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TECHNICAL NOTE

Improved Visualization of Middle Ear Cholesteatoma  
with Computed Diffusion-weighted Imaging

Koji Yamashita1*, Akio Hiwatashi1, Osamu Togao1, Kazufumi Kikuchi1,  
Yamato Shimomiya2, Ryotaro Kamei1, Daichi Momosaka1, Nozomu Matsumoto3,  
Kouji Kobayashi4, Atsushi Takemura5, Thomas Christian Kwee6, Taro Takahara7,  

and Hiroshi Honda1

Computed DWI (cDWI) is a mathematical technique that calculates arbitrary higher b value images from at 
least two different lower b values . In addition, the removal of high intensity noise with image processing on 
cDWI could improve cholesteatoma-background contrast-to-noise ratio (CNR). In the present study, noise 
reduction was performed by the cut-off values of apparent diffusion coefficient (ADC) less than 0 and  
0.4 × 10−3 s/mm2. The cholesteatoma to non-cholesteatoma CNR was increased using a noise reduction 
algorithm for clinical setting.
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Introduction
Diffusion-weighted MR imaging (DWI) is the most widely 
used imaging technique for the detection of middle ear chole-
steatoma.1–8 Turbo spin echo (TSE) DWI could reduce geo-
metric distortions compared to echo-planar imaging (EPI) 
based acquisitions, and shows promise for the application in 
the middle ear region.3,4 On the other hand, it is known that the 
TSE–DWI sequence as well as higher b value (>1000 s/mm2) 
suffer from inherently lower signal-to-noise ratio (SNR).9,10

Computed DWI (cDWI) is a mathematical technique 
that calculates arbitrary higher b value images from at least 
two different lower b values. This may avoid eddy current 
distortions while keeping higher SNR.11,12 Recently, the 
utility of cDWI for prostate cancer or hepatic metastases 
detection using has been reported in the literatures.11,13–15  

In contrast, the application of cDWI for middle ear diseases 
has not been explored yet. One potential drawback of cDWI 
is that voxels less than 0 s/mm2 in ADC are practically pre-
sent using voxel-by-voxel based calculation, which could 
reduce diagnostic quality. Removal of high intensity noise 
with image processing on cDWI could improve cholestea-
toma to non-cholesteatoma contrast-to-noise ratio (CNR). 
Our purpose was to evaluate whether cDWI with a noise 
reduction algorithm increases CNR compare to that without 
noise reduction in middle ear cholesteatoma.

Materials and Methods
Case selection
This retrospective study was approved by Kyushu University 
Institutional Review Board for Clinical Research, and the 
requirement for written informed consent was waived. Con-
secutive patients diagnosed with suspected cholesteatoma 
who underwent preoperative MR imaging between October 
2014 and August 2016 were eligible for inclusion. Two 
subjects were excluded from the study due to motion artifacts 
on DWI. Each patient underwent preoperative MRI on the 
day before surgery. All of the patients were confirmed the 
diagnosis of cholesteatoma at surgery.

Image acquisition
All images were obtained using a 3T MR imaging unit (Ingenia 
CX, Philips Medical Systems, Best, The Netherlands) with a 
15-channel head array receiving coil for sensitivity encoding 
(SENSE) parallel imaging. The single-shot TSE–DWI scan-
ning parameters were as follows: TR/TE = 4200/84 ms; flip 
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angle = 90°; echo train length = 46; refocusing control angle = 
100°; b value = 0, 400 s/mm2; motion probing gradient = 3 
orthogonal directions; effective diffusion time = 13.1 ms  
(diffusion gradient separation = 15.5 ms; diffusion gradient 
pulse duration = 7.1 ms); SENSE factor = 2; slice thickness/
gap = 1.5/0 mm; slices = 18; acquisition matrix = 152 × 154; 
FOV = 230 mm; number of signal averages = 5. The total 
acquisition time was 2 m 48 s. DWIs with 1.5 mm isotropic 
voxels were generated for evaluation.

