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RESEARCH ARTICLE Open Access

Genome-wide association studies of
Shigella spp. and Enteroinvasive Escherichia
coli isolates demonstrate an absence of
genetic markers for prediction of disease
severity
Amber C. A. Hendriks1, Frans A. G. Reubsaet1, A. M. D. ( Mirjam) Kooistra-Smid2,3, John W. A. Rossen3,
Bas E. Dutilh4,5, Aldert L. Zomer6, Maaike J. C. van den Beld1,3* and On behalf of the IBESS group

Abstract

Background: We investigated the association of symptoms and disease severity of shigellosis patients with genetic
determinants of infecting Shigella and entero-invasive Escherichia coli (EIEC), because determinants that predict
disease outcome per individual patient could be used to prioritize control measures. For this purpose, genome
wide association studies (GWAS) were performed using presence or absence of single genes, combinations of
genes, and k-mers. All genetic variants were derived from draft genome sequences of isolates from a multicenter
cross-sectional study conducted in the Netherlands during 2016 and 2017. Clinical data of patients consisting of
binary/dichotomous representation of symptoms and their calculated severity scores were also available from this
study. To verify the suitability of the methods used, the genetic differences between the genera Shigella and
Escherichia were used as control.

Results: The isolates obtained were representative of the population structure encountered in other Western
European countries. No association was found between single genes or combinations of genes and separate
symptoms or disease severity scores. Our benchmark characteristic, genus, resulted in eight associated genes and >
3,000,000 k-mers, indicating adequate performance of the algorithms used.

Conclusions: To conclude, using several microbial GWAS methods, genetic variants in Shigella spp. and EIEC that
can predict specific symptoms or a more severe course of disease were not identified, suggesting that disease
severity of shigellosis is dependent on other factors than the genetic variation of the infecting bacteria. Specific
genes or gene fragments of isolates from patients are unsuitable to predict outcomes and cannot be used for
development, prioritization and optimization of guidelines for control measures of shigellosis or infections with
EIEC.

Keywords: GWAS, Shigellosis, Shigella, EIEC, Escherichia coli, E. coli, Disease severity, Symptoms, Disease control
guidelines
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Background
Shigellosis is caused by the gram-negative bacterium Shi-
gella and can lead to dysentery [1]. The genus Shigella is
divided in four species; Shigella dysenteriae, Shigella flex-
neri, Shigella boydii, and Shigella sonnei. All Shigella spp.
are genetically closely related to Escherichia coli to the ex-
tent that they should be classified as one species [2, 3].
However, it is a taxonomical decision based on historical
and clinical arguments that has maintained the current
classification [4]. Entero-invasive E. coli (EIEC) is a patho-
type of E. coli, which also can cause dysentery [5, 6]. Be-
cause of the similarity in pathogenetic features of EIEC
and Shigella spp, differentiation using diagnostic labora-
tory tests is difficult [7].
As in many other countries, shigellosis is a notifiable

disease in the Netherlands. This means that in each case
health authorities are notified, and consequently, control
measures are activated [8–11]. These control measures
consist of source tracing for every shigellosis case, which
places a burden on our public health system. Case defi-
nitions for shigelloses in the Dutch guidelines require
confirmation with culture techniques [8]. The sensitivity
of the culturing of Shigella spp. and EIEC is low [12].
Additionally, most laboratories perform a molecular pre-
screening based on the ipaH gene, which is present in
both Shigella spp and EIEC. From approximately half of
fecal samples positive in the molecular prescreening an
isolate cannot be obtained in culture [12, 13]. Shigellosis
cases that are diagnosed purely by molecular procedures
are not notifiable.
In contrast to cultured Shigella spp., infections with

EIEC are not notifiable in the Netherlands. Because of
the high genetic similarities, identical disease outcomes
and the low sensitivity of culturing, the two infective
agents are often not detected in culture at all or are mis-
identified. Consequently, accurate application of the
guidelines is challenging [14]. Genes of pathogens that
are predictive for disease outcomes can help in the
prioritization of infectious disease control measures.
Moreover, the presence of genes is more easily detected
by using molecular procedures as opposed to the current
used culture techniques required for notification.
A few studies have investigated the association of viru-

