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A low-dissipation simulation method is used to perform simulations of transitional 
aerodynamic flow over a delta wing. For an accurate simulation of such a flow, numerical 
conservation of important physical quantities is desirable. In particular, the discretization 
of the convective terms of the Navier–Stokes equations should not spuriously generate 
or dissipate kinetic energy, because this can interfere with the transition to turbulent 
flow. Conservation of discrete kinetic energy by the discretized convective terms can be 
achieved by writing the Navier–Stokes equations in square-root variables, which results in 
a skew-symmetric convective term. In the paper, simulations with such a low-dissipation 
method are presented at chord Reynolds numbers around 200,000. The results show good 
agreement with experimental measurements.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Although the Navier-Stokes equations for turbulent flow have been known since 1822, their numerical solution is still 
a formidable task. Roughly, the computational effort required for a detailed direct numerical simulation scales with the 
Reynolds number as Re11/4, e.g. [1–3]. Yet, in spite of this high computational cost, accurate numerical simulation is cur-
rently feasible for flows at moderate Reynolds numbers.

For simulation of turbulent flow, the energy errors of the numerical method should not overwhelm the physical energy 
dissipation [4–6], because too much artificial dissipation can delay transition to turbulence of shear layers. Also, numerical 
energy dissipation can inadequately damp radiated acoustic waves [7,8].

This resulted in a quest for higher-order accurate central discretization methods with no or very limited numerical energy 
dissipation: so-called low-dissipation methods [9]. In this paper, such a numerical simulation method for compressible flow 
is presented. The method has good stability properties as it prevents spurious numerical generation or dissipation of energy. 
Therefore, addition of numerical dissipation to prevent instabilities related to spurious energy generation is not necessary. 
We will demonstrate that the method is capable of accurately predicting natural transition from laminar to turbulent flow 
for an application of engineering relevance.
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A key ingredient of the simulation method is discrete conservation of primary and secondary invariants. In particular, 
convection does not generate or dissipate kinetic energy. The favorable influence of these energy-preserving discretizations 
was already recognized half-way the 20th century by Phillips [10,11], Lilly [12], Arakawa [13] and Bryan [14], who were 
all interested in long-term numerical integration of meteorological flow. They recognized the influence of the discretization 
of the non-linear convective term on numerical stability (non-linear instability). A considerable step forward was made for 
incompressible flow through the introduction of the staggered-grid discretization by Harlow and Welch in the mid-1960s 
[15]. At that time, Richtmyer and Morton [16, p. 142] already noticed that some discretizations conserve an energy norm 
“thus ensuring stability”. Piacsek and Williams [17] introduced the skew-symmetric form of the equations as a starting point 
for deriving a finite-difference discretization, which directly resulted in discrete energy conservation.

An energy-conserving discretization of the incompressible Navier–Stokes equations has been introduced by Morinishi 
[18], who discusses (higher-order) finite-difference discretization of the convective, divergence and skew-symmetric forms 
of the convective terms on uniform grids; see also [19,20]. Around the same time, finite-volume discretizations starting from 
conservation laws were developed, for which momentum conservation is preserved numerically by design. Inspired by [21], 
Verstappen and Veldman [22] combined discrete momentum and energy conservation for incompressible flow on staggered 
non-uniform Cartesian grids; higher-order versions followed soon [23,24]. Trias et al. [25–28] generalized the approach to 
unstructured (collocated and/or staggered) grids.

All these approaches are based on a skew-symmetric discretization of the conservative convective terms, which results in 
discrete energy conservation and numerical stability in a mathematically elegant way. A similar philosophy can be found in 
the closely related summation-by-parts (SBP) method, introduced by Strand and Olsson [29–31] and generalized in [32–34].

Early extensions to the equations for compressible flow have been presented using skew-symmetric formulations by 
Feiereisen et al. [35] and Blaisdell et al. [36]. Since the turn of the century, several numerical studies have been presented 
based on a finite-volume discretization of the conservative flow equations, for example by Ducros et al. [37], Jameson 
[38], Kok [8], Nordström et al. [39], Morinishi [40] and Rozema [41]. Also, similar energy-conserving methods have been 
developed for the shallow-water equations [42]. A more complete overview of the above numerical developments for aero-
dynamic flow is provided in the review paper on low-dissipation methods and models by Rozema et al. [9], and the review 
paper on energy-conserving methods by Coppola et al. [43].

In addition to conservative spatial discretizations, efforts have been made to derive conservative time integration meth-
ods. In particular, an energy conservative time integration for compressible flow appears to require the introduction of the 
square root of the density √ρ , as advocated in the proposals by Guermond and Quartapelle [44], Subbareddy and Candler 
[45], Morinishi [40] and Rozema [46]. In line with the use of these square-root variables in the time-integration method, 
spatial discretization studies were carried out based on these same variables by, e.g., Reiss et al. [47–49], Rozema et al. 
[50–52] and Cadieux et al. [53].

In this paper, which is based on the PhD thesis of the first author [52], we will follow a similar approach, in which 
the compressible Navier–Stokes equations will be reformulated in terms of square-root variables. In this way, a discretiza-
tion method is developed for curvilinear grids which has a fourth-order local trunacation error in computational space. It 
not only conserves the primary variables mass, momentum and total energy, but also it convectively conserves the sec-
ondary variables kinetic and internal energy. Because the discretization has more conservation properties than a standard 
finite-volume discretization, it could be called supra-conservative. Moreover, in addition to the already mentioned symplectic 
time-integration property, the formulation allows for the development of regularization turbulence models [41,54]. However, 
such conservative time-integration methods and turbulence models will not be used for the simulations in this paper.

Previously, the energy-conserving simulation method for compressible flow has been used for large-eddy simulation of 
the flow over a delta wing, yet at a slightly smaller Reynolds number [55]. These simulations were numerically stable and 
gave physically accurate results. Following up on this work, we use the same discretization, but this time without turbulence 
model, i.e., in principle we perform a direct numerical simulation. A fourth-order energy-conserving method is used to 
perform accurate numerical simulations of the transitional aerodynamic flow over a delta wing at chord Reynolds numbers 
of Rec = 150, 000 and 211, 200. The results obtained with this low-dissipation method are compared with experimental 
results by Riley and Lowson [56]. An impression of the vortical structures above the wing is given in Fig. 1, which shows 
the stream-wise development of the vorticity at Rec = 150, 000.

Outline of the paper. The formulation of the equations for compressible flow is given in Sect. 2, together with some considera-
tions on primary and secondary conservation. The supra-conservative discretization method for curvilinear grids is outlined 
in Sect. 3. Thereafter, Sect. 4 explains the physics of the flow past the delta wing, which is used as validation material for 
the numerical simulations presented in Sect. 6. In Sect. 5 the numerical method is verified through grid refinement.

