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ARTICLE

Transcriptional effects of copy number alterations
in a large set of human cancers
Arkajyoti Bhattacharya 1,2, Rico D. Bense1,2, Carlos G. Urzúa-Traslaviña 1, Elisabeth G.E. de Vries 1,

Marcel A.T.M. van Vugt1 & Rudolf S.N. Fehrmann 1*

Copy number alterations (CNAs) can promote tumor progression by altering gene expression

levels. Due to transcriptional adaptive mechanisms, however, CNAs do not always translate

proportionally into altered expression levels. By reanalyzing >34,000 gene expression pro-

files, we reveal the degree of transcriptional adaptation to CNAs in a genome-wide fashion,

which strongly associate with distinct biological processes. We then develop a platform-

independent method—transcriptional adaptation to CNA profiling (TACNA profiling)—that

extracts the transcriptional effects of CNAs from gene expression profiles without requiring

paired CNA profiles. By applying TACNA profiling to >28,000 patient-derived tumor samples

we define the landscape of transcriptional effects of CNAs. The utility of this landscape is

demonstrated by the identification of four genes that are predicted to be involved in tumor

immune evasion when transcriptionally affected by CNAs. In conclusion, we provide a novel

tool to gain insight into how CNAs drive tumor behavior via altered expression levels.
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The genomic composition of a tumor results from defects in
genome maintenance, leading to the genomic instability
that characterizes many cancers1. Genomic instability can

result in the accumulation of structural chromosome aberrancies,
including copy-number alterations (CNAs). CNAs are important
genomic events in the progressive molecular rewiring that takes
place during tumor cell evolution2.

CNAs can promote tumor progression via alteration of
expression levels of genes located at the affected genomic
regions3–5. Due to transcriptional adaptive mechanisms, however,
changes in gene copy number at the genomic level do not always
translate proportionally into altered gene expression levels
(Fig. 1a)6,7. The degree of transcriptional adaptation to CNAs is
currently determined with the genetical genomics approach8,
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which combines paired genomic and gene expression profiles of
tumor samples to explore associations between CNAs and gene
expression levels. However, we previously demonstrated that this
approach is difficult to use for detecting the effects of CNAs on
gene expression levels in a gene expression profile9. This is
because gene expression profiling is often performed on biopsies
comprising tumor cells and non-tumor cells from the tumor
microenvironment. A gene expression profile therefore measures
the average expression of all cell types present in tumor biopsies.
This means that the effects of CNAs on gene expression levels,
besides being influenced by experimental and other non-genetic
factors, are often overshadowed by the effects of non-tumor
cells10,11. Therefore, to accurately determine the degree of tran-
scriptional adaptation to CNAs using genetical genomics, large
numbers of paired genomic and gene expression profiles of tumor
samples are required. Unfortunately, few large-scale genetical
genomic datasets are available, and many of the publicly acces-
sible gene expression profiles from tumor samples do not have a
paired genomic profile. These samples are therefore currently
excluded from genetical genomics analyses. Despite the current
efforts in genetical genomics, the degree of transcriptional
adaptation to CNAs thus remains unclear for most genes.

Unraveling the degree of transcriptional adaptation to CNAs in
a genome-wide fashion would greatly enhance our knowledge of
how CNAs drive tumor progression. We therefore develop a new,
platform-independent method: transcriptional adaptation to CNA
profiling (TACNA profiling). TACNA profiling extracts the effects
of CNAs on gene expression levels from a single gene expression
profile—generated from a tumor biopsy—without the need for a
paired genomic CNA profile. Using this method, we define the
landscape of transcriptional effects of CNAs in >34,000 expression
profiles. To demonstrate this landscape’s utility, we determine
which genes and biological pathways affected by CNAs might be
associated with tumor-infiltrating immune cell composition. These
insights could ultimately contribute to the development of new
therapeutic strategies.

Results
Data acquisition. We collected gene expression data of
34,494 samples from four public repositories: Gene Expression
Omnibus (GEO, n= 21,592, generated with Affymetrix HG-U133
Plus 2.0), The Cancer Genome Atlas (TCGA, n= 10,817, gener-
ated with RNA-seq), Cancer Cell Line Encyclopedia (CCLE, n=
1067, generated with Affymetrix HG-U133 Plus 2.0), and Geno-
mics of Drug Sensitivity in Cancer (GDSC, n= 1018, generated
with Affymetrix HG-U219) (Fig. 1b). In total, 2085 expression
profiles were generated from cell line samples, 28,200 from patient-
derived tumor biopsies, and 4209 from patient-derived tissue
biopsies of normal tissue. The patient-derived tumor gene
expression profiles collected from GEO and TCGA represented
30 tumor types in total (Supplementary Data 1–4). A detailed

description of preprocessing, normalization and quality control is
provided in the Supplementary Note 1.

