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Abstract. Currently, rubber products cannot simply be reprocessed after their product life, 

due to the irreversible cross-linking methods traditionally applied. The purpose of this work 

is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can 

be used for the development of recyclable rubber products. Unfortunately, the applicability of 

the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature 

applications, because of the rapid deterioration of the compression set at elevated 

temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber 

modified with thiophene or cyclopentadiene moieties may extend the temperature application 

range and results in rubber products with acceptable properties. Finally, rubber products 

generally comprise fillers such as silica, carbon black or fibers. In this context, the 

reinforcing effect of short cut aramid fibers on the material properties of the newly developed 

thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the 

resulting products were found to be comparable to those of a fiber reinforced, peroxide cured 

reference sample. 

 

 

1. Introduction 

Rubber products have become an integral and essential part of our daily lives over the last 150 

years since the invention of sulphur vulcanization by Charles Goodyear. Cross-linking is crucial as it 

provides good elasticity and high strength to rubber products. Unfortunately, cross-linking also 

prevents melt processability, making it difficult to recycle cross-linked rubber products, at least in a 

cradle-to-cradle context. Devulcanization allows for the cleavage of cross-links, but also causes bond 

scission in the polymer main chain, which is detrimental for the performance of the rubber recyclate 

compared to the virgin rubber material [1,2]. An alternative to devulcanization of rubbers is found in 

thermoreversible cross-linking with Diels-Alder (DA) chemistry being particularly useful [3]. 

Thermoreversibly cross-linking is applied to obtain materials that combine the elastic properties of a 

permanently cross-linked rubber at service conditions with the melt (re)processability of a non-cross-

linked rubber or thermoplastic. In our previous studies a commercial ethylene-propylene rubber 

(EPM) grafted with maleic anhydride has first been modified with furfurylamine to introduce furan 

groups along the rubber backbone. Next, these pendant furan groups were cross-linked with a 

bismaleimide (BM) via a DA coupling reaction (Figure 1).  

http://creativecommons.org/licenses/by/3.0
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Figure 1. Diels-Alder Cross-Linking and Retro-Diels-Alder De-Cross-Linking of Furan-Functionalized 

Elastomers with Bismaleimide Cross-Linkers. 

 

The thermoreversibly cross-linked products can be compression moulded into samples that display 

material properties similar to peroxide cured and sulphur vulcanized EPDM reference samples. 

Furthermore, upon cutting and re-moulding samples with similar properties as the original samples 

were obtained (Figure 2). This demonstrates the thermoreversibility of the DA reaction and the 

recyclability of DA cross-linked rubber.  

 

Figure 2. Reprocessing of Bismaleimide Cross-Linked, Peroxide Cured and Sulphur Vulcanized EP(D)M 

Rubbers [3] 
 

The goal of this study is to investigate the conditions at which these newly developed 

thermoreversibly DA cross-linked rubber products can be applied with a focus on the effects of 

compression and relaxation times and temperature on elasticity. Some alternative DA diene-dienophile 

couples are studied and suggested for further research in order to overcome any shortcomings of the 

original EPM-g-furan/BM combination. Some rubber products are compounded with strong fibers, 

such as aramid fibers, for reinforcement [4,5]. It will be explored whether benefits of applying 
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thermoreversibly cross-linking in the presence of aramid fibers can be found, for example in the 

recovery of the fibers by de-cross-linking the rubber matrix, the ability to homogeneously redistribute 

the fibers by reprocessing the product and/or the possibility of inducing (thermoreversible) interactions 

between the fibers and the rubber matrix. 

 

2. Experimental 

2.1. Materials 

Non-cross-linked, peroxide cured and sulphur vulcanized EPDM reference samples with a medium 

ethylidene (ENB-EPDM, Keltan 8550C, 5 3 wt% ethylene, 5.5 wt% ENB) and non-cross-linked, 

maleated EPM (EPM-g-MA, Keltan DE5005, 49 wt% ethylene, 2.1 wt% MA, Mn = 50 kg/mol, PDI = 

2.0) were kindly provided by ARLANXEO Netherlands B.V. Prior to the reaction, EPM-g-MA was 

dried in a vacuum oven for one hour at 175 °C to convert present diacids into anhydride. Short cut 

aramid fibers (3 mm) were kindly provided by Teijin Aramid. Furfurylamine (FFA, Sigma-Aldrich, 

≥99%) and 2-thiophenemethylamine (2-TMA, Sigma-Aldrich, 97%) were freshly distillated before 

use. 3-Cloropropylamine (APCl, > 99%), lithium cyclopentadiene (LiCp, > 99%), 1,1-(Methylenedi-

4,1-phenylene)bismaleimide (BM, 95%), Bis(t-butylperoxy-i-propyl) benzene (Perkadox14-40, 

AkzoNobel), Octadecyl-1-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (99%), tetrahydrofuran 

(THF, >99.9%), decalin (98%) and acetone (>99.5%) were all bought from Sigma-Aldrich. 