lence genes with disease severity for shigellosis, using
Pearson’s correlation and regression analyses [15, 16]. In
one of these studies, the virulence gene sepA was associ-
ated with abdominal pain and the combination of sepA,
sigA and ial genes with bloody stools [16]. Another
study found that detection of the sen (shET-2) gene was
associated with diarrhea and the virA gene was associ-
ated with fever [15]. Both studies had a limited sample
number, did not correct for multiple testing, and in one
study the presence of virulence genes was established
using direct detection in fecal samples. This approach is

problematic, because different Enterobacteriaceae
present in fecal samples may carry these genes, for ex-
ample, on average, 2–3 E. coli strains are detected in the
feces of a single person [17]. Therefore, assessment of
single isolates would be more appropriate. Furthermore,
the association with only a limited number of targeted
virulence genes was conducted in these previous studies,
while genomic approaches would analyze all harbored
genes, gene variants, or other genetic content.
The purpose of our study is to investigate whether

there is an association between symptoms and disease
severity of the patients and genetic determinants of in-
fecting Shigella and EIEC isolates in the Netherlands. To
address this, microbial genome-wide association
methods (GWAS) were applied. We hypothesize that
genetic variants associated with symptoms or severity of
disease allow development of specific molecular diagnos-
tics that could predict the disease outcome per individ-
ual patient and prioritize the employment of control
measures for infections with Shigella spp and EIEC.

Results
Data preparation and exploration
To assess whether other pathogens present in the fecal
samples caused the symptoms and severity of patients,
presence of symptoms and severity scores of patients
with coinfection were compared to those of patients
without coinfection. In 15.5% of the patients, a coinfec-
tion was detected. The symptom blood in stool, known
as a typical symptom of shigellosis [18], was significantly
less present in patients with a coinfection (chi-square,
p = 0.019), while the presence of other symptoms was
not statistically different (chi-square, p > 0.05). The lower
fraction of patients with coinfection that experienced
blood in stool was also reflected in the de Wit severity
score, in which blood in stool is a criterion with double
weighing, as it was significantly lower for patients with
coinfection (T-test, p = 0.017). The Modified Vesikari
Score (MVS), in which blood in stool is not a considered
factor, showed no significant difference between patients
with and patients without coinfection (T-test, p = 0.076).
The assemblies of 277 isolates were used to construct

a gene presence/absence table and k-mers of variable
length. This resulted in a gene presence/absence table
consisting of 2890 core genes (i.e. present in all 277 iso-
lates) and 9869 genes in total. K-mer counting yielded
28,551,795 genetic variants.
A phylogenetic tree was created based on the core

genome SNPs, and the distribution of the severity scores,
coinfection and the effects of underlying diseases were
visualized (Fig. 1). The core SNP analysis resulted in
some species-specific clusters. However, clusters that
contain multiple species were also present (Fig. 1). In
addition, severity scores, effects of underlying diseases
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and coinfection were randomly distributed over the iso-
lates in the tree (Fig. 1). For the GWAS analysis, only
isolates sequenced during this study and displayed in
Fig. 1 were used. However, for contextualization of the
position of the isolates in this study compared to the
global population structure of Shigella spp. and EIEC, an
additional tree was inferred including genomes from
each of the main lineages and phylogenetic groups (Add-
itional file 1). It showed that the population structure of
our EIEC isolates was mainly concentrated in three clus-
ters containing ST270, ST6 and ST99 based on isolates
from the United Kingdom (UK) [19]. The UK ST270
cluster corresponded with cluster 8, the large EIEC clus-
ter from Pettengill et al. [3]. In our analysis, EIEC iso-
lates belonging to cluster 4, EIEC small or cluster 7, the
EIEC/EHEC/EAEC cluster were not included [3]. For S.
flexneri, a few isolates related to travel to Asia belonged
to PG6 and PG2 (Fig. 1 and Additional file 1). However,
the majority of isolates were PG3, consisting solely of
isolates with serotype 2a or Y, and PG1, consisting of
isolates of serotypes 1a, 1b, 1c, Yv and 4av. For S. sonnei,
almost all isolates were of lineage III, only a few isolates

within lineage II were detected (Fig. 1 and Additional file
1). The presence of large clusters of EIEC isolates, the
presence and distribution of serotypes over the PGs for
S. flexneri and the predominance of S. sonnei lineage III
were described before, and are representative of popula-
tion structures found in other western European coun-
tries [19–22].

