systems with strong and weak conductivity. Therefore, we
have focused on identical interacting bodies and ignored mix states
between good and poor conductors. The latter is highly interest-
ing but will be given elsewhere for several systems including Au,
SiC, Ru, and phase change materials. Moreover, the consideration of
identical bodies simplifies the process of calculations to gain better
insights into these complex situations. Indeed, according to Ref. 25,
F

neq

th (T, z) can be separated in symmetric and antisymmetric parts,

FIG. 2. Comparison between F0 (zero-point fluctuations) and the
FCas(= F0 + Fthermal) for the (a) Au–Au and (b) SiC–SiC systems using
both the Drude and plasma models. The calculations for the thermal contribution
Fthermal were performed under nonequilibrium conditions for T1 = 300 K and
T2 = 400 K.

where in a system with identical bodies the antisymmetric terms
disappear (see Appendix B).

Finally, the equation of motion for the microelectromechanical
system (Fig. 1), where the fixed and moving plates are considered to
be coated by Au or SiC, is given by

M
d2z

dt2
+

(

Mω0

Q

)

dz

dt
= −Fres + Felec + FCas + εF0 cos(ωt). (5)

Here εF0 cos(ωt) is the driven actuating force, M is the mass
of the moving plate, and (Mω0/Q)(dz/dt) is the intrinsic energy
dissipation in the actuating system. For conservative systems, we
consider actuating systems with a high quality factor Q > 10433

so that we can neglect dissipation effects. The frequency ω0 is
assumed to be that of the dynamic mode atomic force microscope
(AFM) cantilevers or MEMS (typically ω/2π = 3 × 105 rad/s).33 The
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FIG. 3. αthermal = FCas/F0 vs z for nonequilibrium conditions for the (a) Au–Au
and (b) SiC–SiC systems using the Drude and plasma models.

parameter ε was introduced to distinguish between the conservative
frictionless autonomous operation of the actuating system (ε = 0)
and the nonconservative driven system by an external force (ε = 1)
in the presence of friction having a finite quality factor Q. Finally, in
each case, we assumed flat surfaces, because any nanoscale rough-
ness will give significant contribution at separations below 100 nm,17

while we have considered different initial distances between the
plates in the range d = 850 nm to 2.5 µm. In all cases, the lateral
dimensions of the plates were Lx = Ly = 10 µm.

III. RESULTS AND DISCUSSION

A. Conservative systems (ε = 0)

For our stability analysis, we introduced the bifurcation

parameter δCas = F
m/kd
Cas ,34–36 which is the ratio of the minimum of

Casimir force Fm
Cas = FCas(z = d) to the maximum restoring force

FIG. 4. αthermal = FCas/F0 vs T2(K) for both equilibrium (T1 = T2) and nonequi-
librium (T1 = 300 K) situations in (a) Au–Au and (b) SiC–SiC systems using the
Drude and plasmamodels. The separation distance between plates is z = 1 µm,
while that in the inset is z = 2µm.

kd. In this way, we are able to compare the force influence for
different nonequilibrium thermal conditions. The locus of the equi-
librium points is obtained from Eq. (5) if we set Ftotal = −Fres + Felec

+ FCas = 0. The solution yields for the bifurcation parameter
δCas

35–37

δCas =

(

−Fres(z) + δv

Felec(z)

Fm
elec

)(

Fm
Cas

FCas(z, T)

)

, (6)

where δv = Fm
elec/FM

res = ε0AV2/2kd3 is the corresponding electro-
static bifurcation parameter.21,38 The critical points, where stic-
tion occurs, are also characterized by the condition dFtotal/

dz = 0.35–37 Therefore, the use of δCas allows to determine when
there is a stable periodic solution for the device that corresponds
to sufficient restoring force to prevent stiction of the plates.35 Using
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FIG. 5. Bifurcation diagrams δCas vs λ(= z/d) for nonequilibrium conditions (T1 = 300 K, T2 = 1 K and 400 K), δv = 0, and different initial actuation distances d: (a)
d = 850 nm, (b) d = 1 µm, and (c) d = 2.5 µm for the Au–Au system; (d) d = 850 nm, (e) d = 1 µm, and (f) d = 2.5 µm for the SiC–SiC system. The solid and dashed
lines represent the unstable and stable equilibrium points, respectively.
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FIG. 6. Contour phase space plots
dλ/dt vs λ for the Au–Au system. For
the calculations, we used 200× 200 ini-
tial conditions (λ, dλ/dt). The elliptical
homoclinic orbit encloses the initial condi-
tions that lead to stable oscillations. δCas
= 0.06 and d = 2 µm: δv = 0 (left col-
umn) and δv = 0.012 (right column) using
both the Drude and plasma models. Here,
we considered T1 = 300 K and T2 = 1
K or 400 K as indicated.

δCas, Eq. (5) assumes the more convenient form

d2λ

dT2
+

(

1

Q

)

dλ

dT
= −(1 − λ) + δv

Felec

Fm
elec

+ δCas

FCas

Fm
Cas

+ ε
F0

FMax
res

cos

(

ω

ω0

T

)

, (7)

with λ = z/d and T = ω0t.