Image evaluation
Maps of ADC were calculated using the following formula: 
ln (S/S0) = −b × ADC, where S0 and S are the signal intensi-
ties for b values are 0 and 400 s/mm2, respectively, and b 
itself is 400 s/mm2. cDWI (b = 800 s/mm2) was generated 
from two b values of 0 and 400 s/mm2 by voxelwise fitting on 
a 3D workstation (Ziostation2, Ziosoft Inc., Tokyo, Japan) by 
using the following formula:

		  S b S e b
( ) ( )800 0 800= - ´ADC

It is well-known that ADC value displays positive 
value mathematically. In addition, previous reports have 
indicated that lower limit of ADC value in the musculo-
skeletal16 or endometrial malignant tumor17 was approxi-
mately 0.4 × 10−3 mm2/s. Therefore, noise reduction was 
performed with the cut-off values of ADC < 0 (ADC0) and 
0.4 × 10−3 mm2/s (ADC0.4) on the 3D workstation (Ziosta-
tion2). ROIs were manually placed by a neuroradiologist 
(KY with 16 years of experience) on the cholesteatoma, 
soft tissue adjacent to the cholesteatoma (non-cholestea-
toma), and the contralateral cerebellum, respectively  
(Fig. 1). Careful attention was paid to avoid contamination 
of air for ROI positioning. The Ziostation2 software was 
used to draw the ROIs. The same ROIs were set up for 
ADC0, ADC0.4, and the control (without noise reduction 
algorithm).

Image analysis
The CNR was calculated by using the following formula:

CNR = (SIcholesteatoma − SInon-cholesteatoma)/SDnon-cholesteatoma, 

where SDnon-cholesteatoma is the standard deviation of the signal 
intensity (SI) within the ROI. The noise distribution is not 
homogeneous in parallel imaging, so it is good to estimate 
noise in close proximity to the site of SI measurement.18,19 In 
addition, the signal intensity ratio (rSI) of cholesteatoma to 
the contralateral cerebellum was calculated. The differences 
in the CNR and rSI were compared between ADC0, ADC0.4, 
and the control using one-way ANOVA followed by the Bon-
ferroni correction for multiple comparison. Statistical 
analyses were performed using Graphpad Prism 5 (GraphPad 
Software Inc., San Diego, CA, USA). In the statistical anal-
ysis, the level of significance was set at P < 0.05.

Results
A total of 25 patients (M: F =14:11; median age = 51 years; 
range, 14–78 years) with unilateral cholesteatoma were 
finally analyzed.

The average post-processing time was a few seconds.
All values are expressed as mean ± SD. Figure 2a shows 

the CNR of ADC0.4 could be increased thanks to the noise 
reduction algorithm in the vast majority of subjects.  
The CNR of ADC0.4 (7.24 ± 1.70) was significantly higher 
than those of the control (6.09 ± 1.80; P = 0.0023) and ADC0 
(5.85 ± 1.20; P = 0.0021). We observed no significant differ-
ences between the CNR of the control and that of ADC0.

Figure 3 indicates that the rSI of ADC0.4 (1.32 ± 0.31) 
tends to exhibit higher value compared with that of the con-
trol (1.14 ± 0.25; P = 0.08) or ADC0 (1.15 ± 0.26; P = 0.10), 
although no significant differences were found.

Figures 4 and 5 show representative cases.

Discussion
In the present study, we evaluated whether cDWI with a 
noise reduction algorithm would improve cholesteatoma to 
non-cholesteatoma CNR compared to cDWI without noise 
reduction algorithm. Our result show that the CNR could be 
increased for ADC0.4 compared to the control. The noise 
reduction with the cut-off value of 0.4 × 10−3 mm2/s is 
reasonable for clinical setting because it is assumed that the 
lower limit of ADC value in tumor tissue is approximately 
0.4 × 10−3 mm2/s.16,17 Previous reports have shown that the 
improvement of diagnostic accuracy results from increasing 
suppression of the background signal.11,14 In addition,  
the average post-processing time was only a few seconds. 