GWAS using gene presence/absence of single genes
None of the tested symptoms and severity scales resulted
in significantly associated genes with a sensitivity and
specificity above 85%. However, eight significantly asso-
ciated genes were found with sensitivity above 92% and
a specificity of 87% for the characteristic “genus”, that
was used as a benchmark to evaluate algorithm perform-
ance. The gene with the highest association, produces a
hypothetical protein and had a Benjamini Hochberg cor-
rected p-value of 7.01E-27 and a sensitivity and specifi-
city of 99 and 87%, respectively.
Additionally, the p-values of all characteristics were

compared to random permutation datasets by plotting
the log transformed expected and observed p-values

Fig. 1 Phylogenetic tree based on core genome SNPs with species indication, underlying diseases and severity scores. Within the salmon squares
are the main lineages or phylogroups depicted. wzx6 = S. flexneri serotype 6. PGx = phylogenetic group of S. flexneri. STxxx =Warwick sequence
type of EIEC. II and III = S. sonnei lineage II and III
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against each other (Fig. 2). The gene associations with the
tested severity scales (Fig. 2a and b) and symptoms (Fig.
2c) displayed similar plots as the random permutation
datasets, indicating a performance as random cases. This
did not apply to the benchmark characteristic “genus”,
that plot showed a clear difference between expected and
observed p-values, which was supported by the low Benja-
mini Hochberg corrected p-values (Fig. 2d).
It followed from the sensitivity analysis based on the

benchmark characteristic “genus” that genes present in
0.7% of total isolates within the smallest group (Escheri-
chia, n = 30), corresponding to two isolates of the total
number of isolates, resulted in significant p-values. This
indicated that a gene presence in a minimum of two

isolates from the smallest group was enough to detect
significance, if these genes were not present in the other
larger group (Additional file 2).

GWAS using gene presence/absence of multiple genes
The generated random forest model, created using iso-
lates from the training set resulted in an out-of-bag
(OOB) estimate of error rates when testing the isolates
from the test set. A random error rate of 66.7% for the
severity scores and 50% for the symptoms and genus
was expected, as respectively three and two classes were
predicted. OOB error rates in the created random forest
models using 5000 trees for the prediction of symptoms
and severity scales of patients were as expected for

Fig. 2 Results of Scoary: the expected versus the observed log transformed p-values. Lilac lines indicate the outcomes of the permutation
dataset. a. Best comparison test for association of gene presence/absence with de Wit severity score. b. Best comparison test for association of
gene presence/absence with Modified Vesikari score. c. Best comparison test for association of gene presence/absence with symptoms. d.
Benjamini Hochberg’s test for association of gene presence/absence with genus
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random datasets when applied to the test set. Error rates
ranged from 40.8 to 53.1% for all symptoms and 65.1 to
70.1% for the two severity scales (Table 1). The con-
struction of additional trees did not lead to better pre-
dicting models.
In contrast, the OOB error rate of the model that pre-

dicted the benchmark characteristic genus was 15.9%,
much lower than the random expected error rate of 50%
(Table 1). The created model for genus prediction was
further explored by examining the location of the mis-
classified isolates in the phylogenetic tree (Fig. 1). Com-
paring them with the traditional laboratory results that
were obtained during the IBESS-study showed that six
out of ten discrepant isolates were so-called hybrid iso-
lates and also had an uncertain assignment using the
traditional laboratory tests (Table 2).

GWAS using k-mers
Associating k-mers with different characteristics using
Pyseer did not lead to any significant k-mers for abdom-
inal pain, abdominal cramps, blood in stool, fever, head-
ache, mucus in stool, nausea, vomiting, and the severity
score of MVS (Table 1). In contrast, 156 k-mers were as-
sociated with diarrhea, however, all k-mers had an in-
valid chi squared test and likelihood-ratio test (LRT) p-
values higher than 0.313. The de Wit severity score re-
sulted in 17 associated k- mers, whereof 15 k-mers with
an LRT p-value lower than 0.05. An assembly of these
15 k-mers resulted in a single consensus sequence of
100 bp, based on overlapping k-mers. A BLASTn search
of the consensus sequence against the database of the
National Center for Biotechnology Information (NCBI,
Bethesda, USA) revealed that the significant k-mers are
located between two genes (Additional file 3), including
a type II toxin-antitoxin gene (AYE47152.1) and a gene

coding for DUF1391 (AYE48123.1), a protein of
unknown function. A potential promoter region in the
k-mer was found with a − 10 box (CATTATTTT) at
position 58 and a − 35 box (TTGACG) at position 36 of
the sequence (Additional file 3).
To validate the potential of the k-mer to predict the