Casimir force and actuation for good conductivity microsys-
tems (Au–Au): According to Figs. 2(a) and 3(a), the extrapolation
with the Drude model at low frequencies results in a large ther-
mal correction for the Au–Au system, which does not occur for
the plasma model. The predicted thermal correction of the Drude
model has a significant value even at shorter separations (<1 µm).
Although several experimental studies are in disagreement with the
Drude model’s predictions,4,39 there are investigations that show
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FIG. 7. Contour phase space plots
dλ/dt vs λ for the SiC–SiC system. For
the calculations, we used 200× 200 ini-
tial conditions (λ, dλ/dt). The elliptical
homoclinic orbit encloses the initial condi-
tions that lead to stable oscillations. δCas
= 0.06 and d = 2 µm: δv = 0 (left col-
umn) and δv = 0.012 (right column) using
both the Drude and plasma models. Here,
we considered T1 = 300 K and T2 = 1 K
or 400 K as indicated.

agreement with the Drude model predictions.40 Moreover, the ther-
mal correction is opposite in sign to the main contribution in the
Casimir force from zero-point fluctuations (F0) within a wide range
of separations and consequently leads to a decrease in magnitude
of the total Casimir force. From Fig. 3(a), for the Drude model,
and ignoring the sign of the thermal correction, Fthermal becomes
weak with the decreasing temperature. The same takes place also
for the plasma model, but the sign of Fthermal remains positive for

most of the separations. For the good conductive Au–Au system, at
large separations (>4 µm), the key factor that affects the strength
of the thermal contribution is the magnitude of the temperature,
while for smaller separations (<2.5 µm), the influence of the optical
properties at low frequencies overcomes the effect of the magnitude
of the temperature.

Finally, Fig. 4(a) provides a comparison between thermal equi-
librium and nonequilibrium situations for both the Drude and
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FIG. 8. Threshold curve α (= γω0d/F0) vs driving frequency ω/ωo (with ωo being the natural frequency of the system) to compare the influence of zero-point fluctuations
and thermal effects under nonequilibrium conditions with T1 = 300 K, T2 = 1 K or 400 K for the Au–Au system with δCas = 0.07, δv = 0, and d = 1 µm: (a) plasma model
and (b) Drude model. Similar plots are shown for the SiC–SiC system with δCas = 0.06, δv = 0, and d = 1 µm: (c) plasma model and (d) Drude model.

plasma models vs temperature. For the Drude model, the magnitude
of the total Casimir force is stronger for systems at thermal equi-
librium for temperatures below 300 K. While for the plasma model
below 300 K, the effect of the thermal part is too weak without any
difference between thermal equilibrium and nonequilibrium situa-
tions. However, by increasing T2 and consequently strengthening
the contribution of the thermal component, the magnitude of total
Casimir force becomes stronger at equilibrium conditions, which is
the opposite for the Drude model.

Furthermore, Figs. 5(a)–5(c) illustrate the stability of the
microsystem operating with different initial separations d. If the
restoring force is strong enough (δCas < δMax

Cas ), then there are two
equilibria for the system. The stationary points closest to d are the

stable centers around which periodic solutions exist, while the points
closer to the fixed plate are unstable saddle points so that motion
around them will lead to stiction on the fixed plate due to stronger
Casimir forces. Considering the negative sign of Fthermal in the Drude
model, and increasing its magnitude by increasing the temperature,
the stability of the system will increase at higher temperatures (e.g.,
a system at 1 K loses its stability sooner than at 400 K). However, for
the plasma model, the thermal effect is negligible at short separations
and will not change the device operation. As the initial separation
increases, because of the positive contribution of the thermal effect
to the Casimir force, the stability of the system will decrease with
increasing temperature (e.g., a system at 400 K loses its stability
sooner than at 1 K).
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FIG. 9. Contour plot of the transient
times to stiction using Poincaré phase
maps dλ/dt vs λ for the noncon-
servative Au–Au system using the
Drude model with d = 1 µm, α = 0.5,
ω/ω0 = 0.6, δCas = 0.07, and δv = 0
(left column) and δv = 0.012 (right
column) In both cases, we also consid-
ered the effect of zero-point fluctuations
(F0) and the nonequilibrium effects for
T1 = 300 and T2 = 1 K or 400 K (shown
in the plots). For the calculations, we used
200× 200 initial conditions (λ, dλ/dt).

Besides the bifurcation diagrams, the sensitive dependence of
the actuation dynamics on the thermal effect is reflected by the
Poincaré maps in Fig. 6. For the conservative system, the homo-
clinic orbit separates unstable motion, leading to stiction within
one period, from the periodic closed orbits around the stable cen-
ter point. Due to the negative sign of the thermal component in the
Au–Au system, if we use the Drude model, which leads to the decre-
ment of the total force, the stable area (elliptical in shape red area)
increases by increasing temperature in the absence of any applied
voltage. However, by applying a voltage, the effect of the positive
effect of the thermal component can be counterbalanced leading to
the reduced stable region. On the other hand, for the plasma model
(at separations >2 µm), the positive contribution to the Casimir
force of the thermal component leads to reduction of the stable
operating area, and this effect is amplified by an additional nonzero
electrostatic voltage contributing an extra attractive force between
the interacting plates.