 

2.2. Methods 

2.2.1. Furan-functionalization and BM Cross-linking of EPM-g-MA 

The EPM-g-MA precursor was converted into EPM-g-furan according to a reported procedure [6]. 

40.0 g of EPM-g-furan (8.6 mmol furan content) and 40 mg anti-oxidant were dissolved in 500 mL 

THF. 0.5 eq. (based on furan content of EPM-g-furan as determined from characterization by infrared 

spectroscopy and elemental analysis) of the BM was dissolved in THF and added to the 10 wt% 

rubber solution under stirring. The majority of the solvent was evaporated in the fume hood by 

blowing over air. The residual solvent was removed in a vacuum oven at 50 °C and the resulting 

product was compression molded at 150 °C and 100 bar for 1 h and thermally annealed in an oven at 

50 °C for 7 days. Compression molding was performed on a Taunus Ton Technik V8UP150A press, 

equipped with a temperature controller. 

 

2.2.2. Cyclopentadiene Modification and Cross-linking 

The method for the functionalization of EPM-g-MA with furfurylamine was slightly modified to 

facilitate grafting of thiophene and cyclopentadiene moieties to the EPM backbone. Cyclopentadiene 
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was grafted onto the EPM by first grafting 3-Cloropropylamine and using the halide as a leaving group 

for lithium cyclopentadiene according to a reported procedure [7,8]. 45.0 g EPM-g-MA rubber (9.6 

mmol MA) was dissolved in 500 mL THF at room temperature. 4.5 g of APCl (28.9 mmol; 3.0 eq. 

based on MA content in EPM-g-MA) was then added to the 10 wt% rubber solution. The reaction 

mixture was stirred for 5 h in a closed system at room temperature and then precipitated by pouring it 

slowly into a tenfold amount of acetone (5 L) under mechanical stirring, yielding the polymer product 

as white threads. The product (EPM-g-Cl) was dried to constant weight in an oven at 35 °C. 

Subsequently, the product was briefly compression molded at 175 °C and 100 bar to ensure the 

conversion of all intermediate maleimide acid products to imide products. 40.0 g of the resulting 

EPM-g-Cl (8.6 mmol pendant Cl groups as determined from characterization by infrared spectroscopy 

and elemental analysis) and 40 mg anti-oxidant were dissolved in 500 mL THF under N2. An 

equimolar amount of LiCp was added under stirring and left to react at 30 °C for 18 h. Afterwards, the 

reaction mixture was precipitated in a 20:1 molar excess of demi-water under mechanical stirring, 

yielding the polymer product as white threads. The product (EPM-g-Cp) was dried in a vacuum oven 

at 150°C overnight to remove any traces of water and unreacted LiCp. The resulting product was 

compression molded at 150 °C and 100 bar for 1 h and thermally annealed in an oven at 90 °C for 3 

days. 

 

2.2.3. Thiophene-functionalization and BM Cross-linking of EPM-g-MA 

45.0 g EPM-g-MA rubber (9.6 mmol MA) was dissolved in 500 mL THF at room temperature. 3.2 g 

of freshly distillated 2-TMA (28.9 mmol; 3.0 eq. based on MA content in EPM-g-MA) was then added 

to the 10 wt% rubber solution. The reaction mixture was stirred for 5 h in a closed system at room 

temperature and then precipitated by pouring it slowly into a tenfold amount of acetone (5 L) under 

mechanical stirring, yielding the polymer product as white threads. The product (EPM-g-thiophene) 

was dried to constant weight in an oven at 35 °C. Subsequently, the product was briefly compression 

molded at 175 °C and 100 bar to ensure the conversion of all intermediate maleimide acid products to 

imide products. 40.0 g of the resulting EPM-g-thiophene (8.6 mmol thiophene content as determined 