severity score of de Wit scale, the k-mer was queried by
BLAST against a database with all isolate assemblies
from our study. For every sample, the bit-score of the
best scoring hit was plotted against the corresponding
severity score (Fig. 3a). Roughly, three groups resulted,
one with a bit-score of > 175 corresponding with a full-
length match with the k-mer, one with a bit-score of
50–175 corresponding to a partial match and < 50 corre-
sponding to no match. Subsequently, the Kruskal-Wallis
test was performed to investigate the difference in the de
Wit severity score between the groups (Fig. 3b). No sta-
tistically significant difference between the groups was
found, with a p-value of 0.6.
To check the suitability of the Pyseer method for the

association of k-mers with characteristics in our data-
set, the benchmark characteristic “genus” was used and
resulted in 3,036,507 potential associated k-mers.

Discussion
The purpose of our study was to investigate associations
between genetic determinants of infecting Shigella spp.
and EIEC isolates and the symptoms and disease severity
of the patients. If such associating genetic determinants
were found, diagnostics could be developed that predict
the severity of the resulting disease. Additionally, it
could guide prioritization and optimization of infectious
disease control measures regarding shigellosis. In the
Netherlands, the severity predicting capabilities of genes
of other pathogens have been used previously in

Table 1 Results of Random Forest classification and k-mer association

Characteristic Random Forest K-mer association with Pyseer

OOB error rate No. of k-mers Lowest LRT p-value

MVS severity scale 70.1% 0 NA

De Wit severity scale 65.1% 17 0.015

Abdominal cramps 52.7% 0 NA

Abdominal pain 40.8% 0 NA

Blood in stool 41.2% 0 NA

Diarrhea 51.6% 156 0.313

Fever 47.7% 0 NA

Headache 46.6% 0 NA

Mucus in stool 43.3% 0 NA

Nausea 53.1% 0 NA

Vomiting 51.6% 0 NA

Genus 15.9% 3,036,507 1.94E-153
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prioritization of control measures. In 2016, case defini-
tions for Shiga producing E. coli (STEC), another patho-
type of E. coli, were extended from culture confirmation
alone to the detection of STEC by Polymerase Chain Re-
action (PCR) targeting the stx1 and stx2 genes and par-
ticular virulence genes. These combination of genes
within STEC bacteria are known to have associations
with a higher risk for severe disease and clinical compli-
cations [24].
However, for Shigella spp. and EIEC in the present

study, the association of the presence or absence of sin-
gle genes resulted in no statistically significant associ-
ation between genes with specific symptoms or severity
scores with high sensitivity and specificity. Second, the
association of multiple genes resulted again in no statis-
tically significant association with specific symptoms and
severity scores of patients, indicating that no complex
genetic interactions that may explain disease severity

could be found. Third, the association of k-mers resulted
in a consensus sequence consisting of multiple aligned
k-mers that was associated with a high severity score of
de Wit. The sequence of 100 bp, containing multiple as-
sociated k-mers, was located between two genes with a
putative promoter region with an optimal inter-base dis-
tance of 16 bases but an unclear TATAAT box. When
blasting the consensus k-mer against all assemblies,
three difference bit scores were observed, suggesting
there are three different genetic variants of this locus.
Performing a Kruskal-Wallis test on these three different
bit score groups, showed that the k-mer was not valid
(p = 0.6), and presumably was a false positive.
In our study, the genes that were associated with spe-

cific symptoms in earlier studies [15, 16], were not con-
firmed. In another study that was conducted in Brazil
among children with shigellosis, sepA was associated
with abdominal pain, and the combination of sepA, sigA

Table 2 Comparison of misclassified isolates with Random Forest to traditional laboratory testing

Isolate Phenotypea Random Forest (RF)a Votesb Location in SNP tree Serotype Shigella/E. coli
(agglutination)

Properties against RF classification

IBESS811 E S 0.99 Within
S. sonnei

S. sonnei phase 1/ O-negative Motility

IBESS97 E S 0.80 Within
S. flexneri

S. flexneri, inconclusive/ O135 Inconclusive Shigella serotype

IBESS1163 E S 0.76 Within
S. flexneri

S. flexneri, inconclusive/ O135 Inconclusive Shigella serotype

IBESS911 E S 0.68 Within
S. flexneri

S. flexneri, inconclusive/ O135 Inconclusive Shigella serotype

IBESS996 S E 0.53 Within EIEC / S. flexneri S. flexneri 3a/ O135 None, hybrid isolated