2. The compressible Navier–Stokes equations

2.1. Primary conservation

Aerodynamics is governed by the Navier–Stokes equations for compressible flow:

∂tρ + ∇ · (ρu) = 0,
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Fig. 1. Axial slices of the instantaneous vorticity magnitude for Rec = 150,000 computed on a fine computational grid.

∂tρu + ∇ · (ρu ⊗ u) + ∇p = ∇ · σ , (1)

∂tρE + ∇ · (ρuE) + ∇ · (pu) = ∇ · (σ · u) − ∇ · q.

Here ρ is the mass density, u the flow velocity, ρE = 1
2 ρu · u + ρe the total energy density, ρe the internal energy density, 

p the pressure, σ the tensor with viscous stresses, and q the heat diffusion flux.
The Navier–Stokes equations are closed by the standard thermodynamical relations for a perfect gas: p = ρRT , relating 

pressure with temperature T while R is the gas constant, and e = cv T , where e is the internal energy and cv the specific 
heat at constant volume. The latter is related to the specific heat at constant pressure cp by the ratio γ ≡ cp/cv = 1.4.

The viscous stress is closed by assuming that air is a Newtonian fluid

σ = 2μ(T )
(

S − 1
3 tr(S)I

)
, Sij = 1

2 (∂iu j + ∂ jui), (2)

where μ(T ) is the dynamic viscosity (Sutherland’s law) and S is the symmetric rate-of-strain tensor. Heat diffusion is 
modeled with Fourier’s law q = −k∇T , where k is the thermal conductivity set by the Prandtl number Pr ≡ cpμ/k = 0.72.

In Eq. (1), the Navier–Stokes equations have been expressed in conservative form. This form directly expresses conser-
vation of mass, momentum, and total energy in a flow, because all the terms in the equations of motion are either in 
divergence or gradient form. Therefore they are called primary conservation laws.

2.2. Secondary conservation

The convective terms do not only conserve mass, momentum, and total energy, but also kinetic energy and internal 
energy separately. The latter property follows from a combination of the primary conservation laws. Ignoring the viscous 
terms, the evolution equation for the kinetic energy density follows as

∂t(
1
2ρu · u)=u · ∂t(ρu) − 1

2 (u · u)∂tρ

=−u · ∇ · (ρu ⊗ u) − u · ∇p + 1
2 (u · u)∇ · (ρu)

=−∇ · (( 1
2ρu · u)u) − ∇ · (pu) + p(∇ · u).

The first term on the right-hand side, due to convection, has a divergence form, implying that kinetic energy is conserved 
by convective transport. As the total energy is also conserved by convection, it also conserves internal energy. The pressure 
terms conserve kinetic energy in the incompressible limit ∇ · u = 0, but through compression they are responsible for ex-
change between kinetic and internal energy. Convective conservation of kinetic and internal energy are important secondary 
conservation properties, and they will be preserved by the discretization that is developed in the next section.
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3. Energy-preserving discretization

The energy-preserving spatial discretizations of the compressible Navier–Stokes equations to be derived in this section 
aim to preserve the conservation properties of

1. mass,
2. (linear) momentum,
3. kinetic energy,
4. internal energy, and (therefore)
5. total energy

at the discrete level. The choice of preserving these conservation properties is motivated by practical experience with sim-
ulations of (in)compressible flow. For instance, conservation of vorticity, entropy, helicity and/or enstrophy [57] can also be 
interesting, but is out of the scope of the present paper.

There exist, at least, two approaches to achieve the above discrete conservation properties. The traditional one is based on 
the familiar formulation in terms of the primitive variables. In the introduction above, a short overview of the many studies 
in this vein has already been given. A method of particular relevance for the current study is the one developed by Kok [8]. 
It conserves all the above-mentioned physical quantities, and was the first to be implemented in the NLR simulation suite 
Enflow. This approach has been used successfully, for example, for hybrid RaNS-LES simulations of compressible turbulent 
flow [58,59].

As mentioned in the introduction, an alternative approach is to derive a discretization using square-root variables. In 
fact, use of square-root variables allows for more desirable properties. Firstly, it is possible to define energy-preserving 
(symplectic) time integration methods, using the midpoint rule [45,40] or higher-order variants [44,47,48,53]. Secondly, it is 
possible to define symmetry-preserving regularization turbulence models [41,9]. As the current research originally started 
with the latter models for compressible turbulent flow, the explanation of the numerical discretization presented in this 
paper will be based on these square-root variables.

3.1. Square-root variables, skew symmetry and conservation of products

The primary and secondary conservation properties can be encoded in a unifying framework of a skew-symmetric con-
vective term. This is made visible when the primitive variables (ρ , ρu, ρe) are transferred into so-called square-root variables
(it is assumed that all quantities have been non-dimensionalized):

h = (
√

ρ,
√

ρ u/
√

2,
√

ρe)T . (3)

The L2-norm of the square-root state vector h is equal to the sum of the mass and total energy in a periodic domain V :

||h||2V =
∫

V

(
ρ + 1

2ρ u · u + ρe
)

dx =
∫

V

ρ dx +
∫

V

ρE dx. (4)

The evolution equations (1) for the mass and total energy density feature only terms in divergence or gradient form, 
and therefore these quantities are conserved on the periodic domain V . Thus, analytically, the norm ||h||V is constant and 
bounded. For incompressible flow this is enough to develop unconditionally stable finite-volume semi-discretizations [22–
24]. For compressible flow the situation is more subtle. Theoretically, we have not yet been able to prove the boundedness 
of the individual flow variables (u, e) contributing to (4). In practice, however, a discretization that discretely preserves the 
bound on ||h||V is found to result in good stability properties for subsonic compressible flow, as we will show below.

The conservation properties of the Navier–Stokes equations are reflected in the skew-symmetry of the convective term 
when written in square-root variables (3). Let φ denote one of these variables, then elementary analysis shows that the 
convective part of its evolution reads

∂tφ + C(u)φ, with C(u)φ ≡ 1
2 ∇ · (uφ) + 1

2 u · ∇φ. (5)

Inspection learns that the adjoint of the convective operator C(u) is equal to −C(u). In other words, the convective operator 
C(u) in (5) is skew-symmetric, CT = −C , which we want to hold too in a discrete setting.

