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ABSTRACT: Adults with comparatively short or long leukocyte telomere length (LTL) typically continue to display
comparatively short or long LTL throughout life. This LTL tracking stems from the inability of person-to-person
variation in age-dependent LTL shortening during adulthood to offset the wide interindividual LTL variation
established prior to adult life. However, LTL tracking in children is unstudied. This study aimed to examine LTL
shortening rates and tracking in children and their parents. Longitudinal study in children (n= 67) and their parents
(n = 99), whose ages at baseline were 11.4 6 0.3 and 43.4 6 0.4 yr, respectively. LTL was measured by Southern
blotting at baseline and∼14 yr thereafter. LTL displayed tracking in both children [intraclass correlation coefficient
(ICC)=0.905,P<0.001] and theirparents (ICC=0.856,P<0.001).Thechildren’s rateofLTLshorteningwas twice that
of their parents (40.7 6 2.5 bp/yr; 20.3 6 2.1 bp/yr, respectively; P < 0.0001). LTL tracking applies not only to
adulthood but also to the second decade of life. Coupled with previous work showing that the interindividual
variation in LTL across newborns is as wide as in their parents, these findings support the thesis that the
LTL-adult disease connection is principally determined before the second decade of life, perhaps mainly at
birth.—Benetos, A., Verhulst, S., Labat, C., Lai, T.-P., Girerd, N., Toupance, S., Zannad, F., Rossignol, P., Aviv, A.
Telomere length tracking in children and their parents: implications for adult onset diseases. FASEB J.
33, 14248–14253 (2019). www.fasebj.org
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Converging lines of evidence suggest that, as expressed in
leukocytes, telomere length (TL) plays a causal role in
atherosclerotic cardiovascular disease (CVD) and major
cancers. Individuals with comparatively short leukocyte
TL (LTL) display propensity for CVD (1, 2), whereas their
peers with comparatively long LTL display propensity
for major cancers (3, 4). Mendelian randomization of
LTL-associated single nucleotide polymorphisms have
inferred that these LTL-disease associations are causal
(5–8). Learning the determinants of LTL is therefore of
fundamental relevance to understanding the role of

telomeres in the 2 disease categories that ultimately af-
flict the majority of contemporary humans.

The individual’s LTL is shaped by LTL dynamics (i.e.,
LTL at birth and age-dependent LTL shortening thereaf-
ter). General features of LTL dynamics during the human
life course are now known. First, LTL is highly variable
across individuals from birth onwards (9–11). Second,
person-to-person variation in the rate of LTL shortening
during adulthood (12) is usually insufficient to overcome
interindividual variation in LTL that were established
prior to adulthood. Therefore, individuals entering adult
life display LTL tracking (i.e., individuals with compara-
tively short or long LTL typically maintain their short or
long LTL throughout their remaining life course) (10).
Notably, cross-sectional studies indicate a rapid loss of TL
in the first decades of life (13, 14). Little is known, however,
based on longitudinal studies, about interindividual var-
iation in the rate ofLTLshorteningand trackingduring the
first 2 decades of life. To fill this knowledge gap, we
studied longitudinalmeasurements, LTL shortening rates,
and tracking in children and their parents.

ABBREVIATIONS: CI, confidence interval; CVD, cardiovascular disease;
ICC, intraclass correlation coefficient; LTL, leukocyte telomere length; TL,
telomere length
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MATERIALS AND METHODS

The cohort

The Suivi Temporaire Annuel Non-Invasif de la Sante des Lor-
rains Assures Sociaux (STANISLAS). Study is a single-center,
familial longitudinal study comprising 1006 families (4295 par-
ticipants) from the Nancy region of France (ClinicalTrials.gov
identifier: NCT01391442). The study and its goals have been
previously described by Ferreira et al. (15). For this telomere
project, we identified in the STANISLAS biorepository blood
samples, donated between May 1998 and February 2001 (base-
line) and samples donated between July 2011 and June 2016
(follow-up) by children, aged ,14 yr at baseline, and their
parents.