IBESS988 S E 0.56 Within EIEC / S. flexneri S. flexneri 3b/ O135 None, hybrid isolated

IBESS419 S E 0.57 Within
S. flexneri

Provisional/O-negative None, hybrid isolate, provisional
Shigellad

IBESS232 S E 0.60 Within
S. flexneri

Provisional/O-negative None, hybrid isolate, provisional
Shigellad

IBESS470 S E 0.82 Within EIEC Provisional/O-negative None, hybrid isolate, provisional
Shigellad

IBESS810 S E 0.89 Within EIEC Auto agglutinablec None, hybrid isolate, provisional
Shigellad

RF Random Forest. aE Escherchia, S Shigella. bfraction of votes for classification in Random Forest. cIn-silico serotype, using E. coli serotypeFinder 2.0 of the Center
for Genomic Epidemiology [23]: provisional/O-negative. d Hybrid isolates Isolates that possess characteristics of both Shigella spp. and E. coli.

Fig. 3 Blast result of k-mers resulting consensus on used isolates. a. Blast results versus severity score. b. Histogram of the relative frequency of
the severity scores in the dataset versus the severity score of de Wit, displayed for three bit-score categories
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and ial genes with bloody diarrhea [16]. However, it is
not clear if univariate or multivariate testing for viru-
lence genes was performed. In another study from
Brazil, a case-control study was conducted. They found
that the sen (shET-2) gene was associated with diarrhea
in children in general, but not with specific symptoms of
shigellosis patients. They associated the virA gene with
fever in children with shigellosis, however virA was also
found in 44% of controls [15]. In our study, we have
used a larger sample size consisting of patients with
other demographics in another setting, analyzed all
genes harbored instead of a predefined selection, used
other methods with higher resolution as it was based on
whole genomes, and included correction for multiple
testing.
Because all algorithms used in our study generated

negative results for association, the characteristic “genus”
was also tested as a benchmark. The algorithms used
performed adequate, as they resulted in relevant genetic
variants. Furthermore, a sensitivity analysis indicated
that the group distribution of the characteristic “genus”
was suitable for significant detection of associated single
genes. This characteristic had an adverse unequal group
distribution of 10% versus 90%, indicating that the num-
ber of isolates and the distribution over the groups was
suitable for associating genetic content with all symp-
toms and severity, except for “diarrhea”, which was the
only characteristic with a more unequal group distribu-
tion than “genus”. Moreover, other studies found genetic
variants significantly associated with their tested traits
using the microbial GWAS methods that were used in
our study [25–29].
Using Scoary, single genes that had association with

the characteristic “genus” were found, with low p-values
and high sensitivity and specificity. Further, with Pyseer,
over 3,000,000 potentially associated k-mers were found.
This is in concordance with another study that demon-
strated the suitability of k-mers for identification of Shi-
gella spp. and E. coli isolates based on whole genome
sequences [30]. Moreover, using Random Forest, OOB
estimate error rate for the benchmark characteristic
“genus” was 15.9%. This indicated that the model that
predicts the genus of unknown isolates performed better
than random, however, it does not accurately predict the
genus of some isolates. Notably, six out of ten discrepant
isolates also had an uncertain assignment with trad-
itional laboratory tests. If we exclude these isolates, the
OOB estimate error rate is 1.9%, indicating that it was
not the method used but rather the nature of these iso-
lates and their possession of characteristics of both Shi-
gella spp. and E. coli that caused the uncertain
assignments. The Random Forest method performed al-
most equally as well as the traditional laboratory tests
and could be used for identification of the genus if

whole genome data is available, although more isolates
should be tested to validate this. Additionally, it would
be useful to test the applicability of Random Forest for
identification to species and serotype level. Furthermore,
in a future study, the results of the traditional laboratory
tests specifically can be associated with genetic variants.
Consequently, if associated variants could be found,
traditional tests could be omitted. This will save costs in
workflows that already consist of draft genome sequen-
cing of isolates for other purposes, for instance
surveillance.
In addition to the methods using gene presence/ab-