from characterization by infrared spectroscopy and elemental analysis) and 40 mg anti-oxidant were 

dissolved in 500 mL THF. 0.5 eq. (based on thiophene content of EPM-g-thiophene) of the BM was 

dissolved in THF and added to the 10 wt% rubber solution under stirring. The majority of the solvent 

was evaporated in the fume hood by blowing over air. The residual solvent was removed in a vacuum 

oven at 50 °C and the resulting product was compression molded at 150 °C and 100 bar for 1 h and 

thermally annealed in an oven at 90 °C for 3 days. 
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2.2.4. Preparation of fiber-filled, BM Cross-linked EPM-g-furan Rubber Compounds 

18 g of EPM-g-furan was fed to an internal mixer (70% fill factor) and homogenized at 50 rpm and 

130 °C for 4 min. Then, 1, 3 or 5 phr of short cut aramid fibers was added. When the torque was stable 

(after typically 2-3 min), the BM cross-linker was added (0.2 to 1.5 molar eq. based on furan content). 

Mixing was continued for 2 min before the compound was removed from the mixer. Sample bars of 

the obtained products were obtained by pre-heating the materials in a mold at 140 °C for 5 min and 

compression molding them at 140 °C and 100 bars for 15 min. The resulting sample bars were 

thermally annealed in an oven at 50°C for a minimum of 72 h to ensure complete cross-linking. 

 

2.2.5. Preparation of fiber-filled, Peroxide Cured ENB-EPDM Rubber Compounds 

18 g of ENB-EPDM was fed to an internal mixer (70% fill factor) and homogenized at 50 rpm and 70 

°C for 4 min. Then, 1, 3 or 5 phr of short cut aramid fibers was added. When the torque was stable 

(after typically 2-3 min), 0.5, 1 or 2 phr of pure peroxide was added slowly to the mixture. The rubber 

compound was mixed for 4 more min until it was removed from the mixer. This rubber compound was 

then vulcanized by pre-heating in a mold at 160 °C for 5 min and compression molding at 160 °C and 

50 bars for 35 min.  

 

2.3 Characterization 

The conversion of EPM-g-MA to EPM-g-furan, EPM-g-thiophene and EPM-g-Cl was followed by 

Fourier Transform Infrared spectroscopy (FT-IR) and elemental analysis (EA). FT-IR spectra were 

recorded on a Perkin-Elmer Spectrum 2000. Rubber films with a thickness of 0.1 mm were 

compression molded at 150 °C and 100 bar for 30 min, thermally annealed to ensure maximum DA 

cross-linking and measured in a KBr tablet holder. Measurements were performed over a spectral 

range from 4000 to 600 cm-1 at a resolution of 4 cm-1, co-averaging 32 scans. Deconvolution was used 

to quantify the areas under the individual FT-IR peaks (R2> 0.95). The differences in relative peak 

areas were used to calculate the reaction conversions. The methyl rocking vibration peak at 723 cm-

1was used as an internal reference, as it originates from the EPM backbone and is not affected by 

chemical modification. The decrease of the absorbance of the C=O symmetrical stretch vibration of 

the anhydride groups at 1856 cm−1 was used to calculate the conversion of the reaction from EPM-g-

MA to EPM-g-furan, according to a reported procedure [6]. EA for the elements N, C and H was 

performed on a Euro EA elemental analyzer. The nitrogen content was related to the anhydride 

conversion according to a reported procedure [3]. 
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Tensile tests were performed on an Instron 5565 with a clamp length of 15 mm, according to the 

ASTM D4-112 standard. A strain rate of 500 ± 50 mm/min was applied. Test samples of 45 mm long, 

5 mm wide and 1 mm thick were prepared by compression molding. For each measurement 10 

samples were tested and the two outliers with the highest and the lowest values were excluded. Data 

presented are averages of the other 8 tests. The median stress-strain curves in the figures were selected 

to represent the entire series of a sample. The compression set test is used to measure the elasticity as 

it is affected by the time and temperature of compression and/or relaxation. Compression set tests were 

generally performed according to the ASTM D931 standard, using a home-made device and 

cylindrical samples with a thickness of 6.0 ± 0.1 mm and a diameter of 13.0 ± 0.1 mm, which were 

prepared by compression molding. The samples were compressed to 75% of their original thickness 

for 70 h at room temperature and relaxed for 30 min at 50 °C. Another series of compression set 

experiments was performed in which the samples were compressed to 75% of their original thickness 

for 70 h at 25, 60, 100 and 140 °C and relaxed for 30 min at room temperature. 