Independent sources capture transcriptional effects of CNAs.
In tumor gene expression profiling, the net measured expression
level of an individual gene is determined by the combined effects of
various transcriptional regulatory factors, including experimental,
genetic (e.g., CNAs), and non-genetic factors. To identify the
effects of these factors on gene expression levels, we first performed
consensus-independent component analysis (consensus-ICA)12 on
each of the four datasets separately (Fig. 1c, see Supplementary
Note 1). Consensus-ICA is a computational method to separate
gene expression profiles into additive consensus estimated sources
(CESs), so that each CES is statistically as independent from the
other CESs as possible. We hypothesized that each CES describes
the effect of a latent transcriptional regulatory factor on gene
expression levels. In every CES, each gene has a weight that
describes how strongly and in which direction its expression level is
influenced by a latent transcriptional regulatory factor. Ultimately,
consensus-ICA resulted in 855 CESs in the GEO dataset, 1383
CESs in the TCGA dataset, 467 CESs in the CCLE dataset, and 466
CESs in the GDSC dataset.

In all four datasets, many CESs showed a consistent pattern in
which only genes mapping to a specific contiguous genomic
region had a high absolute weight (Fig. 1d). We hypothesized
that these CESs (referred to as CNA-CESs) capture the effects
of CNAs on gene expression levels. Using a detection algorithm
(see Supplementary Note 1), we identified 242/855 (28%) of
CNA-CESs in the GEO dataset containing such a pattern, 447/
1383 (32%) in the TCGA dataset, 186/467 (40%) in the CCLE
dataset and 175/466 (38%) in the GDSC dataset. In these CNA-
CESs, 97% of genes present in the GEO dataset, 97% in the TCGA
dataset, 95% in the CCLE dataset, and 94% in the GDSC dataset
were located in at least one genomic region identified by the
detection algorithm as having a significant number of genes with
a high absolute weight (Supplementary Data 5). These high
percentages indicate that almost all genes are affected by CNAs in
our datasets.

TACNA profiles highly correlate with SNP-derived profiles. To
continue testing the above hypothesis, we developed a method
called transcriptional adaptation to CNA profiling (TACNA
profiling—see Supplementary Note 1). In TACNA profiling, the
gene expression profile of an individual sample is reconstructed
using only CNA-CESs. By including only these CNA-CESs, we
automatically excluded other CESs that capture non-genetic fac-
tors that can affect gene expression levels from our pipeline for
TACNA profiling (see Supplementary Fig. 1 and Supplementary
Note 1). Weights of genes mapping to a contiguous genomic
region in CNA-CESs marked by the detection algorithm were

Fig. 1 Data acquisition and decomposition of gene expression profiles. a CNAs can promote tumor progression via altering expression levels of genes
located at the affected genomic regions. However, due to transcriptional adaptation mechanisms, changes in gene copy number at the genomic level do not
always translate proportionally into altered mRNA expression levels. Unraveling the degree of transcriptional adaptation to CNAs for all genes will greatly
contribute to our knowledge how CNAs drive tumor progression. b Number of gene expression profiles collected from GEO, TCGA, CCLE, and GDSC.
c Identification of underlying regulatory factors of the mRNA transcriptome. We hypothesized that the observed gene expression in a gene expression
profile is the result of (i) the effect of underlying regulatory factors (i.e., source signals) on expression levels of individual genes and (ii) the activity of these
underlying regulatory factors in a complex biopsy (i.e., mixing matrix). ICA was used to capture the number and nature of these underling regulatory
factors for all four datasets separately. This resulted in estimated sources, representing the effects of independent underlying regulatory factors on the
expression levels of individual genes, and a mixing matrix reflecting the activity of each estimated source in each gene expression profile. ICA was run 25
times with random initialization, followed by consensus sources estimation using a credibility index≥50%. d Examples of CNA-CESs harboring a pattern in
which only genes mapping to a specific contiguous genomic region had a high absolute weight. The red line shows whether genomic regions were marked
as having a significant number of genes with a high absolute weight by the detection algorithm (i.e., extreme-valued region indicator).
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retained in the CNA-CES matrix. Weights of genes that mapped
outside marked genomic regions in every CNA-CES were set to
zero. Next, TACNA profiles were calculated as the product
between this transformed CNA-CES matrix and the consensus
mixing matrix (Fig. 2a).