Next, it is noted that all quantities of interest (mass, momentum, ...) can be written as a product of two of the square-root 
variables:

ρ = (
√

ρ)(
√

ρ); ρu = (
√

ρ)(
√

ρu); ρu2 = (
√

ρu)(
√

ρu); ρe = (
√

ρe)(
√

ρe). (6)

Therefore, consider the evolution of products of two square-root variables, say φ and ψ . If their convective transport is given 
by Eq. (5), and non-convective terms are ignored, then the evolution of the product φψ is given by

∂t(φψ) = −ψC(u)φ − φC(u)ψ = −∇ · (uφψ). (7)
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Because the right-hand side in (7) is a divergence form, on a periodic domain the integral norm of the product vanishes. 
This demonstrates that all interesting quantities (6) are conserved by convective transport due to the skew symmetry of the 
square-root formulation C(u).

It is elegant that multiple conservation properties can be encoded in one mathematical symmetry property, which makes 
it relatively easy to develop a discretization method with similar (primary and secondary) properties. Moreover, it addition-
ally allows for more properties, as discussed above, which may be relevant depending upon the application pursued. The 
next section gives some technical details.

3.2. Discretization on a curvilinear grid

A spatial discretization on a curvilinear grid is derived most easily in computational space ξ rather than physical space 
x. Integration of physical quantities requires multiplication of (5) with the determinant J of the Jacobian matrix J ≡ ∂x

∂ξ

[60,61]. By setting Aξ j ≡J ∂ξ j
∂xi

, which can be viewed as the area vector in the j-direction in computational space, and using 
∂

∂ξ j

(
Aξ j

) = 0 [9, Appendix A], the convective part of the flow equations can be written as (Einstein convention)

J ∂tφ + 1
2

∂

∂ξ j

(
Aξ j · uφ

) + 1
2 (Aξ j · u)

∂φ

∂ξ j
= . . . . (8)

This form expresses the analytic skew-symmetry in computational space, cf. (5), and we want this property to hold in a 
discrete setting too.

In first instance, its discrete form is only skew-symmetric if the area vectors Aξ j are discretized at cell centers. Because 
the discretization should be implemented in a finite-volume method, the area vectors should be located at cell faces of a 
grid cell. Thus some consistent form of interpolation between cell centers and cell faces is required, to be discussed next.

After multiplication by 	ξ3, the second term in Eq. (8) can be discretized at the cell center k = (i, j, k) by substitution 
of a central second-order finite-volume discretization in computational space in terms of face variables as

1
2

∑
f ∈Fk

(A f · u f )
1
2

(
φk + φnb( f )

)
. (9)

Here, Fk is the set of faces of the grid cell with index k, whereas nb( f ) is the neighbor of cell k which shares the face f . 
Further, u f is some second-order accurate interpolation of the velocity vector to the faces and A f is the face area vector 
pointing out of the cell. There is still freedom to choose these quantities, which we will exploit below when comparing 
with existing finite-volume methods.

The third term of the skew-symmetric form in Eq. (8) can be discretized by second-order discretization at the cell face 
f of the cell k normal to the direction ξ j in computational space

(
	ξ2Aξ j

)
· u	ξ

∂φ

∂ξ j
≈ (A f · u f )

(
φnb( f ) − φk

)
,

after which interpolation of these cell-face discretizations to the cell center gives

1
2

∑
f ∈Fk

1
2 (A f · u f )

(
φnb( f ) − φk

)
. (10)

Summation of the two proposed spatial discretizations (9) and (10) gives


k∂tφk +
∑
f ∈Fk

1
2 (A f · u f )φnb( f ) = . . . , (11)

with 
k the cell volume. Observe how the terms with the central φk cancel, and how the coefficient of neighbor φnb( f )

only depends on face values. In this respect, note the importance of the interpolation factors 1
2 , irrespective of the geometry 

of the grid cells. Hence, starting from a skew-symmetric analytic operator, we created a skew-symmetric discrete operator. 
As shown in Sect. 3.1, it conserves discrete products of the basic square-root variables (3). This then leads to the desired 
discrete primary and secondary conservation properties.

3.3. Relation to finite-volume methods

The relation with existing finite-volume methods can be shown by constructing the discrete counterpart of Eq. (7). If 
the evolution of discrete square-root variables is governed by Eq. (11) and exact time-integration is assumed, then some 
analysis shows that products of discrete square-root variables satisfy


k∂t(φkψk) +
∑

(A f · u f )
1
2

(
φkψnb( f ) + φnb( f )ψk

) = . . . ,
f ∈Fk
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Fig. 2. The control volumes and stencils of the 	, 2	, and 3	 control volumes used for Richardson extrapolation of the convective and diffusive terms in 
collocated computational space.

where the dots denote non-convective terms. The expression 
(
φkψnb( f ) + φnb( f )ψk

)
/2 is a local flux function as it is sym-

metric. Therefore, this is a finite-volume discretization of the convective terms for all possible products of square-root 
variables. As examples, the corresponding finite-volume discretizations of the mass and momentum equations read

mass: 
k∂tρk +
∑
f ∈Fk

(A f · u f )
√

ρk
√

ρnb( f ) = . . . , (12)

momentum: 
k∂t(ρu)k +
∑
f ∈Fk

(A f · u f )
√

ρk
√

ρnb( f )
1
2

(
unb( f ) + uk

) = . . . . (13)

The energy equation is similar, and can be found in [52,9].
Outside the diagonal, the proposed discretization in (13) is skew-symmetric for any interpolation of the face velocity 

u f and face area A f . On the diagonal, the coefficient of uk in (13) equals half the discrete divergence from (12). This is in 
accordance with the analytical property that the operator φ 	→ ∇ · (mφ) − 1

2 (∇ · m)φ is skew-symmetric for any mass flux 
m, which corresponds with discrete energy conservation [42,62].

The discretization is second-order accurate if the interpolations u f and A f to the cell faces and the discretization of 
k

at cell centers are second-order accurate in computational space. Some possible second-order accurate interpolations of the 
velocity vector u to the cell faces are

u f = 1
2

ρk + ρnb( f )√
ρk

√
ρnb( f )

1
2

(
uk + unb( f )

)
, (14)

u f = 1√
ρk

√
ρnb( f )

1
2

(
ρkuk + ρnb( f )unb( f )

)
, (15)

and

u f = 1
2

(
uk + unb( f )

)
. (16)

It can be shown [52] that the first interpolation (14) is equivalent to the finite-volume discretizations proposed by 
Jameson [38], Subbareddy and Candler [45], and Morinishi [40]. The second interpolation (15) results in the finite-volume 
discretization proposed by Kok [8], whereas the third interpolation (16) is used in simulations with symmetry-preserving 
regularization models [41,50,51,54].

In the accurate numerical simulations presented in this paper, the first interpolation (14) has been used. A comparison 
with the other two interpolations can be found in [52]. Also, details about the (standard) implementation of the pressure 
terms, the viscous terms and the heat diffusion can be found there.

