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Abstract—Aggregated demand response for smart grid services
is a growing field of interest especially for market participation.
To minimize economic and network instability risks, flexibility
characteristics such as shiftable capacity must be known. This
is traditionally done using lower level, end user, device specifica-
tions. However, with these large numbers, having lower level
information, has both privacy and computational limitations.
Previous studies have shown that black box forecasting of
shiftable capacity, using machine learning techniques, can be
done accurately for a homogeneous cluster of heating devices.
This paper validates the machine learning model for a hetero-
geneous virtual power plant. Further it applies this model to
a control strategy to offer flexibility on an imbalance market
while maintaining day ahead market obligations profitably. It is
shown that using a black box approach 89% optimal economic
performance is met. Further, by combining profits made on
imbalance market and the day ahead costs, the overall monthly
electricity costs are reduced 20%.

Index Terms—Predictive Control, Machine Learning, Virtual
Power Plants, Flexibility, Demand Response, Energy Markets.

I. INTRODUCTION

AGGREGATOR services for electricity market trade is a
growing trend in the energy sector. With fast growing

technologies in residential demand response and energy stor-
age it is becoming more viable to allow aggregated residential
flexibility to actively participate on the wholesale markets.
Many works have investigated bottom up and grey box tech-
niques which pose not only computational time constraints
but also end user privacy. Further, limited work investigates
black box aggregated demand response characterization with a
combination of multiple shiftable devices, i.e. a heterogeneous
virtual power plant (VPP). This paper aims at showing that
black box machine learning of flexibility capacity for hetero-
geneous clusters can be achieved with high accuracy. Further
it aims to combine machine learning techniques with a multi-
objective control technique. Three approaches are investigated:
real time coordination with no forecasting of VPP flexibility,
machine learned flexibility coupled to the control strategy and
finally a best case scenario is simulated with a perfect forecast
of VPP as well as knowledge of future electricity prices. This
is conducted with a cluster of 1000 households trading both

on the day ahead and an imbalance market. It is found that
flexibility capacity of a heterogeneous VPP can be forecasted
with an average error of 4%. Also, when applying this capacity
knowledge to a trade strategy up to 89% of optimum can be
realized. This profit recovers up to 20% of the costs from the
day ahead market for one month of trading.

II. RELATED WORK

Previous works have investigated residential VPP market
operation strategies. In [1] and [2], model predictive control
(MPC) techniques are used to optimize trading on multiple
energy markets. These approaches focus on prediction of VPP
behavior in response to price incentives as well as external
factors such as weather and historic electricity consumption.
Additionally in [3], a grey-box dual coordination mechanism
is investigated for multi-market trade of a homogeneous VPP
of 1000 plug in electric vehicles.

Quantifying the availability of a residential VPP flexibility
using detailed lower level information has been used to accu-
rately offer aggregate small demand response [4]. Also, grey
box techniques for flexibility assessments where some lower
level information, such as state of charge (SOC), have been
used to estimate the aggregate flexibility capacity [6]. Further
in [5], machine learning was utilized to forecast the real time
flexible capacity available. This was done with a homogeneous
cluster of heat pumps using a top down, black box approach.

This work proposes a top down, black box approach to
model and estimate real time available flexibility of a hetero-
geneous VPP and using that knowledge to optimize for both
day ahead and imbalance market trade.

III. MODELS

To test and validate a multi-market control strategy in the
simulation environment a number of models are employed.
The models considered are: the virtual power plant, electricity
markets, the individual devices, user behaviour within that
virtual power plant and finally the machine learning model
used to forecast the flexibility capacity.

978-1-5090-3358-4/16/$31.00 c© 2016 IEEE



A. Device Models

To simulate a heterogeneous virtual power plant, a set
of validated device models and smart controllers are used.
The devices modelled are smart controlled heating devices
(heat pump and micro-CHP (combined heat and power)),
white goods (dish washers, washing machines and dryers),
cold storage (such as refrigerators and freezers), and small
renewable generation (photovoltaics and wind turbine). Further
an energy pattern generator which generates non-shiftable
base electricity load profile, tap water and space heating
demand patterns. Mathematical models for all devices are fully
described in [7]. The validation of load and heat demand
profiles can be found in [8], white goods and cold store in
[9] and that of the heating devices in [5].

B. Virtual Power Plant

An aggregator bundles flexibility capabilities of distributed
generation and demand response and offers the collective
resources for smart grid services such as ancillary, e.g. con-
gestion management, as well as active electricity market
participation. This technical aggregation is referred to as a
Virtual Power Plant (VPP).