We assumed that the resulting TACNA profile would show the
effect of CNAs present in the genome on gene expression levels of
that sample, and thus expected to see a clear correlation between
paired TACNA and CNA profiles. We retrieved CNA profiles,

derived from SNP arrays, for a subset of samples in the TCGA
dataset (n= 10,620), CCLE dataset (n= 1011) and the GDSC
dataset (n= 962). Examples of TACNA profiles showed that the
observed patterns clearly matched those in their paired,
independently generated CNA profiles (Fig. 2b). Strong correla-
tions were found between TACNA profiles and paired CNA
profiles in all three datasets (Fig. 2c). Low correlations were found
for a subset of samples in the TCGA dataset mainly representing
normal tissue, which generally does not contain CNAs (see inset
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Fig. 2c). As expected, we found lower correlations between paired
TACNA and CNA profiles in the TCGA dataset for patient-
derived samples belonging to the more point-mutation-driven
tumor types (e.g., acute myeloid leukemia) than for samples from
tumor types that are more copy-number-driven (e.g., ovarian
cancer) (Fig. 2d)13. In a subset of patient-derived acute myeloid
leukemia samples in the GEO dataset for which karyotype
information was provided online (n= 189) we also observed
clearly matching patterns between TACNA profiles and the
expected karyotype in these samples (Supplementary Fig. 2).

We obtained gene expression profiles of an experimental model
of aneuploidy introduced in HCT116 cells14. Differences on the
mRNA level and TACNA level were calculated between the
parental HCT116 cells (n= 3) and an isogenic model with
chromosome 5 tetrasomy (n= 3) (Supplementary Fig. 3a and 3b).
For genes located on chromosome 5, we observed larger signal to
noise ratio in differences of TACNA expression levels compared
with regular mRNA expression levels (Supplementary Fig. 3c).
We did not observe a correlation between the log2 fold change in
mRNA expression of individual genes and changes in TACNA
expression levels (r= 0.04). We have previously shown that the
effects of CNAs on gene expression levels are often overshadowed
by other (non-genetic) effects that are not associated with specific
single CNAs9. For example, Stingele et al. showed that aneuploidy
invokes a general cellular mRNA response which is not the result
of any specific CNAs but only the presence of aneuploidy14.
In addition, tumor cells in vivo may develop transcriptional
adaptive mechanisms to survive under selective pressure, which
may be different from the adaptive mechanisms observed in vitro.

We conducted expression quantitative trait loci (eQTL)
analyses using the mRNA expression profiles, the TACNA
profiles and the CNA profiles (derived from SNP arrays) from
the TCGA dataset (n= 10,620). In general, we observed a
stronger correlation between TACNA profiles and CNA profiles
compared with the correlation between mRNA expression
profiles and CNA profiles on the gene level (Supplementary
Fig. 4). This indicates that TACNA profiling increases statistical
power to detect eQTLs, i.e., associations between CNAs and
mRNA expression levels.

We observed that the borders of marked genomic regions in
82/242 (33%) CNA-CESs in the GEO dataset and 141/447 (32%)
CNA-CESs in the TCGA dataset colocalized with a stringent set
of common fragile sites on the human genome (Supplementary
Data 6)15. Although the location of most of these common fragile
sites have been mapped using low-resolution methods, these
results are compatible with the notion of genomic instability
underlying structural abnormalities such as CNAs.

Taken together, these results strongly suggest that TACNA
profiles capture the effect of CNAs at the gene expression level.