sence and k-mers that were used in our study, other
types of genetic variants can be used as input for micro-
bial GWAS [31]. The k-mer approach used in this study
is able to detect different genetic variants such as SNPs,
indels, variable promotor regions and gene content sim-
ultaneously [32]. This indicates that adding purely SNP-
based methods to the methods used is redundant as
SNPs are already encompassed in the k-mer method
performed. Another genetic variant that can be used in
GWAS is based on De Bruijn Graphs. However, it is
mainly based on the creation of overlaps of k-mers,
therefore, it probably would not generate associations
with symptoms or disease severity using the data from
our study [33].
One of the strengths of our study was the availability

of isolates representative of the population structure en-
countered in other western European countries, as well
as the clinical data of the patients that they were infect-
ing. Second, results of the traditional laboratory tests
performed to determine the species of the bacteria were
available for all isolates. Finally, another strength of our
study is that several potential genetic variants were asso-
ciated with the trait “genus”, and a sensitivity analysis
was performed, both proving the suitability of the algo-
rithms used.
Some considerations with regard to our study should

be taken into account. The impact of several factors re-
garding host-variability is unknown, as the symptoms
and severity of disease were characteristics of the pa-
tients and not directly of the bacterial isolates. First, the
immune status of the patients was not taken into ac-
count because data was not available, although the need
for correction of the effects of underlying disease was in-
vestigated. Second, the clinical characteristics used in
our study were self-reported and not objectively mea-
sured, therefore subject to the judgment and memory of
the patients. To overcome these difficulties of host-
variability, an infection model can be used for future in-
vestigations into genetic factors of Shigella isolates that
influence the disease severity of patients. Because Shi-
gella spp. are host-adapted to humans only, recently de-
veloped human intestinal enteroids are more appropriate
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for this purpose than animal models [34]. Additionally,
inconsistencies between the two scoring methods used
were present (Fig. 1 and Additional file 4). Because each
scale uses different criteria with different weighing for
calculation of the score, patients can be classified in dif-
ferent severity classes depending on the severity scale
used. Therefore, conclusions based on research into se-
verity of gastro-intestinal infections in general are highly
dependent on the chosen severity scale. To rule out this
dependency, in this study, both scores were associated
with genetic content separately. Another consideration
was that genus level was associated as a characteristic,
while other GWAS studies have concentrated on bacter-
ial isolates of the same species [35, 36]. However, ac-
cording to multiple research groups [3, 37, 38] Shigella
spp. and E. coli should be considered as one species
based on their genetic relatedness, if present, their differ-
ences are more phenotypical. Next to this, the number
of isolates for S. boydii and S. dysenteriae in our study
were inadequate with two and no isolates, respectively.
However, we believe the total number of isolates to be
adequate, as studies with similar sample sizes have been
performed in the past in which genetic variation in path-
ogens was identified that had predictive value for the
course of disease [29, 39]. Finally, the dataset used only
contained isolates encountered in the Netherlands,
resulting in a geographical biased set [40, 41]. Therefore,
to avoid missing serotypes in future studies, the current
dataset should be supplemented with isolates from other
geographic areas.

Conclusions
Using several microbial GWAS methods, genetic var-
iants in Shigella spp. and EIEC that can predict spe-
cific symptoms or a higher disease severity were not
found. In contrast to adjustment of the guidelines of
STEC, genes or gene fragments that indicate higher
risks for a more severe course of disease does not
appear to exist for shigellosis, whether caused by
Shigella or EIEC, using the dataset in our study.
Therefore, the bacterial specific genes or gene frag-
ments from patient isolates are not suitable to pre-
dict outcomes in individual patients or to use in
development, prioritization and optimization of
guidelines for control measures of shigellosis or
EIEC. As GWAS in our study associated genetic
fragments with genus, future studies can be per-
formed in which GWAS could support the distinc-
tion of Shigella spp. from EIEC. Additionally, the
prediction of results of traditional laboratory tests
using draft genome sequences could be performed
using GWAS. The results of these suggested follow-
up studies could improve diagnostics and guidelines
for control measures of shigellosis.