3.4. Higher-order accurate discretizations

Fourth-order accurate versions of the above discretizations can be obtained by means of Richardson extrapolation, com-
bining different stencils while preserving all conservation properties:

α1 R	
k + α2 R2	

k + α3 R3	
k , (17)

where R symbolizes a discrete stencil with the subscript denoting its width (see Fig. 2).
By setting the leading terms in the Taylor expansion corresponding with (17) equal to zero, a one-parameter family of 

discretizations is obtained [8]:

α1 = (9 − 5γ )/8, α2 = γ , α3 = −(1 + 3γ )/8. (18)

For a first derivative, the error in wave number space is small if the free parameter is set to γ = −0.6668 [8]. For this pa-
rameter value, in computational space the derivative is equivalent to the dispersion-relation-preserving (DRP) discretization 
proposed by Tam and Webb [63].
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Fig. 3. Grid refinement on a purposely highly-irregular grid around a convected vortex at t = 125. Ensolv is used with a fourth-order accurate discretization 
in computational space.

3.5. Grid refinement study for a two-dimensional vortex

To demonstrate grid-convergence of the proposed discretization method, we first present a study of a flow problem 
on a highly irregular grid. The accuracy of the above discretization is assessed using a fourth-order simulation of a two-
dimensional vortex at Mach number M = 0.5 and Reynolds number Re = 5. In the inviscid limit, the vortex is convected with 
the mean flow isentropically, and the problem has an analytical solution [8]. The computational domain is two-dimensional: 
[−100, 100]2. The grid is highly stretched on purpose in order to assess the performance of the skew-symmetric discretiza-
tion on stretched curvilinear grids. Simulations are performed from time t = 0 to t = 150, in which the vortex travels 150
length scales. Three grids have been used: coarse 100 × 100 grid, medium 200 × 200 grid and fine 400 × 400. Fig. 3(a) 
shows the coarse computational grid in a small region around the vortex.

In the inviscid limit, the available analytical solution can be used to assess the accuracy of the method. For the viscous 
case, the right-hand side of the compressible Navier–Stokes equations is chosen such that this analytical solution is the 
exact solution of the problem (method of manufactured solutions, e.g. [64]).

A global numerical error is defined as the root-mean-square of the error of the numerical solution compared with the 
exact solution in computational space. Fig. 3(b) shows the errors in the horizontal velocity and the temperature, respectively, 
as a function of the mesh spacing in computational space. The global solution displays fourth-order accurate behavior, also 
for a curvilinear grid with considerable (but smooth) stretching. Thus, a skew-symmetric discretization forms a good basis 
for accurate simulations of compressible, turbulent flow past a delta wing to be described next.

4. The delta wing and its aerodynamics

To assess the applicability of the developed simulation method to large-scale simulation of practical turbulent flows, 
simulations of the subsonic transitional flow over a simple delta wing have been performed. This delta wing has been 
studied experimentally by Riley and Lowson [56]. An impression of the flow is shown in Fig. 1 above. Here we give some 
more information about this flow to guide the validation that will be presented in Sect. 6.

The focus of this study is on the transition to turbulence of the flow above the delta wing. Therefore, the chord Reynolds 
number, Mach number, and angle of attack have been selected to exclude other aerodynamic phenomena. The vortical flow 
structures do not break down above the wing, because the angle of attack is relatively small [65,66]; also, shock waves are 
absent.

The flow over the delta wing is dominated by a system of conical vortices above the delta wing [56,67], formed by the 
shear layer that separates at the leading edge of the delta wing. Under the influence of pressure differences, this shear layer 
rolls up into two large conical counter-rotating primary vortices (Fig. 1). They reduce the pressure along the upper surface 
of the wing and herewith increase the aerodynamic performance. Furthermore, the primary vortices induce an outboard 
flow over the upper surface of the delta wing. As a result, the boundary layer on the surface separates forming a secondary 
vortex, which counter-rotates with respect to the primary vortex.

Fig. 4 shows a global tubular structure of vortex pairs, as visualized by the Q-criterion (the second invariant of the 
velocity gradient). Each pair consists of a thin sub-structure with a high vorticity and a sub-structure with low vorticity. It 
seems that the sub-structures with low vorticity are wrapped around the sub-structures with high vorticity.

4.1. Break-up into sub-vortices

Fig. 1 shows more detailed axial slices of the instantaneous vorticity magnitude obtained in simulations on a fine grid. 
For Rec = 150, 000, the separated shear layer becomes unsteady at approximately x = 0.6c and has broken into discrete 
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Fig. 4. An impression of the vortical structures over the delta wing, visualized by the zero iso-surface of the Q-criterion and colored by the vorticity 
magnitude.

sub-vortices at x = 0.8c. The sub-vortices deform as they travel along the shear layer, and near the trailing edge the defor-
mations have caused so many irregularities in the flow that identification of the discrete sub-vortices becomes challenging, 
i.e. the flow has become turbulent.

Although discrete vortical sub-structures have been first observed in 1985 [68], there is no consensus on the physics 
of this phenomenon. On the one hand, in physical and numerical experiments by Gad-el Hak and Blackwelder [68] and 
Visbal and Gordnier [69,70] only unsteady sub-vortices have been observed, which counter-rotate with respect to the time-
averaged direction of the flow. On the other hand, in experiments by Payne et al. [71] and Washburn and Visser [72] only 
steady discrete sub-vortices are encountered, which co-rotate around the primary vortex in the same direction as the flow. 
Reynolds and Abtahi [73] as well as Riley and Lowson [56] experimentally observe both steady co-rotating and unsteady 
counter-rotating sub-vortices.

The relation between the unsteady and steady sub-vortices is not clear. In their LDV experiments, Riley and Lowson [56]
observe that, under some conditions, the steady co-rotating sub-vortices seem to be distorted by the unsteady counter-
rotating sub-vortices. The latter are observed to be easily triggered by physical or numerical perturbations [56,74], and have 
a long perseverance. In fact, Reynolds and Abathi [73, p. 3] observe that they “decay approximately one-half hour after the 
last disturbance”, thus overwhelming the steady co-rotating sub-vortices.

4.2. Data of the Riley and Lowson experiments

Next, the setup and the results of the LDV experiments by Riley and Lowson [56] are summarized. The delta wing used 
has a blunt trailing edge, a root chord length of c = 471 mm and a thickness of t = 11.5 mm. The sweep angle is � = 85◦ , 
which makes the delta wing very slender. The bevel angle is 30◦ and the angle of attack α = 12.5◦ . The experiments were 
conducted for a range of Reynolds numbers Rec ≡ ρ∞u∞c/μ∞ , with c the chord length. The non-dimensional distance from 
the leading edge is given by the local Reynolds number Rex ≡ Rec(x/c). The simulations will be performed at Rec = 150, 000
and 211, 200. The free-stream Mach number is M = 0.3.