The inferred degree of TACNA is concordant across platforms.
Although strong correlations were found between paired TACNA
and CNA profiles, not all genes mapping to a marked genomic
region in a CNA-CES had equally high weights. We hypothesized
that the absolute weight of an individual gene in a marked
genomic region of a CNA-CES represents how much its expres-
sion level is affected by the underlying CNA: a lower absolute
weight corresponds with a higher degree of transcriptional adap-
tation. A pair-wise comparison of the weights of genes mapping to
marked genomic regions in CNA-CESs between the four datasets
showed that many CNA-CESs strongly correlated with another
CNA-CES in each of the three remaining datasets (Fig. 3a and
Supplementary Data 7). This indicates that the specific patterns
observed in many CNA-CESs are robust and independent of
platform or dataset. For example, we found a high correlation

between two CNA-CESs in the GEO dataset and TCGA dataset in
which the oncogene KRAS had a high weight (Fig. 3b, r= 0.66).
Moreover, we performed TACNA profiling using 570 samples
from the TCGA that were subjected to both RNA sequencing and
microarray profiling (Affymetrix HG-U133A). Paired TACNA
profiles generated with RNA-seq and microarray data were highly
correlated (Supplementary Fig. 5, mode of distribution r= 0.66).
In addition, TACNA profiling was robust to both cross-validation
within one platform (Supplementary Figs. 6 and 7, mode of dis-
tribution r range= 0.45–0.55) and cross-platform cross-validation
(Supplementary Fig. 8, mode of distribution r range= 0.50–0.61,
see Supplementary Note 1 for details).

These results show that TACNA profiling can extract similar
patterns from gene expression profiles generated with different
platforms.

The degree of TACNA is associated with biological processes.
Next, we determined whether the patterns observed in CNA-
CESs were associated with biological processes rather than being
mere mathematical artifacts. For each CNA-CES we transformed
the weights of genes mapping to the marked genomic region to a
metric ranging from zero to one, where zero corresponds to the
highest absolute weight (i.e., low degree of transcriptional adap-
tation to CNAs) and one corresponds to the lowest absolute
weight (i.e., high degree of transcriptional adaptation to CNAs).
Subsequently, all genes mapping to marked genomic regions in
the CNAs-CESs were pooled and ranked according to their
metric. We then performed gene set enrichment analysis (GSEA)
on this ranked gene list using 12 gene set databases from the
Molecular Signatures Database (MSigDB)16. The analysis showed
strong biological enrichment for all databases, with high con-
cordance between GSEA results obtained with GEO and TCGA
metrics (r ranging between 0.86 and 0.97, Supplementary Data 8).
Genes with a lower degree of transcriptional adaptation were
highly enriched for gene sets involved in proliferation (Fig. 3c).
Conversely, genes with a higher degree of transcriptional adap-
tation were highly enriched for immune-related gene sets. This
indicates that the expression levels of genes involved in immune
signaling are less affected on average when CNAs occur in their
genomic region. The opposite effect was seen for genes involved
in signaling pathways important for cell proliferation.

We observed that multiple genomic regions were enriched for
genes having a higher or lower degree of transcriptional adaptation
(Supplementary Fig. 9a and Supplementary Data 9). Epigenetic
mechanisms such as DNA methylation are known to affect
transcription levels of individual genes17,18. When we explored
available DNA methylation data for a subset of samples from the
TCGA dataset (n= 9317), we observed that for a subset of genes
their TACNA expression levels correlated with their mean
methylation levels (r range=−0.65–0.45, Supplementary Fig. 9b).
These results indicate that DNA methylation could be one of the
underlying mechanisms driving the degree of transcriptional
adaptation to CNAs.

The function of protein complexes might depend on the
correct proportional levels of protein subunits19. When CNAs
occur, cancer cells might transcriptionally adapt the mRNA
expression of genes that encode protein subunits to maintain
their ratios at the protein level. However, in the TCGA dataset we
observed very little enrichment of genes having a high degree of
transcriptional adaptation in 304 protein complexes with 5 or
more members as defined by the CORUM protein complex
definitions (see Supplementary Note 1 and Supplementary
Data 10). We did observe for 18 out of 304 protein complexes
(permutation P value < 0.05) that patient-derived cancer cells
might coordinately adjust the mRNA expression levels of some
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protein complex subunits in response to the occurrence of CNAs
(Supplementary Fig. 10 and Supplementary Data 11).