 

3. Results 

3.1. Application Window 

The furan-functionalization of EPM-g-MA and subsequent BM cross-linking was successfully 

performed according to the reported procedure [6]. The cross-link density of this thermoreversibly 

cross-linked rubber was found to be 2.07.10-4± 0.21.10-4mol/cm3, which is similar to that of the 

irreversibly peroxide cured and sulphur vulcanized EPDM reference samples (1.98.10-4± 0.18.10-4 and 

1.85.10-4± 0.16.10-4 mol/cm3, respectively).Compression set experiments were performed on these 

samples under different conditions to probe the effects of the dynamics of the thermoreversibly cross-

linked rubber with the thermoset rubber references (Figure 3). The compression set was studied as a 

function of relaxation time at room temperature for the 3 mentioned rubber products after 70 h of 

compression at room temperature (Figure 1A) and as a function of the compression time at room 

temperature followed by 30 min relaxation at room temperature (Figure 1B).  

 The compression set of the BM cross-linked EPM-g-furan, the sulfur vulcanized and 

peroxide cured EPDM reference samples decreases with the time after the imposed compression. It 

appears that the decay in compression set is linear up to 50 min after the measurement at which the 

initial compression set value seems to have halved for all three samples. Similarly, longer compression 

times result in higher compression set values for all three samples. Meanwhile, the compression set 

differs significantly between the different samples despite their similar cross-link densities. The results 

suggest that the dynamic character of the thermoreversible cross-links does not have a significant 



7

1234567890

Innovation in Polymer Science and Technology 2016 (IPST 2016) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 223 (2017) 012004 doi:10.1088/1757-899X/223/1/012004
 

 

effect on the elastic properties of the reprocessable rubbers at room temperature and that the DA cross-

links act as covalent cross-links at room temperature. 

 
Figure 3. Compression set of BM cross-linked EPM-g-furan samples and of peroxide cured and sulphur 

vulcanized EPDM reference samples with similar cross-link densities applying A: relaxation for different times 

at room temperature after 70 h of compression at room temperature and B: 30 min relaxation at room 

temperature after compression for different times at room temperature. Lines are guides to the eye. Error bars 

indicate ± 1% standard deviation. 

 

The compression set of BM cross-linked EPM-g-furan and the peroxide cured and sulphur vulcanized 

EPDM references have also been studied for different compression temperatures (Figure 4). 

 

 

Figure 4. Compression set at different temperatures of BM cross-linked EPM-g-furan samples and of peroxide 

cured and sulphur vulcanized EPDM reference samples with similar cross-link densities. The lines are guides to 

the eye. The error bars indicate ± 1 % standard deviation, taken here as relative error on the measured data. 

 

Although the room temperature compression set is similar for the 3 rubber samples, it appears that a 

slight increase in compression temperature has a strongly detrimental effect on the compression set of 

the thermoreversibly cross-linked EPM-g-furan sample compared to the irreversibly cross-linked 

reference samples. This is probably due to a shift of the DA reaction equilibrium towards the retro-DA 

reaction at elevated temperatures. The dynamic equilibrium allows for a rearrangement of the cross-

links and, thus accommodating the sample to the imposed compression. This means that the use of the 

A B 
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thermoreversibly cross-linked EPM-g-furan is strictly limited to (below) room temperature 

applications, such as wire and cable insulation or sealant applications. Away to overcome this can be 

found in using a different diene-dienophile couple for the DA cross-linking reaction. 

 

3.2  Alternatives Yielding Improved High Temperature Performance 

Other diene-dienophile couples can be used to thermoreversibly cross-link modified elastomers with 

bismaleimide via DA chemistry [9]. An example is the modification of EPM-g-MA with 2-

thiophenemethylamine and the thermoreversible BM cross-linking of the resulting EPM-g-thiophene. 

The product was found to be cross-linked based on its insolubility (cross-linked polymers are non-

soluble with respect to their non-cross-linked precursors) and the high Young’s modulus and low 

elongation at break with respect to its non-cross-linked precursor (Figure 5).  