Casimir force and actuation for poor conductivity microsystems
(SiC–SiC): For this system, the thermal effects can generate consid-
erably more significant changes in the Casimir force and, therefore,

into device motion in comparison to the high conductivity mate-
rials. As shown in Fig. 3(b), unlike the Au–Au system, here for
both the Drude and plasma models, the thermal component for
the most range of separations has a positive sign and it increases
the magnitude of the Casimir force. The key factor that determines
the strength of the thermal effect is the magnitude of the tempera-
ture, and its effect is stronger than the influence of the low optical
frequencies (using either the Drude or the plasma model for extrap-
olation). Figure 4(b) indicates the opposite results to those for the
Au–Au microsystem if we compare the thermal equilibrium and
nonequilibrium situations. The total Casimir force is stronger for the
Drude model and also, at low temperature, the magnitude of total
Casimir force is in any case stronger for nonequilibrium conditions
for both the Drude and plasma modes.

Figures 5(d)–5(f) illustrate the changes of stability for the
SiC–SiC system due to the thermal contributions. Unlike to the
Au–Au system, for the SiC–SiC system, both the Drude and plasma
models generate significant influence in the bifurcation diagrams,
where the temperature difference plays a dominant role. As a result,
decrement of the temperature leads to increased stable operation
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FIG. 10. Contour plot of the tran-
sient times to stiction using Poincaré
phase maps dλ/dt vs λ for the non-
conservative Au–Au system using the
plasma model with d = 1 µm, α = 0.5,
ω/ω0 = 0.6, δCas = 0.07, and δv = 0
(left column) and δv = 0.012 (right
column) In both cases, we also consid-
ered the effect of zero-point fluctuations
(F0) and the nonequilibrium effects for
T1 = 300, and T2 = 1 K or 400 K
(shown in the plots). For the calculations,
we used 200× 200 initial conditions
(λ, dλ/dt).

region as the comparison for 1 K and 400 K operations indicates.
Furthermore, we illustrate the dynamical behavior using Poincaré
maps. Indeed, Fig. 7 illustrates that, by increasing the temperature,
the stable region (elliptical red area) decreases, and the sensitivity to
temperature changes is higher for the Drude model. This is due to
the extrapolation in low frequencies of the dielectric function for real
frequencies, which is the vital input for the calculation of the ther-
mal component. On the other hand, there is no extrapolation for the
plasma model at real frequencies, and consequently the influence of
the low frequency range on the thermal component is absent. As a
result in each column of Fig. 7 (for systems at the same tempera-
ture), the stable area is smaller for the Drude model, and the change
in stable area is sharper at T = 400 K by switching from the Drude
to plasma models. Despite the same scenario with the Au–Au system
regarding the extrapolations at low frequencies, the reverse behavior
takes place for the SiC–SiC system because of the opposite sign of the
thermal component in comparison to F0 in the Drude model for the
Au–Au system (leading to larger phase space area for stable Au–Au
actuation).

B. Nonconservative systems (ε =1)

Here, we performed calculations to investigate the existence
of chaotic behavior in microsystems undergoing forced oscillation
via an applied external force Fo cos(ωt)41 and compare the influence
of thermal effects for both the Drude and plasma models. Chaotic
behavior could occur if the separatrix (homoclinic orbit) of the
conservative system splits. This behavior can be addressed by the so-
called Melnikov function and Poincaré map analysis.41,42 In a driven
system, the unstable equilibrium turns into an unstable periodic
orbit. If we define the homoclinic solution of the conservative system
as ϕC

hom(T), then the Melnikov function for the oscillating system is
given by41,42

M(T0) =
1

Q

∫ +∞

−∞

(

dϕ
C
hom(T)

dT

)2

dT +
τ0

τMAX
res

∫ +∞

−∞

dϕ
C
hom(T)

dT
cos

×

[

ω

ω0

(T + T0)

]

dT. (8)

Chaos 30, 023108 (2020); doi: 10.1063/1.5140076 30, 023108-10

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 11. Contour plot of the transient times
to stiction using Poincaré phase maps dλ/dt
vs λ for the nonconservative SiC–SiC sys-
tem using the Drude model with d = 1 µm,
α = 0.5, ω/ω0 = 0.6, δCas = 0.055 and
δv = 0 (left column) and δv = 0.012 (right
column). In both cases, we also considered
the effect of zero-point fluctuations (F0), and
the nonequilibrium effects for T1 = 300 and
T2 = 1 K or 400 K (shown in the plots). For
the calculations, we used 200× 200 initial
conditions (λ, dλ/dt).