Most genes show moderate to high adaptation to CNAs.
In both the GEO and TCGA dataset, most genes mapped to a

marked genomic region in only one CNA-CES (Supplementary
Data 12). The degree of transcriptional adaptation of these genes
(n= 7641) highly correlated between the GEO and TCGA dataset
(Fig. 4a, r= 0.84). Of these 7641 genes, 786 (10.2%) had low
adaptation (metric < 0.25), 3898 (51.0%) moderate adaptation
(metric 0.25–0.75), and 2957 genes (38.7%) high adaptation
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Fig. 3 Degree of transcriptional adaptation to CNAs. a Citrus plots showing the Spearman correlations between CNA-CESs in the reference dataset,
depicted in bold, with CNA-CESs in the other three datasets. Blue lines indicate r > 0.5. Correlations are calculated based on the weights of genes in marked
genomic regions of the CNA-CESs under investigation. Each scatterplot with marginal histograms shows the correlations versus their −log10 transformed P
values. The inset shows correlations > 0.5 having a P value < 0.05. b Example of a CNA-CESs in the GEO dataset that is highly correlated with a CNA-CES
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EMT: epithelial-mesenchymal transition; ROS: reactive oxygen species.
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(metric > 0.75, Fig. 4b). These results suggest that for most genes
the transcriptional effect of an underlying CNA at their genomic
position is largely buffered by non-genetic adaptive mechanisms.

Amplification of oncogenes and the resulting enhanced gene
expression levels have been implicated in the progression of
many cancers20. We observed a large variability in the degree of

transcriptional adaptation in a set of oncogenes obtained from the
Catalogue of Somatic Mutations in Cancer Gene Census (Fig. 4c
and Supplementary Data 13)21. Whereas some oncogenes in this
set had a low degree of transcriptional adaptation (e.g., RAF1,
metric= 0.06), most showed a relatively high degree of
transcriptional adaptation to CNAs (e.g., MYC, metric= 0.86).
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This suggests that also transcription of many oncogenes is under
the strong control of non-genetic regulatory factors that buffer
the effects of CNAs.

Transcriptional effects of CNAs in >21,000 cancer samples.
TACNA profiling was applied to samples from overlapping
tumor types in the GEO dataset (n= 13,180) and TCGA dataset
(n= 8150) to define the landscape of transcriptional effects of
CNAs. This showed a high correlation between the average pan-
cancer TACNA profiles in the GEO and TCGA dataset (r= 0.73,
Fig. 5a). These average pan-cancer patterns of transcriptional
effects of CNAs closely resemble average pan-cancer copy-num-
ber patterns reported in previous studies22,23. As expected, high
correlations between the average GEO and TCGA TACNA pro-
files of copy-number-driven tumors such as triple-negative breast
carcinoma (r= 0.80), colorectal adenocarcinoma (r= 0.74),
and ovarian carcinoma (r= 0.73) were observed (Fig. 5b and
Supplementary Data 14).

While exploring the landscape of transcriptional effects of
CNAs, we observed common patterns consistent with well-
known genomic alterations. For instance, many renal clear cell
carcinomas in the TCGA dataset contained a pattern consistent
with a deletion in chromosome 3p and an irregular amplification
in chromosome 5q (Supplementary Fig. 11a)24. Likewise, we
observed patterns consistent with a chromosome 10 deletion in

glioblastoma multiforme, and a 1p/19q deletion in low-grade
gliomas (Supplementary Figs. 11b and c)25,26. The landscape
of transcriptional effects of CNAs can be explored at www.
genomicinstability.org (Supplementary Fig. 11d).

Hierarchical clustering of the landscape of transcriptional
effects of CNAs in the GEO and TCGA dataset showed clear
differences and commonalities between tumor types (Fig. 5c and
Supplementary Figs. 12–21), indicating that tumor types share
strong transcriptional effects of CNAs driving biological pathways
relevant for their tumor behavior. The landscape of transcrip-
tional effects of CNAs can enable transcriptomic-wide association
studies (TWASs) to generate strong hypotheses on genes and
biological pathways affected by CNAs that might be causally
linked to tumor phenotypes.

TACNA profiles are associated with immune composition.
Recently, a higher CNA burden was found to be negatively
associated with an expression-based metric describing CD8+ T
cell activity in the tumor microenvironment23,27. The ability to
elicit an anti-cancer immune response with immune checkpoint
inhibitors depends on the composition and activity of immune
cells present in the tumor microenvironment, especially on the
presence of CD8+ T cells28. However, it is still unclear how
CNAs affect the activity and composition of immune cells present
in the tumor microenvironment.
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We therefore developed a univariate measurement describing
the CNA burden for each sample (see Methods), which confirmed
the negative association between CNA burden and the
expression-based metric describing CD8+ T cell activity in both
the GEO and TCGA datasets (Fig. 6a, Supplementary Fig. 22 and
Supplementary Data 15). We observed strong negative correla-
tions especially in the prototypical copy-number-driven tumors.
To determine how CNAs affect the composition of immune cells
present in the tumor microenvironment, we inferred the
abundance of 22 immune cell types with CIBERSORT for the
21,592 cancer samples in the GEO dataset and correlated these to
TACNA expression levels (Supplementary Data 16). Genes were
ranked based on this correlation and GSEA was performed with
the MSigDB Positional gene sets collection. We identified
multiple genomic regions that were enriched for genes having a
highly significant correlation with CD8+ T cell abundance,
indicating that CNAs occurring at these genomic regions are
driving the associations (Fig. 6b and Supplementary Data 17).