Methods
Bacterial isolates and clinical data
The data used in our study was collected during the In-
vasive Bacteria E. coli-Shigella Study (IBESS). IBESS was
a cross-sectional study in the Netherlands, of which one
of the aims was to fill the gap of knowledge about the
incidence, clinical implications and impact on public
health of infections caused by EIEC. During this study,
in 2016 and 2017, EIEC and Shigella isolates were col-
lected, together with epidemiological patient data (van
den Beld et al., manuscript submitted). Isolates were
identified using an identification scheme, using trad-
itional laboratory tests as previously described [42]. In
short, it consists of a Polymerase Chain Reaction (PCR)
of the ipaH gene, followed by thorough phenotyping and
classical E. coli and Shigella O-antigen serotyping by ag-
glutination. The draft genome sequences of a set of 277
bacterial isolates, of which patient data was available,
were used as genetic input data. The set comprises S.
sonnei (n = 163), S. boydii (n = 1), S. flexneri (n = 77),
EIEC (n = 30), provisional Shigella (n = 5), which are Shi-
gella isolates with an undescribed serotype, and one iso-
late of which the distinction between S. flexneri and
EIEC was unclear, using the traditional laboratory tests.
The clinical characteristics that were used in this

GWAS study were symptoms and disease severity of pa-
tients infected with Shigella spp. or EIEC isolates in-
cluded in IBESS. For all patients, a list of symptoms
including abdominal pain, abdominal cramps, blood in
stool, diarrhea, fever, headache, mucus in stool, nausea,
and vomiting was available and was used as binary input
(Additional file 4). Additionally, disease severity was cal-
culated using two severity scales, both are modifications
of the Vesikari scale, a widely used method in clinical
studies [43]. These modifications, the MVS [44] and the
modified score of de Wit et al. [45], were both developed
and validated for outpatient settings in high-resource
areas. With these severity scores, lower scores indicate a
milder course of disease [44, 45]. The calculated scores
were stratified into scales representing mild, moderate
and severe disease according to their own categorization
and used as dichotomous input in the GWAS methods
that were assessing the presence/absence of genes in this
study (Additional file 4). For the de Wit severity score, a
score of 0–3 is considered mild, 4–6 moderate and ≥ 7
severe [45]. The designers of the MVS score consider a
score of 0–8 as mild, 9–10 as moderate and ≥ 11 as se-
vere disease [44]. Alternatively, for the GWAS method
that assessed k-mers, both severity scores were used as a
continuous input.
Laboratories that participated in IBESS, reported other

bacteria, viruses and parasites detected in the fecal sam-
ples by molecular, culture and microscopy methods as
well (Additional file 4). Other pathogens were detected
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in 15.5% of the patients from whom the Shigella spp.
and EIEC isolates were isolated that were used in this
GWAS study. The statistical differences in symptoms
and severity scores of patients with and without coinfec-
tions were assessed, in order to establish if these patho-
gens have impact on the symptoms experienced. If
necessary, data about effects of underlying diseases of
the patients were used as a correction. Additionally, the
genus of the bacteria was used as directly derived char-
acteristic to use as a control to verify the suitability of
the methods used. The patient data used in the GWAS
studies are depicted in Additional file 4.

Genome sequencing and data preparation
DNA isolation and short-read Illumina sequencing was
performed as described earlier [42]. For preparation of
the genomes, an in-house assembly pipeline available at
GitHub (https://github.com/Papos92/assembly_pipeline)
was used. It consists of raw data quality assessment
using FastQC v. 0.11.8 [46] and MultiQC v. 1.7 [47],
read trimming using ERNE v. 2.1.1 [48], contamination
filtering using CLARK v. 1.2.5.1 [49], contigs and scaf-
fold assembly using SPAdes v. 3.10.0 [50], and assembly
quality assessment using QUASTv. 4.4 [51]. Contigs
smaller than 200 bp or with a coverage < 10 were filtered
out. CheckM v. 1.0.11 [52] (taxonomy_wf: genus ‘Shi-
gella’) was used for quality assessment, genome com-
pleteness and contamination checks of the assemblies.
Isolates with completeness above 99% and a contamin-
ation below 2% were included for further analyses. Se-
quences of isolates are available from the Sequence Read
Archive (SRA) with study number PRJEB32617 (https://
www.ncbi.nlm.nih.gov/sra/), accession numbers are indi-
cated in detail in Additional file 3.
Prokka v. 1.1 [53] was used without cleanup for anno-

tation of the genomes. Gene presence/absence for all ge-
nomes was determined using Roary v. 3.12.0 [54], using
a BLAST identity cutoff of 80% and with paralog split-
ting disabled. Phylogenetic trees based on core genome
SNPs were constructed with Parsnp v.1.2 [55]. To in-
clude contextualization of the position of the isolates se-
quenced in this study relative to the main lineages of
EIEC and S. sonnei and the phylogenetic groups (PG) of
S. flexneri randomly selected genomes from each lineage
or phylogenetic group were included in the phylogenetic
tree [3, 19, 22, 56, 57]. Details of these representatives
and their accession numbers are depicted in Add-
itional file 5. Data was visualized using iTol v. 4.3 [58].