In the experiments for Rec smaller than 160, 000, Riley and Lowson [56, Fig. 8] observe a Kelvin-Helmholtz-type in-
stability which originates around Rex ≈ 78, 000 and evolves into transitional flow around Rex = 129, 000. At higher chord 
Reynolds numbers, e.g. Rec = 211, 200, no Kelvin-Helmholtz waves are observed, but instead steady structures. The flow 
becomes transitional around Rex ≈ 129, 000 and appears fully turbulent around Rex ≈ 200, 000.

5. Numerical simulation and verification

In this section, results of the accurate numerical simulations are presented. Firstly, the spatial discretization is re-iterated, 
followed by a description of the used computational grids. Thereafter, the time-integration method is summarized. Finally, 
the parallel implementation is described. The numerical verification (grid refinement and convergence of the flow statistics) 
finalizes this section. The validation with experimental data will be given in Sect. 6.
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Fig. 5. A side view (top) and top view (bottom) of the grid blocks around the delta wing and the dimensions of the grid. The locations are given in mm.

Table 1
The dimensions of the block above the delta wing for the coarse, 
medium, and fine grid (see Fig. 5).

Nb N1 N2 N3 N4 N5 N6 N7

coarse 8 56 504 304 40 48 32 16
medium 11 78 693 418 44 66 44 22
fine 16 112 1008 608 80 96 64 32

5.1. Numerical model

Space discretization. The simulations have been performed with the proposed symmetry-preserving finite-volume discretiza-
tion. For the convective terms and the pressure gradient, the dispersion-relation-preserving fourth-order accurate discretiza-
tion has been used [8]. The viscous terms have been discretized using a standard fourth-order accurate discretization.

The use of artificial dissipation is not necessary for numerical stability, yet a low level of sixth-order artificial dissipation 
(with k6 = 1/8) has been added [58]. The purpose of the low level of artificial dissipation is to smoothen unphysical oscil-
lations in the numerical solution resulting from deficiencies of the smoothness of the grid, for example at the apex and the 
sharp edges of the wing.

At the boundaries of the computational domain, far-field boundary conditions based on Riemann invariants are applied. 
To prevent spurious reflections at outflow boundary conditions, and to dissipate sufficient kinetic energy in the under-
resolved far field, the strength of the artificial dissipation is increased outside the region of interest.

Grid. A cubic computational domain with a length of 21 chord lengths has been used. The origin of the coordinate system 
is at the apex of the delta wing. The x-axis is aligned with the chord line of the wing, the z-axis is normal to the upper 
surface, and the y-axis is aligned with the span.

To capture the boundary layer, the wing is covered by thin boundary layer blocks, giving a fine grid near the surface of 
the wing; see Fig. 5. Above the wing, conical blocks are used to capture the primary vortex. These blocks grow linearly in 
the axial direction at approximately the same rate as the primary vortex. A wedge-shaped block is used at the apex of the 
wing, which prevents collapsing edges of the conical blocks at the apex. Details can be found in [52].

The transitional flow over the delta wing at Rec = 150, 000 has been computed on a coarse, a medium, and a fine 
computational grid. The fine grid is obtained by refining the coarse grid by a factor two in each direction, and the medium 
grid is obtained by refining the coarse grid by a factor 1.5. At the chord Reynolds number Rec = 211, 200, only a simulation 
on the medium grid has been performed. The dimensions of the three grids are given in Table 1 (see also Table 2). To 
study the reliability of the converged flow statistics, a grid refinement study is performed below. Fig. 6 shows a detail of 
the surface grid and a slice of the coarse grid at x = 0.8c.

The grids used are approximately isotropic throughout the primary vortex downstream from the end of the wedge block 
at x = 64.9 mm. The dimensions of the grid cells of the fine grid in the primary vortex increase approximately linearly from 
	x = 0.08 mm, 	y = 0.05 mm, and 	z = 0.10 mm at the end to the wedge block at the leading edge, to 	x = 0.57 mm, 
	y = 0.40 mm, and 	z = 0.44 mm at the trailing edge.

Time integration. Time integration is performed using a four-stage low-storage explicit Runge-Kutta method with a small 
time step size. The initial condition of the simulations is obtained by performing a RaNS simulation with a k-ω model. No 
perturbations are added to the initial condition.



10 W. Rozema et al. / Journal of Computational Physics 405 (2020) 109182
Fig. 6. The coarse mesh on the wing surface and at the axial slice x = 0.8c. Note that the grid is approximately isotropic in the primary vortex.

Table 2
The number of blocks used in simulations of the delta 
wing, and the average wall clock time of a time step Tstep, 
showing good weak scalability.

Ncells Nblocks Ncores Tstep (s)

coarse 1.96 × 107 6324 192 0.90
medium 4.36 × 107 6073 480 0.83
fine 1.33 × 108 6744 1920 0.79

The time step size normalized by the free-stream flow velocity and the chord length of the wing is 	tu∞/c = 8.0 ×10−6

on the coarse grid, 4.5 ×10−6 on the medium grid, and 2.2 ×10−6 on the fine grid. The simulations at Rec = 150, 000 on the 
coarse and medium grid are performed from time tu∞/c = 0 to tu∞/c = 20, which corresponds to 20 convective time units. 
The simulation on the fine grid is performed for 17 convective time units. The simulation at Rec = 211, 200 on the medium 
grid is performed for 13 convective time units. After 2 convective time units the flow has transitioned to turbulence, and 
the collection of flow statistics starts. In Sect. 5.3 it will be verified that this procedure is sufficiently accurate.

Parallelization and CPU performance. The simulations have been performed on the Dutch national supercomputer Cartesius. 
Ensolv has been parallelized using a hybrid OpenMP/MPI implementation. The computational grids are divided into a large 
number of small blocks that are distributed over domains using a graph-based domain decomposition. Each MPI process 
computes the flow in the blocks of an assigned domain. Within a domain, OpenMP parallelization is applied on the blocks. 
The number of blocks and the parallel performance of the simulations is listed in Table 2, showing good weak scalability. 
As a result, the longer simulations with around 5 million time steps take 1-2 months wall-clock time in the indicated 
configuration.

5.2. Grid refinement

The numerical quality of the solution is assessed first by studying the convergence upon grid refinement for Rec =
150, 000 on the three grids: coarse, medium and fine. Results for several quantities will be presented: turbulent kinetic 
energy, velocity, pressure and vorticity.