To identify the genes in these enriched genomic regions that
may be linked to CD8+ T cell abundance, we constructed a co-
functionality network for the top 350 genes with highest inverse
correlation between their TACNA expression levels and CD8+ T
cell abundance. This co-functionality network was generated
with an integrative tool that predicts gene functions based on a

guilt-by-association (GBA) strategy utilizing >106,000 expression
profiles (see Methods). We identified four big clusters in which
genes have strong predicted co-functionality (r > 0.8, Fig. 6c).
One cluster was enriched with genes predicted to be involved
in biological processes related to tumor progression (e.g., E2F
targets, G2/M checkpoint, and MYC targets), whereas two
clusters were enriched for immunological processes (e.g., allograft
rejection, complement, and interferon-γ response). This suggests
that CNAs can transcriptionally activate multiple processes
that benefit tumor growth, in this case, simultaneously lowering
CD8+ T cell abundance (i.e., avoiding immune destruction) and
promoting tumor cell proliferation.

We then predicted the phenotypic effects of altered expression
levels of the genes in the cluster with the strongest enrichment for
immunological processes using the GBA strategy in combination
with the gene set collection obtained from the Mammalian
Phenotype Ontology. We predicted that altered expression levels
of four genes (IRF2, OSTF1, LOC90768, and ZCCHC6) would
indeed result in decreased CD8+/αβ T cell numbers (Fig. 6c).

The above data strongly suggest that the identified genes which
are transcriptionally affected by CNAs underlie the composition
and activity of immune cells present in the tumor microenviron-
ment. These genes could potentially serve as novel targets to
induce or enhance anti-cancer immune responses.
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Discussion
In the present study we revealed the degree of transcriptional
adaptation to CNAs in a genome-wide fashion using 34,494 gene
expression profiles. Using TACNA profiling, we defined the
landscape of transcriptional effects of CNAs and determined how
these effects might influence the composition of immune cells in
the tumor microenvironment.

We observed that most oncogenes in our set had a high degree
of transcriptional adaptation to CNAs. This suggests that ele-
vation of expression levels of many oncogenes is only beneficial
for tumor progression up to a certain level; excessive expression
of several oncogenes was previously linked to cell senescence and
apoptosis29. Perturbations of genes whose expression levels are
tightly controlled by non-genetic factors (i.e., have a high degree
of transcriptional adaptation to CNAs) could thus result in
more extreme tumor phenotypes. These genes could therefore be
potential therapeutic targets. In addition, our results facilitate
future research into the underlying mechanisms of transcrip-
tional adaptation of genes to CNAs, which are currently poorly
understood7,30.

TACNA profiling was applied to gene expression profiles in
two patient-derived datasets and two cell line compendia. These
expression profiles were generated with three platforms using
either RNA-seq or microarray technology. TACNA profiling
proved robust, as shown by the highly reproducible average pan-
cancer and tumor-type-specific TACNA profiles in the GEO and
TCGA datasets. This enables reanalysis of the tens of thousands
publicly available gene expression profiles generated from various
platforms that are lacking a paired CNA profile. This approach
provides a novel tool to determine how CNAs drive the pro-
gressive acquisition of tumor phenotypes, such as the hallmarks
of cancer29.

After generating the landscape of transcriptional effects of
CNAs, we identified four genes which are associated with reduced
CD8+ T cell abundance in the tumor microenvironment. This is
especially of interest as a high number of CD8+ T cells is asso-
ciated with higher response rates to immune checkpoint inhibi-
tors31–33. Targeting these potentially causal genes might increase
CD8+ T cell infiltration. In combination with immune check-
point inhibitors, this might induce or enhance an anti-cancer
immune response, and thereby improve disease outcome.

In conclusion, our study provides a new tool to explore the
transcriptional effects of CNAs which can lead to novel biological
insights into how CNAs drive tumor behavior, and guide the
development of new therapeutic strategies.