LTL measurements

DNA were obtained from buffy coats (baseline samples) and
whole blood (follow-up samples) using a salting-out method as
previouslydescribedbyMiller et al. (16).DNAsamplespassedan
integrity test using a 1% (w/v) agarose gel before LTL mea-
surements performed by Southern blotting of the terminal re-
striction fragments, as previously described byKimura et al. (17).
Briefly, DNA samples were digested (37°C) overnight with re-
striction enzymes Hinf I and Rsa I (Roche, Basel, Switzerland).
DigestedDNAsamples andDNA ladderswere resolvedon0.5%
(wt/vol) agarose gels. After 23 h, the DNA was depurinated,
denatured, neutralized, and transferred onto a positively
charged nylon membrane (Roche) using a vacuum blotter
(Bio-Rad, Hercules, CA, USA). Membranes were hybridized at
65°Cwith theDIG-labeled telomeric probe, afterwhich theprobe
was detected by the DIG luminescent procedure (Roche) and
exposed on X-ray film. The interassay coefficient of variation for
the duplicatemeasurements (on different gels)was 1.2%, and the
intraclass correlation coefficient (ICC) was 0.95 [95% confidence
interval (CI): 0.79–1; n = 183].

Statistical analysis

Datawere analyzed using general linearmixedmodels in R (18),
using the packages lme4 and lmerTest. As random effects, we
included family or individual identity. We used the ICC, esti-
mated from models that included age, to estimate the extent to
which individuals at different ages differed consistently in LTL
from other individuals within their class (children or parents).
Age varied between and within individuals because they were
sampled twice. To investigatewhetherLTL shortening inparents
and their children (i.e., older and younger individuals) was age
dependent, we transformed age at sampling into 2 variables (i.e.,
the average age at which each individual was sampled and the deviation from the average age). For example, when an indi-

vidual was sampled at 25 and 35 yr of age, average age = 30 for
both samples, whereas Delta age = 25 for the baseline sample,
and Delta age = +5 for the follow-up sample. Thus, the slope of
Delta age represents the (longitudinal) rate of LTL shortening
within individuals, whereas the slope of average age represents
the cross-sectional rate of LTL shortening.

To avoid confounding heritability estimates with correlated
ages of parents and their children, we used LTL estimates cor-
rected for ageby calculating residuals.AmidparentLTLestimate
was calculated after averaging the residuals of both parents for
families, where LTL of both parents was known. These LTL
values were transformed to standard normal distributions prior
to analysis for parents and children separately.

Femalepatients havea longerLTL thanmalepatients (19), but
capturing this difference requires a larger data set than in the
present study (20). Hence, LTL was not corrected for sex in our

TABLE 1. Age and LTL values at baseline and follow-up visits in
children and their parents

Variable Children Parents P

Cohort (n) 67 99
Women (%) 57 53 0.59
Age BL (yr) 11.36 6 0.28 43.41 6 0.37 ,0.0001
Delta age FU (yr) 14.02 6 0.13 13.53 6 0.09 0.004
LTL BL (kb) 8.32 6 0.08 7.42 6 0.06 ,0.0001
LTL FU (kb) 7.75 6 0.08 7.15 6 0.06 ,0.0001
LTL shortening (bp/yr) 40.7 6 2.5 20.3 6 2.1 0.001

Values are means 6 SEM. BL, baseline; FU, follow-up.
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Figure 1. LTL distribution at baseline and follow-up visits in
children (A) and their parents (B), and LTL shortening
(parents and children) (C). BL, baseline; FU, follow-up.
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analyses, but its inclusion made negligible difference in the
results.

Comparisons in Table 1 were performed using the Mann-
Whitney and x2 tests, and data are presented as means6 SEM.

RESULTS

General characteristics of participants are displayed in
Table 1, and abreakdownof the 57 families byparents and
siblings is provided in Supplemental Fig. S1.