The smart control algorithm applied in this study, the Pow-
erMatcher, is a decentralized coordination mechanism which
integrates demand and supply flexibility in the operation of the
electricity system [9]. Each device is equipped with a smart
controller which uses price incentives to coordinate in real-
time the devices’ flexibility within the comfort boundaries.
The only information that is exchanged between the device
agents and the control algorithms are bids. These bids express
to what degree an agent is willing to pay or be paid for a
certain amount of electricity and can also be easily aggregated.
In this way the end users privacy can be protected while still
offering demand response services. The smart controllers as
well as bid formations for all devices are fully described in
[7], [9], and [8].

C. Electricity Markets

The electricity markets focused on in this study are the day
ahead spot market, and the imbalance market. These are based
on the current Dutch energy markets.

1) Day Ahead Market: The day-ahead market allows
trading of electricity with a timespan of 14 days up to one
day prior to delivery. Anonymous supply and demand bids are
made for every hour of day D. At 12 am, on D-1, the market
is cleared and a uniform price for every hour is established. In
the Netherlands the day ahead power exchange is APX Power
NL Day-Ahead Market

2) Imbalance Market: In the Netherlands, if a Balancing
Responsible Party (BRP) is not able to maintain a balanced
portfolio, the transmission system operator (TSO) activates
reserve capacity. This fee for this service depends on the total
imbalance of the TSOs control area and the imbalance of the
BRP as shown in Table I. The total activated reserve is called
net regulating volume (NRV), which is positive when upward
reserve is required and negative for downward reserve. The

maximum incremental price (MIP) is the maximum price paid
by the TSO to activate upward reserve. The minimum price
paid to the TSO for downward reserve is called the minimum
decremental price (MDP) and an administrative fee depending
on the total system imbalance.

TABLE I
IMBALANCE TARIFF DEPENDING ON SYSTEM SHORTAGE/EXCESS.

NRV>0 NRV<0
Positive BRP Imbalance MDP- α MIP
Negative BRP Imbalance MDP MIP + α

The Dutch TSO TenneT publishes the bidding ladder (see
Figure 1) as well as the most recently deployed regulating and
reserve power on a minute by minute basis (so-called balance
delta), which provides an indication of the settlement prices.
Using this, BRPs can choose to regulate against the imbalance
in the form of passive contribution, i.e. they counteract the
imbalance without being activated through the bidding ladder
but can still receive remuneration.

Fig. 1. Schematic of Dutch Control Reserve Bidding Ladder. [10]

D. Machine Learning Model

As was stated, previous works have proved the validity
of machine learning for prediction of a homogeneous VPPs’
capacity, see [5]. The machine learning technique yielding the
most accurate result was a single hidden layer artificial neural
network (ANN). ANN is a pattern recognition technique which
is used when the domain of the problem is not entirely known.
A supervised ANN is able to represent non-linear relationships
between the input and output data by training the hidden
layer of neurons with previously recorded data representing
a desired relationship (training set).

Fig. 2. Data Input and Output of the Predictive Model.

A single hidden layer neural network with sigmoid transfer
function, as presented in [5] was used to represent the de-
scribed model. With the input data being: ramp power (∆P ),
which is the requested deviation power from the current day
ached scheduled power, scheduled activation time (tactive),



day ahead schedule power at time of activation (PSched),
maximum and minimum bid (MaxP and MinP ), and output
longevity (τ ), that is the length of time the provided ramp
power can be sustained.

IV. CONTROL OPTIMIZATION ALGORITHM

A simple control strategy was designed which could be
applied for all three cases: without forecasting of shiftable
capacity, machine learned capacity and that with the perfect
forecast of VPP shiftable capacity and market prices. All three
approaches use a pre-determined day ahead schedule defined
in Section V which is generated to optimally perform to the
day ahead APX prices. A general overview of the connection
to markets can be seen in Figure 3.

Fig. 3. Connection to Markets.

A. Assumptions and Constraints

A number of assumptions and constraints are defined for
this control strategy itemized below:

• The imbalance market is a dual pricing system for short
and long offers like that of the Dutch balancing market.

• The market will operate on a 15 minute time slot.
• The administration fee, α, will be neglected for imbal-

ances.
To ensure profitability as well as stability in the network

constraints are defined for the control strategy:
• The VPP will ramp up only for negative prices.
• The ramp down marginal cost must be higher than the

current APX price.
• The VPP must consider future, day ahead schedule,

requirements in trade.
• The VPP cannot offer ramp power outside the bounds of

the aggregated bid.