The separatrix splits if the Melnikov function has simple zeros
so that M(T0) = 0 and M′(T0) = 0, while if M(T0) has no zeros, the
motion will not be chaotic. Therefore, the conditions of nonsimple
zeros, M(T0) = 0 and M′(T0) = 0, give the threshold condition for
chaotic motion.41,42 If we define

µc
hom =

∫ +∞

−∞

(

dϕ
C
hom(T)

dT

)2

dT and

β(ω) =

∣

∣

∣

∣

∣

H

[

Re

(

F

{

dϕ
C
hom(T)

dT

})]
∣

∣

∣

∣

∣

, (9)

then the threshold condition for chaotic motion α = β(ω)/µc
hom

with α = (1/Q)(F0/FMAX
res )

−1
= γω0 d/F0 obtains the form

α =
γω0 d

F0

=

∣

∣

∣

∣

∣

H

[

Re

(

F

{

dϕ
C
hom(T)

dT

})]
∣

∣

∣

∣

∣

/

∫ +∞

−∞

×

(

dϕ
C
hom(T)

dT

)2

dT, (10)

with γ = Iωo/Q and H[. . .] denotes the Hilbert transform.41,42

Figure 8 shows the threshold curves α = γω0d/F0 vs driv-
ing frequency ratio ω/ωo. For large values of α (above the
threshold curve), the dissipation dominates the driving force
(α ∼ γ/F0) leading to motion, which asymptotically approaches
the stable periodic orbit of the conservative system (ε = 0). How-
ever, for parameter values α below the threshold curve, the splitting
of the separatrix could lead to chaotic motion. Clearly, for the
Au–Au system (good conductors), the thermal contribution cal-
culated via the plasma model [Fig. 8(a)] is not able to change
the stability of device since the curves with and without ther-
mal fluctuation are similar to each other. However, for the Drude
model [Fig. 8(b)], the thermal contribution decreases the possibil-
ity for chaotic motion, which is further augmented by increasing
in magnitude of the temperature difference between the actuat-
ing components. Furthermore, according to Figs. 8(c) and 8(d),
for the SiC–SiC system (poor conductors), the contribution of the
thermal component for both the Drude and plasma models can
change the occurrence of chaotic behavior. The extrapolation at
low frequencies with the Drude model has a stronger effect on
the threshold condition for chaotic behavior, which is enhanced
by increasing temperature difference between the actuating
components.
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FIG. 12. Contour plot of the tran-
sient times to stiction using Poincaré
phase maps dλ/dt vs λ for the non-
conservative SiC–SiC system using the
plasma model with d = 1 µm, α = 0.5,
ω/ω0 = 0.6, δCas = 0.055 and δv = 0
(left column) and δv = 0.012 (right col-
umn). In both cases, we considered
also the effect of zero-point fluctuations
(F0) and the nonequilibrium effects for
T1 = 300 and T2 = 1 K or 400 K (shown
in the plots). For the calculations, we used
200× 200 initial conditions (λ, dλ/dt).

The occurrence of chaotic motion can be confirmed by
investigating the sensitive dependence of the motion on its initial
conditions via the Poincaré maps, as shown in Figs. 9–12. When the
possibility for chaotic motion to occur increases with a decreasing
value of α from the Melnikov analysis, there is a region of ini-
tial conditions where the distinction between qualitatively different
solutions is unclear. For chaotic motion, there is no simple smooth
boundary between the red (lighter gray) and the blue (dark gray)
regions (as it is the case for conservative motion in Figs. 6 and 7).
As a result, if the motion is chaotic, then stiction can still take place
after several periods affecting the long-term stability of the device.
Therefore, chaotic behavior introduces significant risk for stiction,
and this is more prominent to occur when the magnitude of the
Casimir force increases limiting our ability to predict the long-term
behavior of the actuating systems.

For the Au–Au system, if we compare the Poincaré maps of
Fig. 9 (Drude model) and Fig. 10 (plasma model), it is evident that
for the Drude model, the thermal corrections are more effective to
suppress the occurrence of chaotic motion and enhance stable actu-
ation with further increment of the temperature difference. At the

same time, the presence of an electrostatic voltage can reduce or
even fully compensate the positive effect of the thermal component
and subsequently drive the system to chaotic motion and stiction.
On the other hand, for the plasma model, the effect of the ther-
mal contribution is rather weak to alter the chaotic behavior in the
presence or absence of any electrostatic forces. According to Figs. 11
and 12, for the SiC–SiC system, the thermal contributions for both
the Drude and plasma models are able to make significant changes
in the dynamics of the actuating system toward chaotic motion. By
comparing the Poincaré maps in Figs. 11 and 12, it is obvious that
the strength of the thermal contribution is higher for the Drude
model in the absence and/or presence of electrostatic voltage lead-
ing to increased chaotic behavior. This is because of the differences
in extrapolating at real frequencies between the Drude and plasma
models.

IV. CONCLUSIONS

In conclusion, we investigated the sensitivity of nonequilibrium
Casimir forces to optical properties at low frequencies via the Drude
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and plasma models during actuation of microsystems. For the lat-
ter, we explored how the thermal effects influence the stable and
chaotic motion for both autonomous conservative and nonconser-
vative driven systems assuming both good and poor conductors,
whose static conductivity is different by more than three orders
of magnitude. For both material systems, we used the Drude and
plasma models to extrapolate the optical properties at low frequen-
cies, where optical measurements are not feasible. In fact, for the
conservative actuating system, bifurcation and phase space analysis
show that the system motion is strongly influenced by the thermal
nonequilibrium effects depending on the modeling of the optical
properties at low frequencies, where also the presence of residual
electrostatic forces can drastically alter the actuating state of the
system, depending strongly on the material conductivity. For non-
conservative systems, the Melnikov function approach is used to
explore the possible presence of chaotic motion rendering predic-
tions of stable actuation or malfunction due to stiction over long
times rather impossible. Moreover, it is shown that the thermal
contributions produce the opposite effect for the emerging chaotic
behavior of the Au–Au and SiC–SiC systems, if the Drude model is
used to model the low optical frequencies. On the other hand, when
using the plasma model only for the poor conducting SiC–SiC sys-
tem, the possibility of chaotic motion is enhanced, while for the good
conducting Au–Au system at small separations (less than 2 µm), the
chaotic behavior will remain unaffected. Therefore, the modeling of
the low frequency regime for the materials under consideration in
combination with thermal effects, and applied (or uncompensated)
electrostatic voltages, must be taken very carefully into account for
the design of actuating devices.
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APPENDIX A: LIFSHITZ THEORY AND DIELECTRIC