URLs. The degree of transcriptional adaptation, source code of
TACNA profiling, landscapes of transcriptional effects of CNAs
per dataset, and additional datasets and results are available at
http://www.genomicinstability.org/.

Methods
Data acquisition. Microarray expression data was collected from three public data
repositories: GEO platform GPL570 (generated with Affymetrix HG-U133 Plus
2.0)34, CCLE (generated with Affymetrix HG-U133 Plus 2.0)35, and GDSC (gen-
erated with Affymetrix HG-U219)36. Preprocessing and aggregation of raw
expression data was performed using the robust multi-array average algorithm with
RMAExpress (version 1.1.0)37. Quality control of the processed expression data is
described in the Supplementary Note 1. Pre-processed and normalized RNA-seq
data was collected from TCGA using the Broad GDAC Firehose portal. In each
dataset, expression levels for every gene were standardized to a mean of zero and
variance of one. In addition, CNA profiles generated with Affymetrix Genome-
Wide Human SNP Array 6.0 were collected for a subset of samples in the TCGA
dataset, CCLE dataset and GDSC dataset and processed as described in Supple-
mentary Note 1.

Identification of CNA-CESs. ICA was used to identify a regulatory model for the
mRNA transcriptome12. For each dataset containing mRNA expression profiles of

p genes from n samples, ICA resulted in (i) the extraction of i independent
components (hereafter called estimated sources, ESs), (ii) an ES matrix of
dimension i × p, where the weight of each ES represents the direction and mag-
nitude of its effect on the expression level of each gene, and (iii) a mixing matrix
(MM) of dimension i × n which contains the coefficients (i.e., indirect activity
measurements) of ESs in each sample. Within each dataset, principal component
analysis was performed on the covariance matrix between samples, after which i
was chosen as the minimum number of top principal components which captured
at least 85% of the total variance in the dataset. The inner product between the
vector of coefficients in the MM and the vector of ES weights per individual gene
results in the original mRNA expression level.

In ICA, an initial random weight vector with a variance of 1 has to be chosen in
order to obtain statistically independent ESs. Hence, varying initial random weight
vectors could result in different sets of ESs. To retrieve a set of consensus ESs (or
CESs), we performed 25 ICA runs, each with a different random initialization
weight vector. After all ICA runs were completed, ESs with an absolute Pearson r >
0.9 were clustered, where the number of ESs in each cluster could be at most the
total number of ICA runs. CESs were computed by obtaining the average of ESs
inside each cluster. Next, we calculated a credibility index for each CES by
determining the ratio between the number of ESs in its cluster and the total
number of ICA runs (i.e., 25). CESs with a credibility index of ≥50% were used for
obtaining the CES matrix and the consensus MM. We hypothesized that each CES
describes the effect of a latent transcriptional regulatory factor on gene expression
levels.

A subset of CESs harbored a pattern in which genes having high absolute
weights mapped to a specific contiguous genomic region (i.e., CNA-CESs). To
identify these CNA-CESs, we developed and used a detection algorithm, which is
described in detail in the Supplementary Note 1.

Transcriptional adaptation to CNA profiles. For each dataset, weights of genes
mapping to a contiguous genomic region in CNA-CESs marked by the detection
algorithm were retained in the CES matrix. Weights of genes that mapped outside
marked genomic regions were instead set to zero. Next, TACNA profiles were
calculated as the product between this transformed CES matrix and the consensus
MM. TACNA profiles in the GEO dataset and TCGA dataset were adjusted by
subtracting the Hodges Lehmann estimate (i.e., robust mean) of the TACNA
expression of genes observed in normal tissue samples in each dataset. This
ensured that a TACNA expression value of zero corresponded to a situation where
a gene has exactly two copies on the genome.

Human fragile sites. Previously described genomic locations of aphidicolin-
induced fragile sites identified through cytogenic analyses were used to assess the
colocalization of borders of marked genomic regions in CNA-CESs with common
fragile sites15. Genomic coordinates were converted to human genome reference
GRCh38 using the Batch Coordinate Conversion tool from USCS Genome
Browser38. Borders of marked genomic regions in CNA-CESs were assumed to
colocalize with common fragile sites when one or both borders were located inside
a common fragile site.