Fig. 1  Example of ROI placement on turbo spin echo-diffusion-
weighted MR imaging (TSE–DWI). ROIs were placed on the  
probable cholesteatoma location (black circle), soft tissue adjacent 
to the cholesteatoma (non-cholesteatoma; white circle), and the 
contralateral cerebellum (grey circle).
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Fig. 2  Comparison of CNR among the control, ADC0, and ADC0.4. (a) The line chart showing the CNR of ADC0.4 could be increased thanks 
to the noise reduction algorithm in the vast majority of subjects. (b) The boxplots reveal that the CNR of ADC0.4 are significantly higher than 
those of the control and ADC0. No significant differences are found between the CNR of the control and that of ADC0. ADC, apparent diffusion 
coefficient; CNR, contrast-to-noise ratio.

Fig. 3  Line chart of rSI among the control, ADC0, and ADC0.4. The 
rSI of ADC0.4 tends to exhibit higher value compared with that of 
the control or ADC0, although no significant differences are found. 
ADC, apparent diffusion coefficient; rSI, signal intensity ratio.

a b

Therefore, cDWI with noise reduction algorithm is easily 
feasible in routine clinical practice.

The rSI of ADC0.4 tends to exhibit higher value com-
pared with that of the control and ADC0. It is not surprising 
that cDWI with noise reduction algorithm may be useful to 
distinguish cholesteatoma from adjacent granulation or 
fibrous tissue, whereas our study found that most subjects 
had only small amount of granulation or fibrous tissue around 
their cholesteatoma. Further experiments would be necessary 
in the near future.

The utility of cholesteatoma diagnosis using a non-EPI 
DWI technique has been reported in the literature.3,4,20 TSE–
DWI is known to reduce curvilinear artifacts at the air–bone 
interface of the temporal bone because of its minimal image 
distortion compared with EPI-based DWI, and useful for the 
detection of even small cholesteatomas. DWI with high b value 
is necessary for the cholesteatoma detection, while an addi-
tional number of excitations is required to compensate for the 

SNR reduction, which tends to prolong the scanning time. 
Another drawback includes motion artifact due to prolongation 
of scanning time. In the present study, higher b value images 
(cDWI) were generated from the two different lower b values 
while maintaining adequate CNR. We hypothesized that the 
noise reduction algorithm was useful because of increase of 
high intensity noise (or artifact) due to the air–bone interface in 
the temporal bone region. Consequently, the usefulness of the 
noise reduction algorithm was proven in this study.

The b value of 800 s/mm2 was computationally gener-
ated in the present study. The optimum b value has not yet 
been determined for the head and neck region. Although we 
should evaluate other b values, b values between 800 and 
1000 s/mm2 have been most commonly used.1–8,14,20 In addi-
tion, the b value itself is not an important factor21 because 
ADC values strongly depends on the effective diffusion 
time.22 Thus, we believe that the effect of different b values 
distorted our results only minimally.

Our study has some limitations. First, the originally 
acquired DWI dataset (b = 800 s/mm2) was not evaluated. 
The effective diffusion time affects ADC value, which may 
reflect the restriction of water diffusion.22 Andica et al.22 

reported that the different effective diffusion time resulted in 
the different ADC value of the epidermoid cysts. In our study, 
the diagnosis of cholesteatoma was confirmed during surgery 
in all cases. However, it should be taken into account that 
there is a difference of the diffusion time between the origi-
nally acquired and computed DWI. Second, the CNR of 
TSE–DWI was not compared with that of EPI-based DWI. 
Third, the optimum cut-off value was not evaluated in the 
present study. The voxels less than 0.4 × 10−3 mm2/s in ADC 
are not practically present. However, excessive noise reduc-
tion may cause inhomogeneous intensity in ADC0.4 images. 
The determination of the optimum cut-off value will be our 
next step and that is one of the current limitations.
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Conclusion
The cholesteatoma to non-cholesteatoma CNR was increased 
using a noise reduction algorithm for clinical setting.
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