LTL dynamics in children and parents

LTL was longer by 9066 83 base pairs (bp; t = 10.88, P,
0.001) at baseline and by 6226 80 bp (t= 7.75,P, 0.001) at
follow-up in children than their parents (Table 1). Figure 1
shows the LTL distribution at baseline and follow-up in
children (Fig. 1A) and their parents (Fig. 1B), and LTL
shortening in both populations (Fig. 1C). LTL at follow-up
was shorter than at baseline by 5726 34 bp in the children
(t=16.93,P,0.001) andby275630 in theparents (t=9.13,
P,0.001).These findings indicate thatLTLshorteningwas
faster in children than in parents (children, 40.76 2.5 bp/
yr, t = 16.22, P, 0.001; parents, 20.36 2.1 bp/yr, t = 9.47,
P,0.001; interaction, t=6.21,P,0.001;Table1andFig. 1C).

Tracking

Wequantifieddifferences inLTLacross individualswithin
their class (children or parents) at different ages using the
ICC estimated from models that included age (Tables 2
and 3). For children, the ICC = 0.905 (95%CI: 0.588–1;P,
0.001; Fig. 2A), whereas for parents the ICC = 0.856 (95%
CI: 0.601–1; P , 0.001; Fig. 2B). This denotes high and
indistinguishable consistency in tracking of age-dependent
LTL between children and parents.

Heritability of LTL

The regression of the children LTL on midparent LTL,
including family identity as random effect, yielded an

estimated narrow sense heritability of 0.35 6 0.13 (P =
0.01; Tables 4). Regression on paternal LTL yielded an
estimate of 0.80 (i.e., 2 times the coefficient in Table 5),
whereas an estimate based on regression on maternal
LTL yielded an estimate of 0.35 (Table 4). Only a mi-
nority of the families had more than 1 child in these
analyses (see sample sizes in Supplemental Fig. S1);
hence, we attach little value to the variance explained by
family identity as random effect (exclusion of family
identity had little effect on the estimates). In addition,
LTL correlation between parents and children observed
in this study (see also Supplemental Fig. S2) might also
stem from shared environment as well as heritability.
However, LTL was poorly correlated between parents
(P = 0.36), suggesting a negligible environmental effect
on LTL, at least in the parents (Supplemental Fig. S3).

DISCUSSION

The key findings of this longitudinal evaluation of LTL
dynamics in children and their parents are as follows: 1)
the rate of age-dependent LTL shortening is much faster
during the second decade than in adulthood (from third
decade onwards), and 2) LTL tracking is a phenomenon
that applies not only to adults but also to children during
their second decade of life. In addition, we confirmed LTL
heritability, observed in previous studies (21, 22), but the
small sample sizemight explain lowerheritability found in
this study thanobservedpreviously. For the same reasons,
there was no detectable heritability of LTL shortening in
this study (unpublished results).

Given the age range of children participating in this
study, we do not know at present whether the LTL
tracking phenomenon also covers the first decade of life,
but we consider this likely. The implications of our find-
ings are considerable because they suggest that LTL tra-
jectory during adulthood is largely determined before the
second decade of life (i.e., at birth and during the first de-
cade of life). Moreover, based on cross-sectional data de-
rived from our previous study of LTL in newborns and
their parents (9), our work using skeletal muscle TL as a
reference of early life TL (11, 23) and longitudinal data on
children and parents in this study, it is clear that LTL
shortening during the first decade is much faster than
during the second decade of life (details are elaborated
under Supplemental Data). Such findings confirm theo-
retical considerations of LTL dynamics due the expansion
of the hematopoietic system during somatic growth (24),
which jointly with empirical data indicate that LTL

TABLE 2. LTL in relation to age

Variable Estimate 6 SE df T P

Children
Intercept 9.290 6 0.576 65.0 16.12 ,0.0001
Average age 20.0681 6 0.0311 65.0 22.19 0.032
Delta age 20.0407 6 0.0024 65.0 217.09 ,0.0001

Parents
Intercept 8.174 6 0.716 102.46 11.41 ,0.0001
Average age 20.0181 6 0.0142 102.57 21.28 0.204
Delta age 20.0203 6 0.0022 98.37 29.19 ,0.0001

Children (n = 134 observations on 67 individuals). Parents (n =
203 observations on 104 individuals). Average age is the mean age at
which individuals were sampled. For each sampling point, Delta age is
the difference between average age and age at sampling. Delta age
yields the estimate for longitudinal effects of age on LTL. Average age
is not significant for parents, but is retained in the model for
consistency.