GWAS using gene presence/absence of single genes
Scoary v. 1.6.16 [26] was used to associate gene presence
and absence with the symptoms and severity of patients
and the genus of the isolates, using a p-value cut-off of
0.5. Output was generated as a list of associated genes

per characteristic with their best pairwise comparison p-
values, sensitivity, and specificity. For each characteristic,
as benchmark, a 1000 random datasets were created by
shuffling the original traits randomly for a thousand
times using a custom script [59]. For each symptom and
severity scale, 1000 genes with the lowest ‘best pairwise
p-value’ were used, this p-value takes population struc-
ture into account. The observed p-values of the traits
were log transformed and plotted against the log trans-
formed expected p-values of the permutation benchmark
using a custom script [59]. For the characteristic ‘genus’,
Benjamini-Hochberg’s method for multiple comparisons
correction is used instead of pairwise p-values as the lat-
ter cannot be used to find genetic differences between
the species and genera. Additionally, a sensitivity analysis
including corrections for multiple testing and the popu-
lation structure was performed. To assess the minimal
number of isolates with gene presence that is needed to
detect a significant association, the corrected p-values
from the output for the association of genes with the
characteristic “genus” were log transformed and plotted
against the percentage of isolates in which the corre-
sponding genes were present (Additional file 2).

GWAS using gene presence/absence of multiple genes
Random Forest classification was executed using R v.
3.4.4 [60] and the randomForest package v. 4.6–14 [61].
The gene presence/absence table derived from Roary
and the symptoms and severity of patients and the genus
of the isolates were used as input. The dataset was di-
vided over a test set and a training set. Potential class
size differences were corrected by using two-thirds of
the smallest class as the sample size to create models
based on gene presence/absence of multiple genes in the
training set, using 5000, 8000 and 10,000 trees respect-
ively. The performance of these models was validated by
predicting the outcome of each trait using the genomes
of the isolates in the test set.

GWAS using k-mers
To generate the k-mers that were associated with the
characteristics, first, a population structure estimation
was made using mash v. 2.0 [62]. Second, k-mer count-
ing was performed using fsm-lite v. 2.0.3, and the opti-
mal number of dimensions to use as co-factors in the
analysis was determined [32, 63]. Subsequently, to esti-
mate the effect of the k-mers on the severity scores and
patient symptoms, Pyseer v. 1.1.2 was used with the fol-
lowing settings: a maximum of six dimensions, a filter p-
value of 1E-8, a minimum allele frequency of 0.02 and a
maximum allele frequency of 0.98.
The resulting k-mers were aligned using ClustalW v.

2.1, which resulted in one consensus sequence [64]. To
identify the position of the k-mers in the genome, the
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resulting consensus sequence was aligned using the nu-
cleotide Basic Local Alignment Search Tool (BLASTn) v.
2.8.1 with default settings [65]. To investigate whether the
k-mer contained a promotor, BPROM was used [66].
In addition, to validate the association of the resulted

consensus k-mer with the characteristics it was aligned
against a BLAST database of all assembled genomes from
this study, created using BLASTn v. 2.2.31+ [67]. Best
scoring hits including bit-score were collected for all
isolates, plotted against the severity score and a Kruskal-
Wallis test was performed using GraphPad prism v. 7.04
(GraphPad Software, La Jolla California USA).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6555-7.

Additional file 1. Phylogenetic tree based on core genome SNPs. In this
figure, the isolates from this study were placed in context by adding
representative genomes from main lineages and phylogroups of EIEC, S.
flexneri and S. sonnei.

Additional file 2. Sensitivity analysis of the characteristic “genus”. In this
figure, the sensitivity analysis is visualized.

Additional file 3. Location of the consensus of k-mers associated with
severity score of de Wit.

Additional file 4. Genomes and phenotypic data used in GWAS. The
phenotypic patient data used for the GWAS, including accession
numbers of the genomes of the infected isolates are depicted in this
table.

Additional file 5. Representative genomes. The accession numbers and
publications of the representative genomes used in this study are
depicted in this table.
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