FUNCTION OF MATERIALS WITH EXTRAPOLATIONS

The part of the Casimir force due to zero-point fluctuations
(F0) in Eq. (5) is given by11

FCas(d) =
h−

2π 2

∫ ∞

0

dξ

∫ ∞

0

dk⊥ k⊥ k0

∑

ν=TE,TM

×
r(1)
ν r(2)

ν exp(−2k0d)

1 − r(1)
ν r(2)

ν exp(−2k0d)
. (A1)

The Fresnel reflection coefficients are given by

r(i)
TE = (k0 − ki)/(k0 + ki) and r(i)

TM = (εik0 − ε0ki)/(εik0 + ε0ki) for
the transverse electric (TE) and magnetic (TM) field polarizations,

respectively. ki(i = 0, 1, 2) =

√

εi(iξl) + k2
⊥ represents the out-

of-plane wave vector in the gap between the interacting plates (k0)

and in each of the interacting plates (ki=(1,2)). k⊥ is the in-plane
wave vector. The function ε(iξ) is the dielectric function evaluated
at imaginary frequencies (ξ), which is the necessary input for cal-
culating the Casimir force between real materials using the Lifshitz
theory. The latter is given by11

ε(iξ) = 1 +
2

π

∫ ∞

0

ω ε′′(ω)

ω2 + ξ2
dω. (A2)

For the calculation of the integral in Eq. (A2), one needs
the measured data for the imaginary part ε′′(ω) of the frequency
dependent dielectric function ε(ω). The materials were optically
characterized by ellipsometry over a wide range of frequencies at
J. A. Woollam Co. using the VUV-VASE (0.5–9.34 eV) and IR-
VASE (0.03–0.5 eV).19,24,31

In any case, the experimental data for the imaginary part ε′′(ω)

of the dielectric function cover only a limiting range of frequencies
ω1(=0.03 eV) < ω < ω2(=8.9 eV). Therefore, for the low optical
frequencies (ω < ω1), we extrapolated using the imaginary part of
the Drude model19,24,31

ε′′
L(ω) =

ω2
pωτ

ω (ω2 + ω2
τ)

, (A3)

where ωp is the plasma frequency and ωτ is the relaxation fre-
quency. Furthermore, for the high optical frequencies (ω > ω2), we
extrapolated using17,19,24,31

ε′′
H(ω) =

A

ω3
. (A4)

Finally, using Eqs. (A2)–(A4), ε(iξ) is given by

ε(iξ) D = 1 +
2

π

∫ ω2

ω1

ω ε′′
exp(ω)

ω2 + ξ2
dω + ∆Lε(iξ) + ∆Hε(iξ), (A5)

with

∆Lε(iξ) =
2

π

∫ ω1

0

ω ε′′
L(ω)

ω2 + ξ2
dω, and ∆Hε(iξ) =

2

π

∫ ∞

ω2

ω ε′′
H(ω)

ω2 + ξ2
dω.

(A6)

Despite the lack of a strong physical background in the plasma
model, Casimir force calculation by means of the plasma model
have better agreement with experimental force data than the Drude
model. At low optical frequencies ω < ω1, the term ∆Lε(iζ ) from
the Drude model is replaced by ω2/

p ζ2 yielding31

ε(iξ)p = 1 +
2

π

∫ ω2

ω1

ωε
′′

exp(ω)

ω2 + ζ2
dω +

ω2
p

ζ2
+ ∆Hε(iζ ). (A7)

APPENDIX B: BRIEF THEORY OF THE

NONEQUILIBRIUM CASIMIR FORCE

As already shown in Ref. 25, for identical materials, the
antisymmetric parts of both the propagating and evanescent com-
ponents vanish, while their symmetric parts remain equal to equilib-
rium terms. Therefore, the z-dependent terms of the thermal force
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in a system with identical bodies at T1 and T2 can be written as

F
neq

th (T1, T2, z) =
1

2

[

F
eq, pw

th (T1, 0, z) + F
eq, Ew

th (T1, 0, z)
]

+
1

2

[

F
eq , pw

th (0, T2, z) + F
eq , Ew

th (0, T2, z)
]

, (B1)

where for the propagating component we have

Feq, PW(T, z) =
−h−

π2

∫ ∞

0

d&
1

exp
(

h−ω

kBT

)

− 1

∫ k

0

dk⊥k⊥k0

∑

ν=s,p

×
Re(rν

1r
ν
2 exp(2id k0)) − |rν

1 rν
2|

2

|Dν|
2

, (B2)

while for the evanescent component we have

Feq,EW(T, z) =
h−

π2

∞

∫
0

dω
1

exp
(

h−ω

kBT

)

− 1

∞

∫
k

dk⊥k⊥Im(k0)

× exp(−2d Im(k0))
∑

ν=TE, T

Im(rν
1 rν

2)

|Dν|
2

. (B3)

Equations (B1)–(B3) describe the force per unit area, with ω

being the real frequency and Dν = 1 − rν
1 rν

2 exp(2i k0 z). Both coef-
ficients rν

1 and rν
2 are defined in Appendix A with ki(i = 0, 1, 2)

= (εi(ω)(ω2/c2) + k2
⊥)

1/2
and ε(ω) = εreal(ω) + iεimag(ω).