Turbulent kinetic energy. Fig. 7 shows the turbulent kinetic energy on lines through the separated shear layer obtained on 
different grids. Although turbulent kinetic energy is relatively sensitive to the grid resolution compared to the time average 
of the velocity and pressure (see below), the turbulent kinetic energy obtained on the medium and fine grids show good 
agreement. The shear layer becomes unsteady at approximately the same axial location for the medium and the fine grid; 
the transition to unsteady flow seems to be delayed on the coarse grid. This suggests that (not surprisingly) the coarse grid 
is not fine enough to capture the transition to unsteady flow of the shear layer.

Time-averaged velocity. Fig. 8 shows the time-averaged axial velocity on a vertical line through the core of the primary vortex 
for the three grids. Note that the vertical axis has been split, with different scaling to enhance visibility of the velocity profile 
through the primary vortex. Fig. 9 shows the axial velocity on horizontal lines at different heights around the leading edge 
for the three grids. Both plots show convergence of the time-averaged velocity as the grid is refined. Although the agreement 
is not perfect, overall the time-averaged velocity obtained on the coarse grid agrees with the time average obtained on the 
medium and fine grid.
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Fig. 7. The turbulent kinetic energy along a line above the leading edge at z = 7.6 mm (left) and along a line through the separated shear layer above the 
vortex core (right) at Rec = 150, 000.

Fig. 8. The time-averaged axial velocity at Rec = 150, 000 along a vertical line through the suction peak above the delta wing surface at x = 0.9c and 
y = 21.74 mm at three different grid resolutions. The vertical axis has been split in two parts: the left-hand plot shows the velocity profile in the boundary 
layer. The right-hand plot (with different scaling) shows the velocity profile through the core of the primary vortex.

Fig. 9. The time-averaged axial velocity at Rec = 150, 000 along a horizontal line at z = 0.1 mm (left) and z = 4.1 mm (right) and at the axial location 
x = 0.8c corresponding to Rex = 120, 000. At this axial location the leading edge of the wing is at y = 32.97 mm.

Time-averaged pressure. Fig. 10 shows the time-averaged pressure coefficient on the upper surface of the delta wing and its 
behavior upon grid refinement. These time averages have converged in time, as shown in Sect. 5.3. The surface pressure 
seems to converge upon grid refinement for x ≤ 450 mm, i.e. away from the trailing edge. However, (slightly) different 
pressure coefficients are predicted for the coarse, medium, and fine grid at the trailing edge of the delta wing. Possibly, the 
grids do not have sufficient resolution to accurately capture the vortex shedding at the blunt trailing edge. Hence we are 
hesitating a bit to call our results a direct numerical simulation.
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Fig. 10. The time-averaged pressure coefficient at the upper surface of the delta wing at Rec = 150, 000. The top figure shows an overview obtained on 
the fine grid. The bottom figure shows a detailed (contour-plot) comparison with the results (blue) obtained on the coarse (red) and medium grid (green) 
in the trailing edge region (downstream of x = 300 mm). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Time-averaged vorticity. The top row in Fig. 11 shows the time average of the axial vorticity at Rec = 150, 000, at three 
chord-wise locations. They correspond with, from left to right, local Reynolds numbers of Rex = 100, 000, Rex = 130, 000, 
and Rex = 150, 000 (i.e. the trailing edge). The time-averaged shear layer is coherent for local Reynolds numbers up to 
Rex = 90, 000 (not shown), but it breaks up at larger distances from the apex of the wing.

An impression of the influence of discretization error on this subtle physical behavior of the shear layer can be obtained 
by comparison with results on the medium and coarse grids, shown in the middle and bottom rows of Fig. 11. Their 
development on the medium grid agrees with results obtained on the fine grid, showing similar sub-structures, with only 
slight small-scale differences. However, on the coarse grid the time-averaged shear layer has not yet broken up at Rex =
100, 000. Also, at higher local Reynolds numbers, the time-averaged sub-vortices obtained on the coarse grid are significantly 
weaker than the sub-vortices obtained on the medium and fine grids. This suggests that the instability process that causes 
break-up of the time-averaged shear layer is not captured accurately on the coarse grid. In the next section, these results 
will be validated with experimental measurements.

5.3. Convergence of flow statistics

In this paper, many results are presented for time-averaged quantities. Therefore, we first study the length of the aver-
aging time interval needed to obtain reliable averages that may be interpreted with a physical eye. To study the sensitivity 
with respect to the averaging interval, flow statistics obtained with different sample intervals are compared.

Fig. 12 shows the time average of the axial vorticity at x = 0.9c obtained with different averaging intervals at Rec =
150, 000 on the fine grid (left) and at Rec = 211, 000 on the medium grid (right). The contour lines have been chosen to 
highlight sub-structures, because these are of interest in the study of the shear layer. At the lower chord Reynolds number 
Rec = 150, 000, the averaging intervals were 3 (red), 9 (green) and 18 (blue) periods; at the higher Rec they were 3 (red), 7 
(green) and 11 (blue). The time average of the axial vorticity is more sensitive to the used interval than the time average of 
the velocity. Yet, the time averages obtained over the two longer time intervals agree quite well, with the most variation in 
the results for Rec = 211, 000. The latter is to be expected, as turbulent details will be smaller at higher Reynolds numbers; 
also a finer grid is likely to be required to accurately capture the flow structure. The plots suggest that many sub-structures 
can be observed in the mean axial vorticity, and they provide confidence in the interpretation of the vorticity plots presented 
in this paper.

6. Validation

In this validation section, the development of the separated shear layer is studied using the results of the simulations 
at the chord Reynolds numbers Rec = 150, 000 on the fine and medium grid and the simulation at Rec = 211, 200 on the 
medium grid. The results of the simulations are compared with the experiments by Riley and Lowson [56]. First, instanta-
neous flow phenomena are compared, thereafter we study time-averaged behavior.
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Fig. 11. Grid-refinement study for the axial slices of the scaled time-averaged axial vorticity at chord Reynolds number Rec = 150, 000. From left to right, 
results are shown at three axial locations (Rex = 100, 000 −150, 000) as obtained on the fine (top), medium (middle) and coarse (bottom) grids, respectively.

Fig. 12. Axial slice at x = 0.9c (Rex = 135, 000) with contour lines of the mean axial vorticity 〈ωx〉c/u∞ at chord Reynolds number Rec = 150, 000 on 
the fine grid (left) and Rec = 211, 000 on the medium grid (right). Results for various averaging intervals have been plotted, as indicated by the color: 
red=short, green=medium and blue=long.
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Fig. 13. Slices showing the time average of the total pressure loss and streamlines of the time-averaged velocity through the primary vortex colored by the 
mean axial velocity.

Fig. 14. Iso-surfaces of the vorticity magnitude ||ω||c/u∞ = 20 colored by the pressure coefficient obtained on the medium grid at chord Reynolds numbers 
Rec = 150, 000 (top) and Rec = 211, 200 (bottom). The local Reynolds number Rex correspond to the axial range x = 200 mm–471 mm.