B. Trading Strategy

The trading strategy will be repeated on a 15 minute time
scale. Firstly the total ramp up, ↑ ETotal, and down energy
capacity, ↓ ETotal, is calculated. This is done differently for
all three approaches. For the no forecasting approach, the ramp
up capacity is estimated using Equation (1):

↑ Etotal =

{
(PMax−PSched).∆t<0, (PMax−PSched).∆t

else, 0

}
(1)

Fig. 4. The Aggregated Bid of the VPP. [9]

With PMax being the current maximum ramp power of the
VPP aggregated bid as seen in Figure 4, PSched the current
day ahead scheduled power and ∆t the time interval of the
imbalance market, 0.25 hours (15 minutes). Similarly, the
ramp down capacity is estimated using Equation (2):

↓ Etotal =

{
(PSched−PMin).∆t<0, (PSched−PMin).∆t

else, 0

}
(2)

With PMin being the current minimum ramp power of the
VPP aggregated bid.

The machine learning model approach, described in sub-
section VI-B, returns the τ for the given ramp up power,
PMax−PSched and ramp down power PSched−PMin provided
they are greater than zero. In this case, the associated ETotal

is set to zero and unavailable for imbalance trade.
Finally, for the perfect forecast approach, the ↑ ETotal

and ↓ ETotal are calculated using a bottom up approach,
where every device, in addition to their priority bid, sends
their shiftable ramp up and down energy capacity which is
aggregated at the top level. This energy capacity is calculated
with full knowledge of the future heat and electricity demands
of the device. To ensure the flexibility capacity is reserved for
the future day ahead schedule, the amount of ramp up and
down energy required to meet the day ahead schedule for the
next hour is calculated in Equations (3) and (4) with PAlloc

being the current total allocation of the VPP:

↑ ESched =

n∑
t=1


PSched(t) < PMax∧, (PSched(t)−PAlloc).∆t
PAlloc > PSched(t)

else, 0


(3)

&

↓ ESched =

n∑
t=1


PSched(t) > PMin∧, (PAlloc−PSched(t)).∆t
PAlloc > PSched(t)

Else, 0


(4)

From this the available energy which can be traded for
imbalance is calculated:

↑ EAvail = (↑ ETotal− ↑ ESched) (5)

&
↓ EAvail = (↓ ETotal− ↑ ESched) (6)

The approaches: No Forecasting and Machine Learned
Capacity, use the previous day minimum and maximum im-
balance prices for short and long. While, the perfect forecast is



given the future imbalance prices for the current day. Using the
estimated imbalance price bounds, a linear mapping between
the maximum of the previous days Eavail is to calculate the
minimum cost for ramp up and down services.

↓ Cm = (
↓ Emax(d− 1)

CAPX− ↓ max(CI(d− 1))
). ↓ EAvail + CAPX

(7)
&

↑ Cm = (
↑ Emax(d− 1)

↑ min(CI(d− 1))
). ↑ EAvail (8)

Note: if in Equation (8), ↑ min(CI(d− 1) is not negative,
the last day (d− 2, ...) with a negative price will be used.

To trade on the imbalance market, two individual bids
consisting of an array of power and price (e /MWh), for ramp
up and down services, are then generated. To do this a price
will be assigned for each power step between zero and PAvail

which is Eavail / ∆t. Finally, ↓ C(n) and↑ C(n) are calculated
with (9) and (10) where n = 0 → PAvail, the power steps in
the offered bids.

↓ C(n) = (
↓ maxCI(d−1)− ↓ Cm

↓ Pavail
).n+ ↓ Cm (9)

&

↑ C(n) = (
↑ Cm− ↑ min(CI(d−1)

− ↑ Pavail
).n+ ↑ Cm (10)

V. SCENARIO

A simulation of 1000 individual households is created. Its
design is an extended version of a field trial in Hoogkerk,
The Netherlands, consisting of 22 smart equipped households.
[12]. Each home has its own individual generated base, non-
flexible electricity profile as well as individual heat and tap
water demand profiles. These profiles are created using TNO’s
energy pattern generator, a validated software tool [8], that
produces high resolution electricity and heat demand profiles.
Each household is equipped with a flexibly controlled heating
device, 800 heat pumps and 200 micro-CHPs, each of which
was attached to a 110 liter spaced heating buffer and 90 liter
tap water buffer. Additionally, the penetration of white good
devices is based on a Dutch survey [11] and can be seen in
Table II.