 

 

Figure 5. Tensile Test Results of Non-Cross-Linked EPM-G-Furan and EPM-G-Thiophene, Their BM Cross-

Linked Products and A BM Cross-Linked EPM-G-Cyclopentadiene rubber. Error Bars Indicate ± 1 Standard 

Deviation. 

 

Cyclopentadiene also seems to be a good alternative for furan as the temperature at which the retro-

DA reaction is known to starts to occurring is higher (150-215°C for cyclopentadiene [10,11] versus 

110-170 °C for furan [12-14]). Some preliminary experiments were performed in which EPM-g-MA 

was functionalized with 3-chloropropylamine and the resulting pendant chloride group was reacted 

with lithium cyclopentadiene [7]. Although this approach was successful for the highly functionalized 

polyketones used in a previously reported study [7], the application to EPM-g-MA elastomers with a 

low degree of functionalization was less successful. The high reactivity of the cyclopentadiene groups 

is responsible for a number of side-reactions [15], resulting in a low conversion. More importantly, the 

formation of cross-links between the pendant cyclopentadiene groups upon reaction with bismaleimide 

was found to proceed much slower compared to the furan/bismaleimide couple. This is probably 
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because the DA reaction kinetics for cyclopentadiene requires higher temperatures, but may also be 

related to the lower concentration of functional groups, but is also likely to be a result of the low 

mobility of the polymer backbones that make it hard for the functional groups to recombine. The 

relatively small, bifunctional BM cross-linking agents were found to have a relatively high mobility in 

the rubber matrix, allowing for a faster recombination of diene and dienophile. As a result, the 

cyclopentadiene cross-linked EPM has a lower Young’s modulus and higher elongation at break with 

than the BM cross-linked EPM-g-furan (Figure 5). It is clear that further optimization of this system is 

actually required before being able to draw any conclusion on its applicability.  

 

3.3. Aramid Fiber Reinforced Rubber Composites  

Finally, rubber products are usually reinforced with fillers such as aramid fibers. For the BM cross-

linked EPM-g-furan, the Hardness and Young’s modulus increase and the elongation at break of the 

rubber compounds decreases upon compounding with larger amounts of short cut aramid fiber (Figure 

6). No significant changes were observed in the tensile strength and the compression set. With the 

exception of the compression set, the effect of fiber loading of the thermoreversibly cross-linked 

rubbers on the material properties was the same as for fiber-loaded, peroxide cured ENB-EPMD 

rubbers with the same cross-link density (2.45.10-4± 0.28.10-4 and 2.63.10-4± 0.27.10-4, respectively). 

The inferior compression set of the thermoreversibly cross-linked rubbers with respect to that of the 

peroxide cured reference sample might be a result of the rearrangement of cross-links under 

compression. Nevertheless, fiber filled rubber products may prove to be a suitable application for 

thermoreversibly cross-linked rubber as the addition of aramid fibers significantly increases the 

hardness and Young’s modulus.  

 

Figure 6. A: Hardness and Compression Set at Room Temperature and B: Young’s Modulus, Tensile Strength 

and Elongation at Break of Non-Cross-Linked EPM-G-Furan and Peroxide Cured ENB EPDM with 1 phr of 

Short-Cut Aramid Fibers and BM Cross-Linked EPM-G-Furan with Different Fiber Loading. Error Bars Indicate 

± 1 Standard Deviation. 

 

A B 
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4. Conclusions  

The applicability of a newly developed, reprocessable EPM rubber modified with furan groups and 

cross-linked with bismaleimide was studied by determining the material properties under different 

conditions. The dynamic character of the thermoreversible Diels-Alder cross-linking chemistry does 

not have a significant effect on the elastic properties of the reprocessable rubber at room temperature. 

However, the application of this thermoreversibly cross-linked elastomer remains limited to room 

temperature applications, because of the rapid deterioration of the elasticity upon an increase in 

temperature compared to irreversibly cross-linked rubbers. Alternative diene-dienophile couples, such 

as bismaleimide cross-linking of EPM modified with thiophene or direct cross-linking with 

cyclopentadiene are proposed to overcome these issues regarding the temperature stability. Using such 

components should increase the threshold temperature for the retro-DA de-cross-linking reaction. 

Finally, the BM cross-linked EPM-g-furan rubber was used for the preparation of aramid fiber 

reinforced rubbers. The material properties of the resulting products are comparable to those of a fiber 

reinforced, peroxide cured reference sample and improve with the fiber loading. 
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