6.1. Instantaneous flow phenomena

6.1.1. Sub-vortices
The instantaneous flow field over the delta wing is characterized by the break-up of the separated shear layer into 

sub-vortices and its transition to turbulence. Riley and Lowson [56, p. 50] attribute the onset of unsteady flow to a Kelvin-
Helmholtz instability, that “went through a pairing mechanism similar to that in a simple two-dimensional shear layer”; see 
also [75].

The instantaneous sub-vortices above the delta wing lie in helical vortex tubes that counter-rotate. They wind around 
the primary vortex in the direction opposite to the mean flow velocity, as shown in the time-averaged simulation results 
visualized in Fig. 13. The vortex tubes are convected downstream with the flow velocity; they gradually deform and break 
up into smaller sub-vortices. This deformation process eventually causes transition of the separated shear layer.

Fig. 14 shows a top view of the sub-vortices obtained in simulations at the chord Reynolds numbers Rec = 150, 000
and Rec = 211, 200. Both plots correspond to the horizontal range x = 200 mm–471 mm, but the local Reynolds number 
Rex = Rec(x/c) is used as the horizontal coordinate. The plots suggest that the evolution of the sub-vortices is related to the 
local Reynolds number Rex , with for the eye visible vortices starting around Rex ≈ 95, 000 for both chord Reynolds num-
bers. The plot of the sub-vortices at Rec = 211, 200 shows that the sub-vortices no longer form coherent helical structures 
downstream of Rex ≈ 200, 000 (axial location x = 0.95c). This is consistent with the observations of Riley and Lowson [56, 
Fig. 8], who call the flow fully turbulent there.

To study the role of the local Reynolds number in more detail, Fig. 15 shows axial slices of the axial vorticity obtained 
in the simulations at Rec = 150, 000 (fine grid) and Rec = 211, 200 (medium grid) for comparable local values of Rex in the 
range 75, 000 − 150, 000. Because of the symmetry (see Fig. 1), only results obtained at the starboard side of the wing are 
shown. By comparing both columns of plots in Fig. 15, the axial slices confirm that the development of the shear layer in 
the transitional range depends on the local Reynolds number. It is illustrative to compare the two bottom rows in Fig. 15
with a snapshot of the Riley and Lowson experiment in [56, Fig. 7] (at Rex = 100, 000).
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Fig. 15. Axial slices of the instantaneous axial vorticity at chord Reynolds numbers Rec = 150, 000 (a) and Rec = 211, 200 (b) at local Reynolds numbers 
Rex = 75, 000, Rex = 90, 000, Rex = 120, 000, and Rex = 150, 000 (top to bottom) obtained on the medium grid. For the latter three local Reynolds numbers, 
snapshots have been taken at times corresponding to approximately the same phase of the unsteady creation of discrete vortices.
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Fig. 16. The development of the turbulent kinetic energy on a line through the separated shear layer above the leading edge at z = 7.6 mm for Rec =
150, 000 and at z = 5.3 mm for Rec = 211, 200.

For both chord Reynolds numbers, the shear layer is steady and coherent at local Reynolds numbers up to Rex ≈ 75, 000. 
The steady co-rotating sub-vortices, which have been observed in the experiments by Riley and Lowson [56] for chord 
Reynolds numbers larger than Rex ≈ 30, 000, are not observed in the simulation. As mentioned in Sect. 4.1, experimen-
tal measurements suggest that steady co-rotating sub-vortices can be easily overwhelmed by the sensitive contra-rotating 
instabilities.

In the numerical simulations in the literature, steady sub-vortices seem only to be encountered on under-resolved 
grids. They have been observed in detached-eddy simulations at high-Reynolds number flow over a delta wing at the 
Netherlands Aerospace Center NLR for excessive levels of the artificial dissipation, but these are overwhelmed by unsteady 
counter-rotating sub-structures when the artificial dissipation is cut back [59]. Steady co-rotating sub-vortices have also 
been observed in detached-eddy simulations of high Reynolds number flow over a delta wing by Mitchell et al. [74], but 
upon grid refinement they disappear and counter-rotating unsteady sub-vortices appear. Yet, they have not been observed 
in simulations of an infinite triangular plate by Visbal and Gordnier [70]. The latter authors pay special attention to this 
apparent inconsistency in the observations.

6.1.2. Transition to turbulence
To determine the location of the onset of unsteady flow, Fig. 16 shows the turbulent kinetic energy as a function of the 

local Reynolds number on a line through the shear layer just above the leading edge. In the simulation at Rec = 150, 000 on 
the fine grid, the flow becomes unsteady at the axial location corresponding to a local Reynolds number of approximately 
Rex ≈ 80, 000 (see also Fig. 7). This is similar to the instability at Rex ≈ 78, 000 observed in the experiment [56]. In the 
simulation at Rec = 211, 200 on the medium grid, the flow becomes unsteady at approximately Rex ≈ 85, 000, whereas it is 
postponed to approximately Rex ≈ 129, 000 in the experiment.

While the transition location observed in the simulations at Rec = 150, 000 accurately agrees with the experiment, Riley 
and Lowson [56] observe a change in transition behavior at approximately Rec = 160, 000, which moves the onset of un-
steady flow downstream. This change of the flow is not observed in the simulations. In fact, the results of the simulations 
suggest that the development of the simulated shear layer for the local Reynolds number Rec = 211, 200 is similar to the 
development at Rec = 150, 000. It seems that this difference can be attributed to the presence of unsteady sub-vortices 
in the simulation for Rec = 211, 200, whereas they are observed to disappear in the experiment (see the discussion in 
Sect. 4.1).

To further study the transition to full turbulence, Fig. 17 shows snapshots (obtained on the medium grid) of the instan-
taneous axial vorticity at Rec = 211, 200, which is closer near the trailing edge than shown in Fig. 15. At x = 0.8c (Rex ≈
170, 000), coherent sub-vortices can still be distinguished. At the trailing edge x = c, the sub-vortices have gone through so 
many break-up processes that coherent sub-vortices are no longer visible. Thus, in simulations at Rec = 211, 200 the sepa-
rated shear layer becomes turbulent near the trailing edge. This is in agreement with the experiment by Riley and Lowson 
[56] who observed ‘full’ turbulence around Rex ≈ 200, 000.

In conclusion, the simulations confirm the gradual transition of the separated shear layer from coherent sub-vortices to 
turbulent flow observed in the experiments by Riley and Lowson [56]. In the simulations, the development of the shear layer 
is characterized by the local Reynolds number, as in [70]. The simulations do capture the unsteady sub-vortices, but not the 
steady sub-vortices observed in the experiments [56]. We come back to this issue in the next section on time-averaged 
results.