REFERENCES
1A. W. Rodriguez, F. Capasso, and S. G. Johnson, “The Casimir effect in
microstructured geometries,” Nat. Photonics 5, 211 (2011).
2F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and
quantum electrodynamical torques: Physics and nanomechanics,” IEEE J. Sel.
Top. Quantum Electron. 13, 400 (2007).
3M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko,
Advances in the Casimir Effect (Oxford University Press, New York, 2009).
4R. S. Decca, D. Lopez, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and
V. M. Mostepanenko, “Precise comparison of theory and new experiment for
the Casimir force leads to stronger constraints on thermal quantum effects and
long-range interactions,” Ann. Phys. 318, 37 (2005); R. S. Decca, D. Lopez, E.
Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, “Tests
of new physics from precise measurements of the Casimir pressure between two
gold-coated plates,” Phys. Rev. D 75, 077101 (2007).
5A. Ashourvan, M. F. Miri, and R. Golestanian, “Noncontact rack and pinion
powered by the lateral Casimir force,” Phys. Rev. Lett. 98, 140801 (2007).
6M. F. Miri and R. Golestanian, “A frustrated nanomechanical device powered by
the lateral Casimir force,” Appl. Phys. Lett. 92, 113103 (2008).
7A. Ashourvan, M. F. Miri, and R. Golestanian, “Rectification of the lateral
Casimir force in a vibrating noncontact rack and pinion,” Phys. Rev. E 75, 040103
(2007).
8F. M. Serry, D. Walliserand, and G. J. Maclay, “The role of the Casimir effect
in the static deflection and stiction of membrane strips in microelectromechani-
cal systems (MEMS),” J. Appl. Phys. 84, 2501 (1998); F. M. Serry, D. Walliserand,
and G. J. Maclay, “The anharmonic Casimir oscillator (ACO)—The Casimir effect
in a model microelectromechanical system,” J. Microelectromech. Syst. 4, 193
(1995); G. Palasantzas and J. T. M. DeHosson, “Phase maps of microelectrome-
chanical switches in the presence of electrostatic and Casimir forces,” Phys. Rev. B
72, 121409 (2005); G. Palasantzas and J. T. M. DeHosson, “Pull-in characteris-
tics of electromechanical switches in the presence of Casimir forces: Influence of
self-affine surface roughness,” ibid. 72, 115426 (2005).