TABLE II
1000 HOUSEHOLD HETEROGENEOUS CLUSTER MAKE-UP.

Appliance Penetration (%)
Refrigerator 100

Freezer 79
Dishwasher 47

Washing Machine 100
Tumble Dryer 59

Heat Pump 80
Micro-CHP 20

Further as in PowerMatching city, every household is
equipped with a small photovoltaic (PV) panel. For this, real
PV measurements in The Netherlands are utilized and scaled
to match that of 1000 households (1240 kW nominal electric

power). Finally, the amount of offshore and onshore wind in
the simulations is based on the WLO-SE (Welfare and Living
Environment) scenarios on energy supply and demand with a
time horizon up to 2040 [13].

The three control strategies are run for one month (March)
using real day ahead, APX, prices taken from previous year.
Further, real TSO imbalance prices and volumes, from the
Dutch TSO TenneT, during the same time period are used. To
generate the day ahead schedule, using day ahead APX prices
as incentives, the cluster is steered by the PowerMatcher,
the cluster responds accordingly. The responding aggregated
active power behavior profile is then averaged to a 15 minute
resolution to create an optimal day ahead schedule for this
price profile. In Figure 5, a depiction of the APX prices and
the day ahead schedule generated can be seen.

Fig. 5. APX Price with associated day ahead schedule for one week.

As day ahead, imbalance price settlement is done in a
15 minute resolution. When the control strategies negatively
contribute to an imbalance a financial profit is the result (e.g.
system is short and aggregator is long), if the aggregator
contributes to an imbalance the result is a financial cost.

VI. VALIDATION

Section IV describes the control strategy which is used
for offering flexibility on the imbalance market. This control
strategy was applied with three variations. Firstly, the no fore-
casting, which uses only the real time maximum and minimum
ramp power to estimate flexible capacity. Secondly, the ma-
chine learned capacity, which uses a supervised neural network
model to predict the available capacity. Finally, the perfect
forecast, which uses lower level device state information as
well as future demand and price data to optimally trade on
the imbalance market. Below will describe the modifications
in strategy, validation process and data required for each
approach.

A. No Forecasting

Using marginal cost and trading strategy described in Sec-
tion IV, a few simplifications are made to allow for lack
of flexibility capacity. Firstly, it is assumed that full ramp
capacity can be met in the 15 minute time slot. Therefore the
∆P up is the difference between day ahead and maximum
power in aggregated bid. The maximum ramp down power
is the difference between the minimum bid power and day



ahead schedule, assuming minimum is less than the day ahead
schedule. The constraint for future day ahead schedule is done
by evaluating if the current VPP conditions could perform at
the future scheduled power. To estimate the upper and lower
bounds for the imbalance prices, the minimum and maximum
from the previous day are used.

B. Machine Learned Capacity

The training and validation set for the ANN model used
the cluster scenario described in Section V. A 1000 household
heterogeneous VPP with a mix of heat pumps, micro-CHPs,
white goods and cold storage units are used for flexible de-
vices. The VPP follows a pre-determined day ahead schedule
and ramp powers are deviation requests from this day ahead
profile. From this, the model estimates the longevity τ , the
amount of time the VPP can hold a ramp power, and thus
estimate the shiftable capacity of the certain ramp direction.

For both the training and validation set of clusters, a random
ramp power, between -100 and 100kW, was assigned. Further,
a ramp power was assigned at various hours of the day and
requested to hold for the remainder of the day. The data set
consists of 2000 observations divided into two sets, training
and validation. The training data is a random sample drawn
from the input data (1500 rows of data). The rest of the
data from the input set (500 rows of data) is used for model
validation. After training, as shown in Figure 2, the machine
model is given a day ahead schedule of the cluster as well at
the ramp power at a given time and asked to estimate the ramp
longevity τ . These scenarios were then simulated to validate
τ for each case.

Fig. 6. Percent Error versus Ramp Power of Capacity Prediction for ANN
Algorithm.

Figure 6 depicts the error seen over the validation set.
Although there are a few outliers, it is seen that the average
error over all sets is 4.28%. When comparing to that [5] with
a slightly lower average error of 2.3%. This model was then
used to estimate the ramp up and down capacity during run-
time as described in Section IV. As is done in the no-forecast
strategy, the minimum and maximum imbalance prices for the
day are taken the previous day.