TABLE 3. LTL in relation to age: random effect and variance

Random effect Variance

Children
Individual identity 0.361
Residual 0.038

Parents
Individual identity 0.268
Residual 0.045
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shortening during the first decade of life is inversely re-
lated to age and amounts to ;1 kb. This body of
population-based telomere research underscores the

importance of birth LTL and LTL shortening during the
first decade as determinants of LTL throughout the life
course.

Coupled with recent Mendelian randomization analy-
ses that infer a causal role of LTL in CVD and cancer (5–8),
the LTL tracking phenomenon provides further impetus
to understand intrinsic mechanisms that determine the
length of human telomeres in the newborn and the impact
of nonheritable parameters on LTL dynamics throughout
the life course but particularly in utero and early extra-
uterine life. This is relevant, given that TL dynamics in the
hematopoietic system, as expressed in LTL dynamics, and
not, for instance, skeletal muscle TL, explains the role of
telomeres in atherosclerotic CVD (25).

Finally, the concept that absolute LTL is a biomarker
(bioclock) of human biologic aging has dominated telo-
mere population research as no other concept has, and it
remains stubbornly popular despite overwhelming evi-
dence that suggests otherwise (9–11, 25–27). Classically, a
bioclock is a marker reflecting the loss of function or sub-
stance with passing time. The extension of the LTL track-
ing from adulthood to childhood and possibly to birth,
coupled with wide interindividual variation in LTL in
newborns (9), provide the strongest evidence refuting this
concept. Indeed, even if LTL shows a progressive attrition
with age, LTL absolute value at a given age reflects es-
sentiallyTLatbirth andTLattritionduring the first decade
and much less TL loss after childhood. Longitudinal
studies that determine the rate of age-dependent LTL at-
trition might provide insight into biologic pathways
linked to aging, but such information is rudimentary at
present. In conclusion, the ramifications of LTL tracking
from the second decade onward are sweeping because
they point to a lifelong influence of LTL at birth and per-
haps early childhood on disease risk during adulthood. It
is imperative, therefore, that intensive research is un-
dertaken to understand the root causes of the in-
terindividual LTL variation at birth and the first decade of
life.
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Y., Otowa, T., Sasaki, T., Hibberd, M. L., Davila, S., Xie, G.,
Siminovitch, K., Bei, J. X., Zeng, Y. X., Försti, A., Chen, B., Landi, S.,
Franke, A., Fischer, A., Ellinghaus, D., Flores, C., Noth, I., Ma, S. F.,
Foo, J. N., Liu, J., Kim, J. W., Cox, D. G., Delattre, O., Mirabeau, O.,
Skibola, C. F., Tang, C. S., Garcia-Barcelo, M., Chang, K. P., Su,
W. H., Chang, Y. S., Martin, N. G., Gordon, S., Wade, T. D., Lee, C.,
Kubo, M., Cha, P. C., Nakamura, Y., Levy, D., Kimura, M., Hwang,
S. J., Hunt, S., Spector, T., Soranzo, N., Manichaikul, A. W., Barr,
R. G., Kahali, B., Speliotes, E., Yerges-Armstrong, L. M., Cheng,
C. Y., Jonas, J. B., Wong, T. Y., Fogh, I., Lin, K., Powell, J. F., Rice, K.,
Relton, C. L., Martin, R. M., and Davey Smith, G.; Telomeres
MendelianRandomizationCollaboration. (2017)Associationbetween
telomere length and risk of cancer and non-neoplastic diseases: A
mendelian randomization study. JAMA Oncol. 3, 636–651

8. Iles, M. M., Bishop, D. T., Taylor, J. C., Hayward, N. K., Brossard, M.,
Cust, A. E., Dunning, A. M., Lee, J. E., Moses, E. K., Akslen, L. A.,
Andresen, P. A., Avril, M. F., Azizi, E., Scarrà, G. B., Brown, K. M.,
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Hočevar, M., Höiom, V., Ingvar, C., Kanetsky, P. A., Landi, M. T.,
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