9F. W. DelRio, M. P. de Boer, J. A. Knapp, E. D. Reedy, Jr., P. J. Clews, and M. L.
Dunn, “The role of van der Waals forces in adhesion of micromachined surfaces,”
Nat. Mater. 4, 629 (2005).
10H. B. G. Casimir, “Zero point energy effects on quantum electrodynamics,”
Proc. K. Ned. Akad. Wet. 51, 793 (1948).
11E. M. Lifshitz, “The theory of molecular attractive forces between solids,” J. Exp.
Theor. Phys. 2, 73 (1956); I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii,
“General theory of van der Waals forces,” Sov. Phys. Usp. 4, 153 (1961).
12P. Ball, “Fundamental physics: Feel the force,” Nature 447, 77 (2007).
13H. G. Craighead, “Nanoelectromechanical systems,” Science 290, 1532 (2000).
14F. Chen, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen,
“Demonstration of optically modulated dispersion forces,” Opt. Express 15, 4823
(2007); G. Torricelli, I. Pirozhenko, S. Thornton, A. Lambrecht, and C. Binns,
“Casimir force between a metal and a semimetal,” Europhys. Lett. 93, 51001
(2011).
15S. de Man, K. Heeck, R. J. Wijngaarden, and D. Iannuzzi, “Halving the Casimir
force with conductive oxides,” Phys. Rev. Lett. 103, 040402 (2009).
16G. Torricelli, P. J. van Zwol, O. Shpak, C. Binns, G. Palasantzas, B. J. Kooi,
V. B. Svetovoy, and M. Wuttig, “Switching Casimir forces with phase-change
materials,” Phys. Rev. A 82, 010101(R) (2010).
17G. Torricelli, P. J. van Zwol, O. Shpak, G. Palasantzas, V. B. Svetovoy, C. Binns,
B. J. Kooi, P. Jost, and M. Wuttig, “Casimir force contrast between amorphous
and crystalline phases of AIST,” Adv. Funct. Mater. 22, 3729 (2012).
18C.-C. Chang, A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and
U. Mohideen, “Reduction of the Casimir force from indium tin oxide film by UV
treatment,” Phys. Rev. Lett. 107, 090403 (2011).
19V. B. Svetovoy, P. J. van Zwol, G. Palasantzas, and J. Th. M. De Hosson, “Optical
properties of gold films and the Casimir force,” Phys. Rev. B 77, 035439 (2008);
G. Bimonte, “Making precise predictions of the Casimir force between metallic
plates via a weighted Kramers-Kronig transform,” Phys. Rev. A 83, 042109 (2011).
20A. Canaguier-Durand, P. A. Maia Neto, A. Lambrecht, and S. Reynaud, “Ther-
mal Casimir effect for Drude metals in the plane-sphere geometry,” Phys. Rev. A
82, 012511 (2010).
21F. Tajik, M. Sedighi, M. Khorrami, A. A. Masoudi, and G. Palasantzas, “Chaotic
behavior in Casimir oscillators: A case study for phase-change materials,” Phys.
Rev. E 96, 042215 (2017); F. Tajik, M. Sedighi, and G. Palasantzas, “Sensitivity on
materials optical properties of single beam torsional Casimir actuation,” J. Appl.
Phys. 121, 174302 (2017).
22F. Tajik, M. Sedighi, M. Khorrami, A. A. Masoudi, H. Waalkens, and G. Palas-
antzas, “Dependence of chaotic behavior on optical properties and electrostatic
effects in double-beam torsional Casimir actuation,” Phys. Rev. E 98, 02210
(2018).
23M. Sedighi and G. Palasantzas, “Casimir and hydrodynamic force influence
on microelectromechanical system actuation in ambient conditions,” Appl. Phys.
Lett. 104, 074108 (2014).
24M. Sedighi, V. B. Svetovoy, W. H. Broer, and G. Palasantzas, “Casimir
forces from conductive silicon carbide surfaces,” Phys. Rev. B 89, 195440
(2014).
25M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy, “Casimir-Lifshitz
force out of thermal equilibrium,” Phys. Rev. A 77, 022901 (2008).
26J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cor-
nell, “Measurement of the temperature dependence of the Casimir-Polder force,”
Phys. Rev. Lett. 98, 063201 (2007); G. L. Klimchitskaya, V. M. Mostepanenko, and
R. I. P. Sedmik, “Casimir pressure between metallic plates out of thermal equilib-
rium: Proposed test for the relaxation properties of free electrons,” Phys. Rev. A
100, 022511 (2019).
27M. Antezza, L. P. Pitaevskii, and S. Stringari, “New asymptotic behavior of
the surface-atom force out of thermal equilibrium,” Phys. Rev. Lett. 95, 113202
(2005).
28F. Tajik, M. Sedighi, Z. Babamahdi, A. A. Masoudi, H. Waalkense, and G. Palas-
antzas, “Dependence of non-equilibrium Casimir forces on material optical
properties towards chaotic motion during device actuation,” Chaos 29, 093126
(2019).
29F. Tajik, M. Sedighi, A. A. Masoudi, H. Waalkense, and G. Palasantzas, “Sen-
sitivity of chaotic behavior to low optical frequencies of a double beam torsional
actuator,” Phys. Rev. E 100, 012201 (2019).

Chaos 30, 023108 (2020); doi: 10.1063/1.5140076 30, 023108-14

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1109/JSTQE.2007.893082
https://doi.org/10.1016/j.aop.2005.03.007
https://doi.org/10.1103/PhysRevD.75.077101
https://doi.org/10.1103/PhysRevLett.98.140801
https://doi.org/10.1063/1.2898707
https://doi.org/10.1103/PhysRevE.75.040103
https://doi.org/10.1063/1.368410
https://doi.org/10.1109/84.475546
https://doi.org/10.1103/PhysRevB.72.121409
https://doi.org/10.1103/PhysRevB.72.115426
https://doi.org/10.1038/nmat1431
https://doi.org/10.4236/wjnse.2015.52007
https://doi.org/10.1016/B978-0-08-036364-6.50031-4
https://doi.org/10.1070/PU1961v004n02ABEH003330
https://doi.org/10.1038/447772a
https://doi.org/10.1126/science.290.5496.1532
https://doi.org/10.1364/OE.15.004823
https://doi.org/10.1209/0295-5075/93/51001
https://doi.org/10.1103/PhysRevLett.103.040402
https://doi.org/10.1103/PhysRevA.82.010101
https://doi.org/10.1002/adfm.201200641
https://doi.org/10.1103/PhysRevLett.107.090403
https://doi.org/10.1103/PhysRevB.77.035439
https://doi.org/10.1103/PhysRevA.83.042109
https://doi.org/10.1103/PhysRevA.82.012511
https://doi.org/10.1103/PhysRevE.96.042215
https://doi.org/10.1063/1.4982762
https://doi.org/10.1103/PhysRevE.98.022210
https://doi.org/10.1063/1.4866167
https://doi.org/10.1103/PhysRevB.89.195440
https://doi.org/10.1103/PhysRevA.77.022901
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/PhysRevA.100.022511
https://doi.org/10.1103/PhysRevLett.95.113202
https://doi.org/10.1063/1.5124308
https://doi.org/10.1103/PhysRevE.100.012201