6.2. Time-averaged flow

In this section, the time averages of the flow over the delta wing are studied and compared with the LDV measurements 
by Riley and Lowson [56].

6.2.1. Time averages for Rec = 150, 000
For Rec = 150, 000, the time-averaged shear layer is coherent for local Reynolds numbers up to Rex ≈ 90, 000, when the 

instantaneous flow field already has become unsteady. Fig. 18 shows a comparison of instantaneous versus time-averaged 
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Fig. 17. Axial slices of the instantaneous axial vorticity at chord Reynolds number Rec = 211, 200 in the trailing edge region, at the axial locations x =
0.8c (Rex ≈ 170, 000) (top), x = 0.9c (Rex ≈ 190, 00) (middle), and x = c (bottom). Note that the approximate symmetry of the sub-vortices is destroyed at 
approximately x = 0.9c.

Fig. 18. Comparison of the instantaneous (top) and the time-averaged (bottom) axial vorticity before and after break-up of the separated shear layer in 
sub-vortices at Rec = 150, 000 computed on the fine grid.

axial vorticity. It can be seen that at Rex ≈ 90, 000 the shear layer is unsteady but coherent, and the time-average shows 
a coherent shear layer. At Rex ≈ 100, 000 the unsteady shear layer has broken up into discrete sub-vortices, and the time-
averaged axial vorticity is reduced significantly in the region of the shear layer break-up. This suggests that the break-up of 
the time-averaged shear layer is directly related to the break-up of the unsteady shear layer.
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Fig. 19. Axial slices of the magnitude of the time-averaged axial vorticity scaled by the axial location |〈ωx〉|x/u∞ at Rec = 150, 000 computed on the fine 
computational grid. The iso-surface |〈ωx〉|x/u∞ = 0.29 shows that the time-averaged sub-vortices rotate around the vortex core in the same direction as 
the flow velocity.

To further study the spatial development of the time-averaged sub-vortices observed in the simulation, Fig. 19 shows 
a few axial slices of the time-averaged axial vorticity with an iso-surface corresponding to the sub-vortices. In the range 
Rex ≈ 120, 000–150, 000 sub-structures can be observed in the time-averaged axial vorticity. This is approximately the same 
range of local Reynolds numbers as the steady sub-structures observed in the LDV measurements by Riley and Lowson 
[56]. The iso-surfaces show that the time-averaged sub-vortices lie in helical tubes that co-rotate with the flow, just as the 
steady sub-vortices observed by the latter authors. In the simulations by Visbal and Gordnier, time-averaged sub-vortices 
that co-rotate with the flow have also been observed. These authors postulate that they “are the imprint left by the regular 
break-up of the unsteady sub-structures” [70, p. 10]. The present simulations are consistent with this view.

6.2.2. Time averages for Rec = 211, 200
Finally, some results of the simulation on the medium grid at the higher chord Reynolds number Rec = 211, 200 are 

presented. Care should be taken in the interpretation of the results of this simulation, because the resolution of the medium 
grid may not be sufficient to accurately capture the shear layer at this higher chord Reynolds number. Fig. 20 shows axial 
slices of the time-averaged vorticity for local Reynolds numbers that correspond to a shear layer that is unsteady, but not 
fully turbulent.

The simulation at Rec = 150, 000 predicts break-up of the time-averaged shear layer before Rex = 100, 000. The simula-
tion at Rec = 211, 200 predicts break-up at a local Reynolds number between Rex = 100, 000 and Rex = 110, 000, which is 
somewhat higher than for Rec = 150, 00. This is in agreement with the observation in Fig. 16 that the onset of the instability 
of the shear layer occurs at a higher local Reynolds number in the simulation at Rec = 211, 200 than at Rec = 150, 000.

7. Conclusions

We have presented accurate numerical simulations of transitional subsonic flow over a delta wing. The numerical method 
is fourth-order accurate and uses a skew-symmetric finite-volume discretization of the convective terms. In this way, the 
method discretely conserves the primary conserved quantities mass, momentum and total energy, but also the secondary 
conserved quantities kinetic and internal energy. As a result, artificial diffusion is not required to keep the simulations 
stable. The method has been implemented in the NLR simulation method Enflow.

The simulations indicate that the numerical method has good stability properties as a result of preserving the energy-
conserving nature of the governing equations. It gives accurate results for the transitional aerodynamic flow over a delta 
wing studied experimentally by Riley and Lowson [56]. The primary challenge in these simulations is to accurately capture 
the development of the instability of the shear layer that separates at the leading edge of the wing [70,74]. Simulations 
have been performed at chord Reynolds numbers of Rec = 150, 000 and Rec = 211, 200. To study grid convergence, the 
simulations at the lower Reynolds number have been performed on coarse, medium, and fine grids. The numerical solution 
accurately converges to the fine grid solution above the delta wing. At the trailing edge of the wing, the numerical solution 
may not be fully converged, hence we think a classification as direct numerical simulation is not yet fully justified: some 
further refinement of the grid would be useful.

In the simulation at Rec = 150, 000, unsteady counter-rotating sub-vortices are observed at the same axial location as in 
the experiment. Steady co-rotating sub-vortices which are observed in the experiments, are not observed in the simulations. 
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Fig. 20. Slices at several transitional axial local Reynolds numbers of the time-averaged axial vorticity scaled by the axial location 〈ωx〉x/u∞ for Rec =
211, 200 as computed on the medium computational grid.

From physical experiments, it is known that the latter are masked by the unsteady sub-vortices which can be easily excited 
[73,56]. However, as in the experiments by Riley and Lowson [56] and the numerical simulations by Visbal and Gordnier 
[70], time-averaging of the unsteady counter-rotating sub-structures does give rise to steady co-rotating sub-structures. 
Possibly, both the steady and unsteady sub-vortices are physical, and the setup of an experiment or simulation determines 
which of the instabilities prevails.

As observed in the experiment, the simulations indicate that the development of the instantaneous shear layer is char-
acterized by the local Reynolds number. At Rec = 150, 000, the onset of unsteady flow and its transition to turbulence is 
accurately predicted, in good agreement with experimental data. Results of the simulation at Rec = 211, 200 on the medium 
grid seem like a continuation of the simulation at Rec = 150, 000, whereas in the experiments of Riley and Lowson [56], 
at the higher chord Reynolds number the onset of unsteady flow has moved downstream. Nevertheless, the onset of fully 
turbulent flow agrees closely with the experiments.

In conclusion, the numerical simulations performed with the fourth-order accurate energy-conserving method are numer-
ically stable and the results accurately capture the transition to turbulence observed in the experiments. This demonstrates 
the practical applicability of low-dissipation methods for simulations of transitional flow over realistic aerodynamic objects.
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