Gene set enrichment analyses. Weights of genes in a marked genomic region of a
CNA-CES were transformed to metrics ranging from zero to one, where zero
would correspond to the highest absolute weight (i.e., low degree of transcriptional
adaptation to CNAs) and one would correspond to the lowest absolute weight (i.e.,
high degree of transcriptional adaptation to CNAs). When genes occurred in
marked regions of multiple CNA-CESs, the lowest metric was used. Enrichment of
gene sets was tested according to the two-sample Welch’s t-test for unequal var-
iance. The proportion of false discoveries was controlled using a multivariate
permutation testing framework with 100 permutations, a 1% false discovery rate
and confidence level of 80%.

Inferred CNA burden. For each sample in the GEO dataset and TCGA dataset,
CNA load was estimated as the sum of the coefficients (i.e., indirect activity
measurements) of all CNA-CESs in the MM with at least 50 genes in their marked
genomic regions. CNA loads were normalized to a 0–1 range across samples of the
same tumor type in each dataset separately.

Expression-based immune metric. A previously defined set of genes describing
CD8+ T cell and natural killer cell activity (CD2, CD3E, CD247, GZMK, NKG7,
and PRF1) was used to calculate immune metric scores27. Per sample, the rank
position of the mRNA expression levels of each of these genes was calculated.
Scores for each sample were determined by calculating the mean rank position of
the seven genes. Immune metric scores were normalized to a 0–1 range across
samples of the same tumor type in each dataset separately.

Inference of immune cell type abundance. Inference of the abundance of 22
immune cell types was performed using CIBERSORT39 and confined to the GEO
dataset. As CNAs generally do not occur in non-tumor tissue, we reconstructed
gene expression profiles using all CESs except CNA-CESs with at least 50 genes in
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their marked regions to more accurately capture the effects from the tumor
microenvironment on gene expression levels. Next, the abundance of 22 immune
cell types was inferred by applying the leukocyte gene signature matrix (LM22) on
the reconstructed profiles.

Prediction of gene functionalities. We used a GBA approach to predict likely
functions for genes based on gene co-regulation. For this, we conducted a
consensus-ICA on an unprecedented scale (manuscript in preparation). In short, a
covariance matrix was calculated between 19,635 genes using the expression pat-
terns of 106,462 gene expression profiles generated with Affymetrix HG-U133 Plus
2.0 representing the many disease states, cellular states, and genetic and chemical
perturbations that were obtained. Consensus-ICA was performed on the covar-
iance matrix, which resulted in the identification of a large set of CESs and a MM
reflecting the activity of each source in the expression pattern of each gene across
the samples. Next, a GBA approach was used to predict the functionality of
individual genes. First, we retrieved 16 public gene set collections describing a large
range of biological processes and phenotypes. For each gene set, we calculated its
bar code by averaging the MM weights of its member genes per CES. Next, for each
gene in the MM, the distance correlation was determined between its MM weights
and the gene set bar code. A high correlation between a gene’s MM weight and a
gene set bar code indicated that the gene under investigation shared a functionality
with the genes of the specific gene set under investigation. Significance levels were
obtained with permutated data (1000 permutations). This strategy was used on
23,372 well-described functional gene sets, which enabled us to create a compre-
hensive network of predicted functionalities of individual genes. This framework is
available at http://www.genetica-network.com.

A more detailed description of the methods used in this study is provided in the
Supplementary Note 1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Microarray expression data was collected from three public data repositories: Gene
Expression Omnibus with accession number GPL570 (generated with Affymetrix HG-
U133 Plus 2.0), CCLE (generated with Affymetrix HG-U133 Plus 2.0, file
CCLE_Expression.Arrays_2013-03-18.tar.gz) available at https://portals.broadinstitute.
org/ccle/data and GDSC (generated with Affymetrix HG-U219) available at https://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-3610/. Pre-processed and normalized
RNA-seq data was collected from TCGA using the Broad GDAC Firehose portal (https://
gdac.broadinstitute.org/). Individual identifiers or accession numbers for all samples used
in this paper can be found in the Download support data section of http://www.
genomicinstability.org/. The datasets generated during and/or analyzed during the
current study are available in the website http://www.genomicinstability.org/. TACNA
gene distribution and degree of TACNA can be explored at the gene level in top four
panels of the above website. In addition, the tab Download support data in the website
links to zip files that contain TACNA profiles and degree of TACNA estimates for all
four datasets.

Code availability
The website http://www.genomicinstability.org/ contains a link to the R code that
contains the pipeline used to calculate the TACNA profiles.
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