Chaos ARTICLE scitation.org/journal/cha

30C. C. Chang, A. A. Banishev, R. Castillo-Garza, G. L. Klimchitskaya, V. M.
Mostepanenko, and U. Mohideen, “Gradient of the Casimir force between Au
surfaces of a sphere and a plate measured using an atomic force microscope in
a frequency-shift technique,” Phys. Rev. B 85, 165443 (2012); H. C. Chiu, G. L.
Klimchitskaya, V. N. Marachevsky, V. M. Mostepanenko, and U. Mohideen, “Lat-
eral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles,
deviations from the proximity force approximation, and comparison with exact
theory,” ibid. 81, 115417 (2010); F. Chen, U. Mohideen, G. L. Klimchitskaya, and
V. M. Mostepanenko, “Experimental and theoretical investigation of the lateral
Casimir force between corrugated surfaces,” Phys. Rev. A 66, 032113 (2002).
31M. Sedighi and G. Palasantzas, “Influence of low optical frequencies on actu-
ation dynamics of microelectromechanical systems via Casimir forces,” J. Appl.
Phys. 117, 144901 (2015).
32J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS (Chapman &
Hall, Boca Raton, FL, 2003).
33R. Garcıa and R. Perez, “Dynamic atomic force microscopy methods,” Surf. Sci.
Rep. 47, 197 (2002); D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single
spin detection by magnetic resonance force microscopy,” Nature 430, 329 (2004).
34S. Cui and Y. C. Soh, “An accurate separation estimation algorithm for the
Casimir oscillator,” J. Microelectromech. Syst. 19, 1153 (2010).
35M. Sedighi, W. H. Broer, G. Palasantzas, and B. J. Kooi, “Sensitivity of microme-
chanical actuation on amorphous to crystalline phase transformations under the
influence of Casimir forces,” Phys. Rev. B 88, 165423 (2013).

36R. Esquivel-Sirvent, L. Reyes, and J. Bárcenas, “Stability and the proximity
theorem in Casimir actuated nano device,” New J. Phys. 8, 241 (2006).
37R. Esquivel-Sirvent, M. A. Palomino-Ovando, and G. H. Cocoletzi, “Pull-in con-
trol due to Casimir forces using external magnetic fields,” Appl. Phys. Lett. 95,
051909 (2009).
38O. Degani, Y. Nemirovsky, and J. Microelectromech, “Design considerations
of rectangular electrostatic torsion actuators with rectangular plates based on
analytical pull-in expressions,” J. Microelectromech. Syst. 11, 20 (2002).
39R. S. Decca, D. Lopez, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and
V. M. Mostepanenko, “Novel constraints on light elementary particles and extra-
dimensional physics from the Casimir effect,” Eur. Phys. J. C 51, 963 (2007);
V. A. Yampol’skii, S. Savel’ev, Z. A. Mayselis, S. S. Apostolov, and S. Nori,
“Anomalous temperature dependence of the Casimir force for thin metal films,”
Phys. Rev. Lett. 101, 096803 (2008); I. Brevik, S. A. Ellingsen, and K. A. Milton,
“Thermal corrections to the Casimir effect,” New J. Phys. 8, 236 (2006).
40A. O. Sushkov, W. J. Kim, D. A. R. Dalvit, and S. K. Lamoreaux, “Observation
of the thermal Casimir force,” Nature 7, 230 (2011).
41W. Broer, H. Waalkens, V. B. Svetovoy, J. Knoester, and G. Palasantzas, “Non-
linear actuation dynamics of driven Casimir oscillators with rough surfaces,” Phys.
Rev. Appl. 4, 054016 (2015).
42M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical
Systems, and an Introduction to Chaos (Elsevier Academic Press, San Diego, CA,
2004).

Chaos 30, 023108 (2020); doi: 10.1063/1.5140076 30, 023108-15

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRevB.85.165443
https://doi.org/10.1103/PhysRevB.81.115417
https://doi.org/10.1103/PhysRevA.66.032113
https://doi.org/10.1063/1.4917081
https://doi.org/10.1016/S0167-5729(02)00077-8
https://doi.org/10.1038/nature02658
https://doi.org/10.1109/JMEMS.2010.2067433
https://doi.org/10.1103/PhysRevB.88.165423
https://doi.org/10.1088/1367-2630/8/10/241
https://doi.org/10.1063/1.3193666
https://doi.org/10.1109/84.982859
https://doi.org/10.1140/epjc/s10052-007-0346-z
https://doi.org/10.1103/PhysRevLett.101.096803
https://doi.org/10.1088/1367-2630/8/10/236
https://doi.org/10.1038/nphys1909
https://doi.org/10.1103/PhysRevApplied.4.054016

	I. INTRODUCTION
	II. MATERIAL SYSTEMS AND DEVICE ACTUATION
	III. RESULTS AND DISCUSSION
	A. Conservative systems (bold0mu mumu  = 0)
	B. Nonconservative systems (==1)

	IV. CONCLUSIONS
	ACKNOWLEDGMENTS
	A. APPENDIX A: LIFSHITZ THEORY AND DIELECTRIC FUNCTION OF MATERIALS WITH EXTRAPOLATIONS
	B. APPENDIX B: BRIEF THEORY OF THE NONEQUILIBRIUM CASIMIR FORCE