C. Perfect Forecast

The perfect forecast control provides best case scenario for
steering a VPP for imbalance trade. Here every 15 minutes
the individual shiftable energy per device is calculated and

aggregated. This is done using the known future demand and
user behaviour. For example, heat demand for the next 15
minutes as well as inflexible household load will be known to
give an exact amount of ramp up and down energy capacity
from the day ahead schedule. Further, the maximum and
minimum imbalance prices for that day are known before
trading. While this is an unrealistic scenario it gives an upper
bound on assessing the benefit of using forecasted flexibility
in a control strategy.

VII. RESULTS

The three strategies; no forecast, machine learned capacity
and perfect forecast for the scenarios described in section V
were simulated for the entire month of March. Figure 7 depicts
the available ramp up and down flexibility for the VPP for
a day. Here, it can be seen that for the strategy with no
forecasting there is fast degradation of ramp up and down
flexibility due to not knowing shiftable energy. This causes
moments where the VPP is not longer able to meet the day
ahead profile and thus generating imbalances.

Fig. 7. Flexibility Degradation with No Forecasting.

However, in Figure 8, the same day using a forecasted ramp
up and down capacity, the degradation is clearly preserved
allowing the VPP to maintain its day ahead schedule when
imbalance prices are lower as well as avoiding generating
imbalances. This was seen to an even further degree for the
perfect forecast strategy.

Fig. 8. Flexibility Degradation with Machine Learning

A comparison between total power allocation for each
control strategies to the settled imbalance price can be seen in
Figure 9. Here it can be seen that the no forecast strategy offers
more ramp down flexibility at hour 9-12 when imbalance
prices are high however it is at the expense of generating large
imbalances in the evening (hour 18-24). Perfect forecast and



machine learned forecasted strategies are almost identical by
offering less flexibility but maintaining balance in the evening.

Fig. 9. All Control Strategies Allocations Versus the Imbalance Price

An overview of the economic evaluation of all strategies can
be seen in Table III. Using the APX prices it is calculated that
the total cost for 1000 households on the day ahead market
was e 16,773 for one month. The cost is the settled price
the VPP must pay for generating imbalances. Here it can be
seen that with black box forecasting alone an 82% reduction
in cost was seen. Further the perfect forecast reduced costs
from generated imbalances by 86%. Additionally, the revenues
from trading ramp and down flexibility were significantly
increased for both the machine learned and perfect forecast
control strategies. Finally, if treating the no forecast and
perfect forecast as the upper and lower bound the simple black
box machine learned technique reaches 89% of the achievable
profit benefit. It should be noted that in addition to knowledge
of the available flexibility, profit is dependent on the imbalance
prices for the day. For the no forecast and forecasted case,
the previous day minimum and maximum imbalance prices
were used as an overall upper and lower bound for cost
assignment of flexibility. With the exception of a few days, the
daily minimum and maximum imbalances prices were similar.
Further, on the days where the previous days imbalance prices
were quite different, there was also limited flexibility available
for balancing services due to a shift in outdoor temperature.

TABLE III
COST PROFIT EVALUATION OF VPP.

No Forecast Forecasted Capacity Perfect Forecast
Cost (e ) 1,427 257 199

Revenue (e ) 1,273 3,482 3,664
Profit (e ) -154 3,224 3,465

It should be noted that the VPP did not offer flexibility
when a revenue could not be made. However, cost reductions
specifically in the day ahead costs could be also potentially be
significantly reduced if flexibility forecasting was incorporated
in the day ahead profile generation. Here some flexibility could
be reserved to purchase energy when the imbalance price is
lower than that of the day ahead market.

VIII. CONCLUSION

Black box machine learning of flexibility capacity of a
heterogeneous cluster can be done with a high accuracy of
<5%. This top down approach allows shiftable electricity to
be estimated without communicating large amounts of data
or requiring end users to share privacy sensitive information

outside the home. This knowledge also lowers imbalance risk
for aggregators when using VPP flexibility for smart grid
services. It was shown that applying models to multi-market
trade, a VPP of residential demand response can be profitable
without jeopardizing stability of the network, i.e. generating
large imbalances and thus cost. In fact, imbalances were ab-
sorbed resulting in significant profitable trade on the imbalance
markets. Specifically, it was seen that up to 89% of gain is
possible by using black box supervised forecasting compared
to a perfect forecast, using known flexibility capacity and
imbalance prices. When combining the gain with the cost
from day ahead trade, the overall monthly cost of electricity
for the VPP decreased by 20%. Flexibility characterization is
necessary for low risk operation of smart grid services. This
can be accurately forecasted with black box approach machine
learning models. Incorporating such a prediction model into
the business logic of an aggregator increases optimal trade
strategy.
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